Properties

Label 1521.4.a.bi.1.1
Level $1521$
Weight $4$
Character 1521.1
Self dual yes
Analytic conductor $89.742$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,4,Mod(1,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.7419051187\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 56x^{7} - 27x^{6} + 945x^{5} + 763x^{4} - 4139x^{3} - 2478x^{2} + 63x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 13^{2} \)
Twist minimal: no (minimal twist has level 507)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.39246\) of defining polynomial
Character \(\chi\) \(=\) 1521.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.83750 q^{2} +15.4014 q^{4} +21.1983 q^{5} -16.2806 q^{7} -35.8043 q^{8} -102.547 q^{10} +30.7532 q^{11} +78.7575 q^{14} +49.9922 q^{16} -46.2371 q^{17} -144.865 q^{19} +326.483 q^{20} -148.769 q^{22} -8.38045 q^{23} +324.366 q^{25} -250.744 q^{28} +242.958 q^{29} -87.9353 q^{31} +44.5973 q^{32} +223.672 q^{34} -345.121 q^{35} +49.6950 q^{37} +700.783 q^{38} -758.990 q^{40} -107.947 q^{41} -35.4166 q^{43} +473.643 q^{44} +40.5404 q^{46} -374.815 q^{47} -77.9418 q^{49} -1569.12 q^{50} +348.583 q^{53} +651.915 q^{55} +582.916 q^{56} -1175.31 q^{58} -679.430 q^{59} -230.403 q^{61} +425.387 q^{62} -615.677 q^{64} -295.642 q^{67} -712.117 q^{68} +1669.52 q^{70} -329.215 q^{71} +48.9973 q^{73} -240.399 q^{74} -2231.12 q^{76} -500.681 q^{77} -107.942 q^{79} +1059.75 q^{80} +522.192 q^{82} -515.654 q^{83} -980.147 q^{85} +171.328 q^{86} -1101.10 q^{88} -984.453 q^{89} -129.071 q^{92} +1813.17 q^{94} -3070.88 q^{95} +487.072 q^{97} +377.043 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 6 q^{2} + 44 q^{4} + 33 q^{5} - 83 q^{7} + 87 q^{8} - 54 q^{10} + 85 q^{11} - 158 q^{14} + 216 q^{16} - 178 q^{17} - 352 q^{19} + 402 q^{20} - 630 q^{22} - 150 q^{23} - 20 q^{25} - 940 q^{28} + 97 q^{29}+ \cdots + 1457 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.83750 −1.71031 −0.855157 0.518368i \(-0.826540\pi\)
−0.855157 + 0.518368i \(0.826540\pi\)
\(3\) 0 0
\(4\) 15.4014 1.92518
\(5\) 21.1983 1.89603 0.948015 0.318225i \(-0.103087\pi\)
0.948015 + 0.318225i \(0.103087\pi\)
\(6\) 0 0
\(7\) −16.2806 −0.879070 −0.439535 0.898225i \(-0.644857\pi\)
−0.439535 + 0.898225i \(0.644857\pi\)
\(8\) −35.8043 −1.58234
\(9\) 0 0
\(10\) −102.547 −3.24281
\(11\) 30.7532 0.842950 0.421475 0.906840i \(-0.361513\pi\)
0.421475 + 0.906840i \(0.361513\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 78.7575 1.50349
\(15\) 0 0
\(16\) 49.9922 0.781128
\(17\) −46.2371 −0.659656 −0.329828 0.944041i \(-0.606991\pi\)
−0.329828 + 0.944041i \(0.606991\pi\)
\(18\) 0 0
\(19\) −144.865 −1.74917 −0.874585 0.484873i \(-0.838866\pi\)
−0.874585 + 0.484873i \(0.838866\pi\)
\(20\) 326.483 3.65019
\(21\) 0 0
\(22\) −148.769 −1.44171
\(23\) −8.38045 −0.0759758 −0.0379879 0.999278i \(-0.512095\pi\)
−0.0379879 + 0.999278i \(0.512095\pi\)
\(24\) 0 0
\(25\) 324.366 2.59493
\(26\) 0 0
\(27\) 0 0
\(28\) −250.744 −1.69237
