Properties

Label 1521.2.b.h
Level $1521$
Weight $2$
Character orbit 1521.b
Analytic conductor $12.145$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,2,Mod(1351,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1351");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.1452461474\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} - 3) q^{4} + (2 \beta_{2} + \beta_1) q^{5} + (\beta_{2} - \beta_1) q^{7} + (4 \beta_{2} - \beta_1) q^{8} + ( - \beta_{3} - 3) q^{10} - 2 \beta_{2} q^{11} + ( - 2 \beta_{3} + 6) q^{14}+ \cdots + (12 \beta_{2} - \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{4} - 14 q^{10} + 20 q^{14} + 6 q^{16} + 2 q^{17} - 4 q^{22} + 8 q^{23} - 6 q^{25} - 2 q^{29} + 8 q^{35} - 28 q^{38} - 10 q^{40} - 10 q^{43} + 2 q^{49} - 22 q^{53} + 12 q^{55} - 44 q^{56} + 32 q^{61}+ \cdots - 52 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 5\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{2} - 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1521\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1351.1
2.56155i
1.56155i
1.56155i
2.56155i
2.56155i 0 −4.56155 0.561553i 0 3.56155i 6.56155i 0 −1.43845
1351.2 1.56155i 0 −0.438447 3.56155i 0 0.561553i 2.43845i 0 −5.56155
1351.3 1.56155i 0 −0.438447 3.56155i 0 0.561553i 2.43845i 0 −5.56155
1351.4 2.56155i 0 −4.56155 0.561553i 0 3.56155i 6.56155i 0 −1.43845
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1521.2.b.h 4
3.b odd 2 1 507.2.b.d 4
13.b even 2 1 inner 1521.2.b.h 4
13.d odd 4 1 1521.2.a.g 2
13.d odd 4 1 1521.2.a.m 2
13.f odd 12 2 117.2.g.c 4
39.d odd 2 1 507.2.b.d 4
39.f even 4 1 507.2.a.d 2
39.f even 4 1 507.2.a.g 2
39.h odd 6 2 507.2.j.g 8
39.i odd 6 2 507.2.j.g 8
39.k even 12 2 39.2.e.b 4
39.k even 12 2 507.2.e.g 4
52.l even 12 2 1872.2.t.r 4
156.l odd 4 1 8112.2.a.bk 2
156.l odd 4 1 8112.2.a.bo 2
156.v odd 12 2 624.2.q.h 4
195.bc odd 12 2 975.2.bb.i 8
195.bh even 12 2 975.2.i.k 4
195.bn odd 12 2 975.2.bb.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.e.b 4 39.k even 12 2
117.2.g.c 4 13.f odd 12 2
507.2.a.d 2 39.f even 4 1
507.2.a.g 2 39.f even 4 1
507.2.b.d 4 3.b odd 2 1
507.2.b.d 4 39.d odd 2 1
507.2.e.g 4 39.k even 12 2
507.2.j.g 8 39.h odd 6 2
507.2.j.g 8 39.i odd 6 2
624.2.q.h 4 156.v odd 12 2
975.2.i.k 4 195.bh even 12 2
975.2.bb.i 8 195.bc odd 12 2
975.2.bb.i 8 195.bn odd 12 2
1521.2.a.g 2 13.d odd 4 1
1521.2.a.m 2 13.d odd 4 1
1521.2.b.h 4 1.a even 1 1 trivial
1521.2.b.h 4 13.b even 2 1 inner
1872.2.t.r 4 52.l even 12 2
8112.2.a.bk 2 156.l odd 4 1
8112.2.a.bo 2 156.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1521, [\chi])\):

\( T_{2}^{4} + 9T_{2}^{2} + 16 \) Copy content Toggle raw display
\( T_{5}^{4} + 13T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} + 13T_{7}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 9T^{2} + 16 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 13T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{4} + 13T^{2} + 4 \) Copy content Toggle raw display
$11$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - T - 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 52T^{2} + 64 \) Copy content Toggle raw display
$23$ \( (T - 2)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + T - 38)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 9T^{2} + 16 \) Copy content Toggle raw display
$37$ \( T^{4} + 69T^{2} + 676 \) Copy content Toggle raw display
$41$ \( T^{4} + 9T^{2} + 16 \) Copy content Toggle raw display
$43$ \( (T^{2} + 5 T + 2)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 68)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 11 T - 8)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 132T^{2} + 1024 \) Copy content Toggle raw display
$61$ \( (T^{2} - 16 T + 47)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 21T^{2} + 4 \) Copy content Toggle raw display
$71$ \( (T^{2} + 196)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 106T^{2} + 361 \) Copy content Toggle raw display
$79$ \( (T^{2} - 15 T + 52)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 84T^{2} + 64 \) Copy content Toggle raw display
$89$ \( T^{4} + 196T^{2} + 4096 \) Copy content Toggle raw display
$97$ \( T^{4} + 93T^{2} + 1444 \) Copy content Toggle raw display
show more
show less