\(29\) 242.958 1.55573 0.777865 0.628431i \(-0.216303\pi\)
0.777865 + 0.628431i \(0.216303\pi\)
\(30\) 0 0
\(31\) −87.9353 −0.509472 −0.254736 0.967011i \(-0.581989\pi\)
−0.254736 + 0.967011i \(0.581989\pi\)
\(32\) 44.5973 0.246368
\(33\) 0 0
\(34\) 223.672 1.12822
\(35\) −345.121 −1.66674
\(36\) 0 0
\(37\) 49.6950 0.220806 0.110403 0.993887i \(-0.464786\pi\)
0.110403 + 0.993887i \(0.464786\pi\)
\(38\) 700.783 2.99163
\(39\) 0 0
\(40\) −758.990 −3.00017
\(41\) −107.947 −0.411181 −0.205591 0.978638i \(-0.565912\pi\)
−0.205591 + 0.978638i \(0.565912\pi\)
\(42\) 0 0
\(43\) −35.4166 −0.125604 −0.0628021 0.998026i \(-0.520004\pi\)
−0.0628021 + 0.998026i \(0.520004\pi\)
\(44\) 473.643 1.62283
\(45\) 0 0
\(46\) 40.5404 0.129943
\(47\) −374.815 −1.16324 −0.581621 0.813460i \(-0.697581\pi\)
−0.581621 + 0.813460i \(0.697581\pi\)
\(48\) 0 0
\(49\) −77.9418 −0.227236
\(50\) −1569.12 −4.43815
\(51\) 0 0
\(52\) 0 0
\(53\) 348.583 0.903426 0.451713 0.892163i \(-0.350813\pi\)
0.451713 + 0.892163i \(0.350813\pi\)
\(54\) 0 0
\(55\) 651.915 1.59826
\(56\) 582.916 1.39099
\(57\) 0 0
\(58\) −1175.31 −2.66079
\(59\) −679.430 −1.49923 −0.749613 0.661877i \(-0.769760\pi\)
−0.749613 + 0.661877i \(0.769760\pi\)
\(60\) 0 0
\(61\) −230.403 −0.483608 −0.241804 0.970325i \(-0.577739\pi\)
−0.241804 + 0.970325i \(0.577739\pi\)
\(62\) 425.387 0.871358
\(63\) 0 0
\(64\) −615.677 −1.20249
\(65\) 0 0
\(66\) 0 0
\(67\) −295.642 −0.539082 −0.269541 0.962989i \(-0.586872\pi\)
−0.269541 + 0.962989i \(0.586872\pi\)
\(68\) −712.117 −1.26995
\(69\) 0 0
\(70\) 1669.52 2.85066
\(71\) −329.215 −0.550290 −0.275145 0.961403i \(-0.588726\pi\)
−0.275145 + 0.961403i \(0.588726\pi\)
\(72\) 0 0
\(73\) 48.9973 0.0785575 0.0392787 0.999228i \(-0.487494\pi\)
0.0392787 + 0.999228i \(0.487494\pi\)
\(74\) −240.399 −0.377647
\(75\) 0 0
\(76\) −2231.12 −3.36746
\(77\) −500.681 −0.741012
\(78\) 0 0
\(79\) −107.942 −0.153727 −0.0768636 0.997042i \(-0.524491\pi\)
−0.0768636 + 0.997042i \(0.524491\pi\)
\(80\) 1059.75 1.48104
\(81\) 0 0
\(82\) 522.192 0.703250
\(83\) −515.654 −0.681932 −0.340966 0.940076i \(-0.610754\pi\)
−0.340966 + 0.940076i \(0.610754\pi\)
\(84\) 0 0
\(85\) −980.147 −1.25073
\(86\) 171.328 0.214823
\(87\) 0 0
\(88\) −1101.10 −1.33384
\(89\) −984.453 −1.17249 −0.586246 0.810133i \(-0.699395\pi\)
−0.586246 + 0.810133i \(0.699395\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −129.071 −0.146267
\(93\) 0 0
\(94\) 1813.17 1.98951
\(95\) −3070.88 −3.31648
\(96\) 0 0
\(97\) 487.072 0.509842 0.254921 0.966962i \(-0.417951\pi\)
0.254921 + 0.966962i \(0.417951\pi\)
\(98\) 377.043 0.388644
\(99\) 0 0
\(100\) 4995.70 4.99570
\(101\) −766.375 −0.755021 −0.377511 0.926005i \(-0.623220\pi\)
−0.377511 + 0.926005i \(0.623220\pi\)
\(102\) 0 0
\(103\) 1229.87 1.17653 0.588266 0.808668i \(-0.299811\pi\)
0.588266 + 0.808668i \(0.299811\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1686.27 −1.54514
\(107\) −76.8261 −0.0694117 −0.0347059 0.999398i \(-0.511049\pi\)
−0.0347059 + 0.999398i \(0.511049\pi\)
\(108\) 0 0
\(109\) −626.001 −0.550092 −0.275046 0.961431i \(-0.588693\pi\)
−0.275046 + 0.961431i \(0.588693\pi\)
\(110\) −3153.64 −2.73353
\(111\) 0 0
\(112\) −813.904 −0.686667
\(113\) 1343.21 1.11822 0.559108 0.829095i \(-0.311144\pi\)
0.559108 + 0.829095i \(0.311144\pi\)
\(114\) 0 0
\(115\) −177.651 −0.144052
\(116\) 3741.90 2.99506
\(117\) 0 0
\(118\) 3286.74 2.56415
\(119\) 752.769 0.579884
\(120\) 0 0
\(121\) −385.238 −0.289435
\(122\) 1114.58 0.827122
\(123\) 0 0
\(124\) −1354.33 −0.980824
\(125\) 4226.22 3.02404
\(126\) 0 0
\(127\) −2146.69 −1.49990 −0.749952 0.661492i \(-0.769923\pi\)
−0.749952 + 0.661492i \(0.769923\pi\)
\(128\) 2621.56 1.81028
\(129\) 0 0
\(130\) 0 0
\(131\) 798.626 0.532644 0.266322 0.963884i \(-0.414192\pi\)
0.266322 + 0.963884i \(0.414192\pi\)
\(132\) 0 0
\(133\) 2358.48 1.53764
\(134\) 1430.17 0.921999
\(135\) 0 0
\(136\) 1655.49 1.04380
\(137\) −601.153 −0.374891 −0.187445 0.982275i \(-0.560021\pi\)
−0.187445 + 0.982275i \(0.560021\pi\)
\(138\) 0 0
\(139\) −2134.18 −1.30229 −0.651146 0.758953i \(-0.725711\pi\)
−0.651146 + 0.758953i \(0.725711\pi\)
\(140\) −5315.35 −3.20878
\(141\) 0 0
\(142\) 1592.58 0.941169
\(143\) 0 0
\(144\) 0 0
\(145\) 5150.29 2.94971
\(146\) −237.024 −0.134358
\(147\) 0 0
\(148\) 765.373 0.425090
\(149\) 3439.93 1.89134 0.945670 0.325127i \(-0.105407\pi\)
0.945670 + 0.325127i \(0.105407\pi\)
\(150\) 0 0
\(151\) −2224.04 −1.19861 −0.599305 0.800521i \(-0.704556\pi\)
−0.599305 + 0.800521i \(0.704556\pi\)
\(152\) 5186.78 2.76779
\(153\) 0 0
\(154\) 2422.05 1.26736
\(155\) −1864.07 −0.965975
\(156\) 0 0
\(157\) 2465.32 1.25321 0.626604 0.779338i \(-0.284444\pi\)
0.626604 + 0.779338i \(0.284444\pi\)
\(158\) 522.171 0.262922
\(159\) 0 0
\(160\) 945.386 0.467121
\(161\) 136.439 0.0667881
\(162\) 0 0
\(163\) 243.565 0.117040 0.0585199 0.998286i \(-0.481362\pi\)
0.0585199 + 0.998286i \(0.481362\pi\)
\(164\) −1662.53 −0.791597
\(165\) 0 0
\(166\) 2494.47 1.16632
\(167\) 409.099 0.189563 0.0947814 0.995498i \(-0.469785\pi\)
0.0947814 + 0.995498i \(0.469785\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 4741.46 2.13914
\(171\) 0 0
\(172\) −545.466 −0.241810
\(173\) 2618.97 1.15096 0.575481 0.817815i \(-0.304815\pi\)
0.575481 + 0.817815i \(0.304815\pi\)
\(174\) 0 0
\(175\) −5280.88 −2.28113
\(176\) 1537.42 0.658452
\(177\) 0 0
\(178\) 4762.29 2.00533
\(179\) −163.311 −0.0681925 −0.0340963 0.999419i \(-0.510855\pi\)
−0.0340963 + 0.999419i \(0.510855\pi\)
\(180\) 0 0
\(181\) −3313.07 −1.36054 −0.680272 0.732960i \(-0.738138\pi\)
−0.680272 + 0.732960i \(0.738138\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 300.056 0.120220
\(185\) 1053.45 0.418654
\(186\) 0 0
\(187\) −1421.94 −0.556057
\(188\) −5772.68 −2.23945
\(189\) 0 0
\(190\) 14855.4 5.67222
\(191\) 4281.90 1.62213 0.811066 0.584954i \(-0.198888\pi\)
0.811066 + 0.584954i \(0.198888\pi\)
\(192\) 0 0
\(193\) −1877.33 −0.700171 −0.350086 0.936718i \(-0.613848\pi\)
−0.350086 + 0.936718i \(0.613848\pi\)
\(194\) −2356.21 −0.871990
\(195\) 0 0
\(196\) −1200.41 −0.437468
\(197\) −1991.26 −0.720158 −0.360079 0.932922i \(-0.617250\pi\)
−0.360079 + 0.932922i \(0.617250\pi\)
\(198\) 0 0
\(199\) 1345.05 0.479137 0.239568 0.970879i \(-0.422994\pi\)
0.239568 + 0.970879i \(0.422994\pi\)
\(200\) −11613.7 −4.10607
\(201\) 0 0
\(202\) 3707.34 1.29132
\(203\) −3955.51 −1.36760
\(204\) 0 0
\(205\) −2288.28 −0.779612
\(206\) −5949.50 −2.01224
\(207\) 0 0
\(208\) 0 0
\(209\) −4455.05 −1.47446
\(210\) 0 0
\(211\) −288.763 −0.0942147 −0.0471073 0.998890i \(-0.515000\pi\)
−0.0471073 + 0.998890i \(0.515000\pi\)
\(212\) 5368.67 1.73925
\(213\) 0 0
\(214\) 371.646 0.118716
\(215\) −750.771 −0.238150
\(216\) 0 0
\(217\) 1431.64 0.447862
\(218\) 3028.28 0.940830
\(219\) 0 0
\(220\) 10040.4 3.07693
\(221\) 0 0
\(222\) 0 0
\(223\) 1798.41 0.540046 0.270023 0.962854i \(-0.412969\pi\)
0.270023 + 0.962854i \(0.412969\pi\)
\(224\) −726.072 −0.216575
\(225\) 0 0
\(226\) −6497.77 −1.91250
\(227\) 2486.10 0.726909 0.363454 0.931612i \(-0.381597\pi\)
0.363454 + 0.931612i \(0.381597\pi\)
\(228\) 0 0
\(229\) −6074.71 −1.75296 −0.876480 0.481438i \(-0.840115\pi\)
−0.876480 + 0.481438i \(0.840115\pi\)
\(230\) 859.386 0.246375
\(231\) 0 0
\(232\) −8698.95 −2.46170
\(233\) −6367.16 −1.79024 −0.895121 0.445822i \(-0.852911\pi\)
−0.895121 + 0.445822i \(0.852911\pi\)
\(234\) 0 0
\(235\) −7945.42 −2.20554
\(236\) −10464.2 −2.88627
\(237\) 0 0
\(238\) −3641.52 −0.991784
\(239\) −1886.43 −0.510556 −0.255278 0.966868i \(-0.582167\pi\)
−0.255278 + 0.966868i \(0.582167\pi\)
\(240\) 0 0
\(241\) −5847.91 −1.56306 −0.781529 0.623869i \(-0.785560\pi\)
−0.781529 + 0.623869i \(0.785560\pi\)
\(242\) 1863.59 0.495025
\(243\) 0 0
\(244\) −3548.53 −0.931031
\(245\) −1652.23 −0.430845
\(246\) 0 0
\(247\) 0 0
\(248\) 3148.46 0.806160
\(249\) 0 0
\(250\) −20444.3 −5.17205
\(251\) 2388.65 0.600678 0.300339 0.953832i \(-0.402900\pi\)
0.300339 + 0.953832i \(0.402900\pi\)
\(252\) 0 0
\(253\) −257.726 −0.0640438
\(254\) 10384.6 2.56531
\(255\) 0 0
\(256\) −7756.38 −1.89365
\(257\) −4447.21 −1.07941 −0.539707 0.841853i \(-0.681465\pi\)
−0.539707 + 0.841853i \(0.681465\pi\)
\(258\) 0 0
\(259\) −809.064 −0.194104
\(260\) 0 0
\(261\) 0 0
\(262\) −3863.36 −0.910988
\(263\) −7590.87 −1.77975 −0.889873 0.456208i \(-0.849207\pi\)
−0.889873 + 0.456208i \(0.849207\pi\)
\(264\) 0 0
\(265\) 7389.36 1.71292
\(266\) −11409.2 −2.62985
\(267\) 0 0
\(268\) −4553.31 −1.03783
\(269\) 557.911 0.126455 0.0632275 0.997999i \(-0.479861\pi\)
0.0632275 + 0.997999i \(0.479861\pi\)
\(270\) 0 0
\(271\) 2707.41 0.606877 0.303439 0.952851i \(-0.401865\pi\)
0.303439 + 0.952851i \(0.401865\pi\)
\(272\) −2311.50 −0.515276
\(273\) 0 0
\(274\) 2908.08 0.641181
\(275\) 9975.31 2.18740
\(276\) 0 0
\(277\) −1231.35 −0.267092 −0.133546 0.991043i \(-0.542636\pi\)
−0.133546 + 0.991043i \(0.542636\pi\)
\(278\) 10324.1 2.22733
\(279\) 0 0
\(280\) 12356.8 2.63736
\(281\) −4601.44 −0.976864 −0.488432 0.872602i \(-0.662431\pi\)
−0.488432 + 0.872602i \(0.662431\pi\)
\(282\) 0 0
\(283\) −54.5677 −0.0114619 −0.00573094 0.999984i \(-0.501824\pi\)
−0.00573094 + 0.999984i \(0.501824\pi\)
\(284\) −5070.37 −1.05941
\(285\) 0 0
\(286\) 0 0
\(287\) 1757.44 0.361457
\(288\) 0 0
\(289\) −2775.13 −0.564854
\(290\) −24914.5 −5.04494
\(291\) 0 0
\(292\) 754.627 0.151237
\(293\) 4745.24 0.946144 0.473072 0.881024i \(-0.343145\pi\)
0.473072 + 0.881024i \(0.343145\pi\)
\(294\) 0 0
\(295\) −14402.7 −2.84258
\(296\) −1779.30 −0.349390
\(297\) 0 0
\(298\) −16640.6 −3.23479
\(299\) 0 0
\(300\) 0 0
\(301\) 576.604 0.110415
\(302\) 10758.8 2.05000
\(303\) 0 0
\(304\) −7242.10 −1.36633
\(305\) −4884.15 −0.916936
\(306\) 0 0
\(307\) −1028.82 −0.191264 −0.0956320 0.995417i \(-0.530487\pi\)
−0.0956320 + 0.995417i \(0.530487\pi\)
\(308\) −7711.20 −1.42658
\(309\) 0 0
\(310\) 9017.46 1.65212
\(311\) 2437.84 0.444492 0.222246 0.974991i \(-0.428661\pi\)
0.222246 + 0.974991i \(0.428661\pi\)
\(312\) 0 0
\(313\) 7934.20 1.43280 0.716402 0.697688i \(-0.245788\pi\)
0.716402 + 0.697688i \(0.245788\pi\)
\(314\) −11926.0 −2.14338
\(315\) 0 0
\(316\) −1662.46 −0.295952
\(317\) 6942.72 1.23010 0.615050 0.788488i \(-0.289136\pi\)
0.615050 + 0.788488i \(0.289136\pi\)
\(318\) 0 0
\(319\) 7471.75 1.31140
\(320\) −13051.3 −2.27997
\(321\) 0 0
\(322\) −660.023 −0.114229
\(323\) 6698.12 1.15385
\(324\) 0 0
\(325\) 0 0
\(326\) −1178.25 −0.200175
\(327\) 0 0
\(328\) 3864.96 0.650630
\(329\) 6102.21 1.02257
\(330\) 0 0
\(331\) 5439.27 0.903230 0.451615 0.892213i \(-0.350848\pi\)
0.451615 + 0.892213i \(0.350848\pi\)
\(332\) −7941.79 −1.31284
\(333\) 0 0
\(334\) −1979.01 −0.324212
\(335\) −6267.10 −1.02211
\(336\) 0 0
\(337\) −1663.87 −0.268952 −0.134476 0.990917i \(-0.542935\pi\)
−0.134476 + 0.990917i \(0.542935\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −15095.6 −2.40787
\(341\) −2704.29 −0.429460
\(342\) 0 0
\(343\) 6853.19 1.07883
\(344\) 1268.07 0.198749
\(345\) 0 0
\(346\) −12669.3 −1.96851
\(347\) −9268.10 −1.43383 −0.716913 0.697163i \(-0.754446\pi\)
−0.716913 + 0.697163i \(0.754446\pi\)
\(348\) 0 0
\(349\) −5239.45 −0.803614 −0.401807 0.915724i \(-0.631618\pi\)
−0.401807 + 0.915724i \(0.631618\pi\)
\(350\) 25546.3 3.90144
\(351\) 0 0
\(352\) 1371.51 0.207676
\(353\) 1218.01 0.183649 0.0918244 0.995775i \(-0.470730\pi\)
0.0918244 + 0.995775i \(0.470730\pi\)
\(354\) 0 0
\(355\) −6978.78 −1.04337
\(356\) −15162.0 −2.25726
\(357\) 0 0
\(358\) 790.018 0.116631
\(359\) 5316.06 0.781534 0.390767 0.920490i \(-0.372210\pi\)
0.390767 + 0.920490i \(0.372210\pi\)
\(360\) 0 0
\(361\) 14126.7 2.05959
\(362\) 16027.0 2.32696
\(363\) 0 0
\(364\) 0 0
\(365\) 1038.66 0.148947
\(366\) 0 0
\(367\) −289.101 −0.0411197 −0.0205599 0.999789i \(-0.506545\pi\)
−0.0205599 + 0.999789i \(0.506545\pi\)
\(368\) −418.957 −0.0593469
\(369\) 0 0
\(370\) −5096.05 −0.716030
\(371\) −5675.15 −0.794175
\(372\) 0 0
\(373\) 6163.98 0.855654 0.427827 0.903861i \(-0.359279\pi\)
0.427827 + 0.903861i \(0.359279\pi\)
\(374\) 6878.64 0.951032
\(375\) 0 0
\(376\) 13420.0 1.84065
\(377\) 0 0
\(378\) 0 0
\(379\) 2440.03 0.330702 0.165351 0.986235i \(-0.447124\pi\)
0.165351 + 0.986235i \(0.447124\pi\)
\(380\) −47295.9 −6.38481
\(381\) 0 0
\(382\) −20713.7 −2.77436
\(383\) −6577.28 −0.877502 −0.438751 0.898609i \(-0.644579\pi\)
−0.438751 + 0.898609i \(0.644579\pi\)
\(384\) 0 0
\(385\) −10613.6 −1.40498
\(386\) 9081.58 1.19751
\(387\) 0 0
\(388\) 7501.59 0.981535
\(389\) −4964.94 −0.647127 −0.323563 0.946206i \(-0.604881\pi\)
−0.323563 + 0.946206i \(0.604881\pi\)
\(390\) 0 0
\(391\) 387.488 0.0501179
\(392\) 2790.65 0.359565
\(393\) 0 0
\(394\) 9632.70 1.23170
\(395\) −2288.19 −0.291471
\(396\) 0 0
\(397\) 12073.9 1.52637 0.763187 0.646178i \(-0.223634\pi\)
0.763187 + 0.646178i \(0.223634\pi\)
\(398\) −6506.69 −0.819475
\(399\) 0 0
\(400\) 16215.8 2.02697
\(401\) −4916.90 −0.612315 −0.306158 0.951981i \(-0.599043\pi\)
−0.306158 + 0.951981i \(0.599043\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −11803.3 −1.45355
\(405\) 0 0
\(406\) 19134.8 2.33902
\(407\) 1528.28 0.186128
\(408\) 0 0
\(409\) −15350.9 −1.85588 −0.927939 0.372733i \(-0.878421\pi\)
−0.927939 + 0.372733i \(0.878421\pi\)
\(410\) 11069.6 1.33338
\(411\) 0 0
\(412\) 18941.7 2.26503
\(413\) 11061.5 1.31792
\(414\) 0 0
\(415\) −10931.0 −1.29296
\(416\) 0 0
\(417\) 0 0
\(418\) 21551.3 2.52179
\(419\) 5488.58 0.639939 0.319970 0.947428i \(-0.396327\pi\)
0.319970 + 0.947428i \(0.396327\pi\)
\(420\) 0 0
\(421\) 927.681 0.107393 0.0536964 0.998557i \(-0.482900\pi\)
0.0536964 + 0.998557i \(0.482900\pi\)
\(422\) 1396.89 0.161137
\(423\) 0 0
\(424\) −12480.8 −1.42953
\(425\) −14997.8 −1.71176
\(426\) 0 0
\(427\) 3751.10 0.425126
\(428\) −1183.23 −0.133630
\(429\) 0 0
\(430\) 3631.85 0.407311
\(431\) 11002.3 1.22961 0.614806 0.788678i \(-0.289234\pi\)
0.614806 + 0.788678i \(0.289234\pi\)
\(432\) 0 0
\(433\) −9596.76 −1.06511 −0.532553 0.846397i \(-0.678767\pi\)
−0.532553 + 0.846397i \(0.678767\pi\)
\(434\) −6925.56 −0.765985
\(435\) 0 0
\(436\) −9641.30 −1.05902
\(437\) 1214.03 0.132895
\(438\) 0 0
\(439\) −10346.3 −1.12483 −0.562416 0.826854i \(-0.690128\pi\)
−0.562416 + 0.826854i \(0.690128\pi\)
\(440\) −23341.4 −2.52899
\(441\) 0 0
\(442\) 0 0
\(443\) −5650.38 −0.606000 −0.303000 0.952991i \(-0.597988\pi\)
−0.303000 + 0.952991i \(0.597988\pi\)
\(444\) 0 0
\(445\) −20868.7 −2.22308
\(446\) −8699.80 −0.923649
\(447\) 0 0
\(448\) 10023.6 1.05708
\(449\) −11987.8 −1.25999 −0.629997 0.776597i \(-0.716944\pi\)
−0.629997 + 0.776597i \(0.716944\pi\)
\(450\) 0 0
\(451\) −3319.71 −0.346605
\(452\) 20687.3 2.15276
\(453\) 0 0
\(454\) −12026.5 −1.24324
\(455\) 0 0
\(456\) 0 0
\(457\) −16437.6 −1.68253 −0.841265 0.540623i \(-0.818189\pi\)
−0.841265 + 0.540623i \(0.818189\pi\)
\(458\) 29386.4 2.99811
\(459\) 0 0
\(460\) −2736.08 −0.277326
\(461\) −8847.70 −0.893880 −0.446940 0.894564i \(-0.647486\pi\)
−0.446940 + 0.894564i \(0.647486\pi\)
\(462\) 0 0
\(463\) 10269.6 1.03081 0.515407 0.856945i \(-0.327641\pi\)
0.515407 + 0.856945i \(0.327641\pi\)
\(464\) 12146.0 1.21523
\(465\) 0 0
\(466\) 30801.1 3.06188
\(467\) −14730.4 −1.45962 −0.729811 0.683649i \(-0.760392\pi\)
−0.729811 + 0.683649i \(0.760392\pi\)
\(468\) 0 0
\(469\) 4813.24 0.473891
\(470\) 38436.0 3.77217
\(471\) 0 0
\(472\) 24326.6 2.37229
\(473\) −1089.18 −0.105878
\(474\) 0 0
\(475\) −46989.2 −4.53897
\(476\) 11593.7 1.11638
\(477\) 0 0
\(478\) 9125.59 0.873211
\(479\) −635.077 −0.0605792 −0.0302896 0.999541i \(-0.509643\pi\)
−0.0302896 + 0.999541i \(0.509643\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 28289.3 2.67332
\(483\) 0 0
\(484\) −5933.22 −0.557214
\(485\) 10325.1 0.966675
\(486\) 0 0
\(487\) −16611.1 −1.54563 −0.772815 0.634632i \(-0.781152\pi\)
−0.772815 + 0.634632i \(0.781152\pi\)
\(488\) 8249.43 0.765234
\(489\) 0 0
\(490\) 7992.66 0.736881
\(491\) 2584.14 0.237516 0.118758 0.992923i \(-0.462109\pi\)
0.118758 + 0.992923i \(0.462109\pi\)
\(492\) 0 0
\(493\) −11233.7 −1.02625
\(494\) 0 0
\(495\) 0 0
\(496\) −4396.08 −0.397963
\(497\) 5359.82 0.483744
\(498\) 0 0
\(499\) 2183.88 0.195919 0.0979597 0.995190i \(-0.468768\pi\)
0.0979597 + 0.995190i \(0.468768\pi\)
\(500\) 65089.8 5.82180
\(501\) 0 0
\(502\) −11555.1 −1.02735
\(503\) 17214.9 1.52600 0.762998 0.646401i \(-0.223727\pi\)
0.762998 + 0.646401i \(0.223727\pi\)
\(504\) 0 0
\(505\) −16245.8 −1.43154
\(506\) 1246.75 0.109535
\(507\) 0 0
\(508\) −33062.0 −2.88758
\(509\) −20260.6 −1.76431 −0.882157 0.470955i \(-0.843909\pi\)
−0.882157 + 0.470955i \(0.843909\pi\)
\(510\) 0 0
\(511\) −797.705 −0.0690575
\(512\) 16549.0 1.42846
\(513\) 0 0
\(514\) 21513.4 1.84614
\(515\) 26071.1 2.23074
\(516\) 0 0
\(517\) −11526.8 −0.980554
\(518\) 3913.85 0.331978
\(519\) 0 0
\(520\) 0 0
\(521\) 20731.5 1.74331 0.871653 0.490124i \(-0.163048\pi\)
0.871653 + 0.490124i \(0.163048\pi\)
\(522\) 0 0
\(523\) −944.353 −0.0789554 −0.0394777 0.999220i \(-0.512569\pi\)
−0.0394777 + 0.999220i \(0.512569\pi\)
\(524\) 12300.0 1.02543
\(525\) 0 0
\(526\) 36720.9 3.04393
\(527\) 4065.87 0.336076
\(528\) 0 0
\(529\) −12096.8 −0.994228
\(530\) −35746.0 −2.92964
\(531\) 0 0
\(532\) 36324.0 2.96023
\(533\) 0 0
\(534\) 0 0
\(535\) −1628.58 −0.131607
\(536\) 10585.3 0.853012
\(537\) 0 0
\(538\) −2698.89 −0.216278
\(539\) −2396.96 −0.191548
\(540\) 0 0
\(541\) 4883.06 0.388058 0.194029 0.980996i \(-0.437844\pi\)
0.194029 + 0.980996i \(0.437844\pi\)
\(542\) −13097.1 −1.03795
\(543\) 0 0
\(544\) −2062.05 −0.162518
\(545\) −13270.1 −1.04299
\(546\) 0 0
\(547\) −16269.1 −1.27169 −0.635847 0.771815i \(-0.719349\pi\)
−0.635847 + 0.771815i \(0.719349\pi\)
\(548\) −9258.61 −0.721730
\(549\) 0 0
\(550\) −48255.6 −3.74114
\(551\) −35196.0 −2.72124
\(552\) 0 0
\(553\) 1757.37 0.135137
\(554\) 5956.63 0.456811
\(555\) 0 0
\(556\) −32869.3 −2.50714
\(557\) 15661.0 1.19134 0.595670 0.803229i \(-0.296887\pi\)
0.595670 + 0.803229i \(0.296887\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −17253.3 −1.30194
\(561\) 0 0
\(562\) 22259.5 1.67074
\(563\) 9915.18 0.742230 0.371115 0.928587i \(-0.378976\pi\)
0.371115 + 0.928587i \(0.378976\pi\)
\(564\) 0 0
\(565\) 28473.7 2.12017
\(566\) 263.971 0.0196034
\(567\) 0 0
\(568\) 11787.3 0.870748
\(569\) 11299.1 0.832482 0.416241 0.909254i \(-0.363347\pi\)
0.416241 + 0.909254i \(0.363347\pi\)
\(570\) 0 0
\(571\) −17619.6 −1.29134 −0.645672 0.763615i \(-0.723423\pi\)
−0.645672 + 0.763615i \(0.723423\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −8501.61 −0.618206
\(575\) −2718.33 −0.197152
\(576\) 0 0
\(577\) 22153.5 1.59837 0.799186 0.601083i \(-0.205264\pi\)
0.799186 + 0.601083i \(0.205264\pi\)
\(578\) 13424.7 0.966078
\(579\) 0 0
\(580\) 79321.7 5.67872
\(581\) 8395.15 0.599466
\(582\) 0 0
\(583\) 10720.1 0.761543
\(584\) −1754.31 −0.124305
\(585\) 0 0
\(586\) −22955.1 −1.61820
\(587\) −9891.28 −0.695497 −0.347748 0.937588i \(-0.613054\pi\)
−0.347748 + 0.937588i \(0.613054\pi\)
\(588\) 0 0
\(589\) 12738.7 0.891153
\(590\) 69673.3 4.86170
\(591\) 0 0
\(592\) 2484.36 0.172477
\(593\) −9746.23 −0.674924 −0.337462 0.941339i \(-0.609568\pi\)
−0.337462 + 0.941339i \(0.609568\pi\)
\(594\) 0 0
\(595\) 15957.4 1.09948
\(596\) 52979.7 3.64116
\(597\) 0 0
\(598\) 0 0
\(599\) 8460.53 0.577109 0.288554 0.957464i \(-0.406825\pi\)
0.288554 + 0.957464i \(0.406825\pi\)
\(600\) 0 0
\(601\) 6792.99 0.461052 0.230526 0.973066i \(-0.425955\pi\)
0.230526 + 0.973066i \(0.425955\pi\)
\(602\) −2789.32 −0.188844
\(603\) 0 0
\(604\) −34253.4 −2.30754
\(605\) −8166.38 −0.548778
\(606\) 0 0
\(607\) 19073.4 1.27539 0.637697 0.770287i \(-0.279887\pi\)
0.637697 + 0.770287i \(0.279887\pi\)
\(608\) −6460.58 −0.430939
\(609\) 0 0
\(610\) 23627.1 1.56825
\(611\) 0 0
\(612\) 0 0
\(613\) 14465.2 0.953091 0.476545 0.879150i \(-0.341889\pi\)
0.476545 + 0.879150i \(0.341889\pi\)
\(614\) 4976.93 0.327122
\(615\) 0 0
\(616\) 17926.6 1.17254
\(617\) 12897.3 0.841536 0.420768 0.907168i \(-0.361761\pi\)
0.420768 + 0.907168i \(0.361761\pi\)
\(618\) 0 0
\(619\) 27735.8 1.80096 0.900481 0.434895i \(-0.143214\pi\)
0.900481 + 0.434895i \(0.143214\pi\)
\(620\) −28709.4 −1.85967
\(621\) 0 0
\(622\) −11793.0 −0.760222
\(623\) 16027.5 1.03070
\(624\) 0 0
\(625\) 49042.7 3.13873
\(626\) −38381.7 −2.45055
\(627\) 0 0
\(628\) 37969.3 2.41265
\(629\) −2297.75 −0.145656
\(630\) 0 0
\(631\) −28560.1 −1.80184 −0.900918 0.433990i \(-0.857105\pi\)
−0.900918 + 0.433990i \(0.857105\pi\)
\(632\) 3864.80 0.243249
\(633\) 0 0
\(634\) −33585.4 −2.10386
\(635\) −45506.1 −2.84386
\(636\) 0 0
\(637\) 0 0
\(638\) −36144.6 −2.24291
\(639\) 0 0
\(640\) 55572.5 3.43234
\(641\) −1862.53 −0.114767 −0.0573833 0.998352i \(-0.518276\pi\)
−0.0573833 + 0.998352i \(0.518276\pi\)
\(642\) 0 0
\(643\) −29495.2 −1.80899 −0.904494 0.426487i \(-0.859751\pi\)
−0.904494 + 0.426487i \(0.859751\pi\)
\(644\) 2101.35 0.128579
\(645\) 0 0
\(646\) −32402.2 −1.97345
\(647\) −27780.7 −1.68805 −0.844027 0.536301i \(-0.819821\pi\)
−0.844027 + 0.536301i \(0.819821\pi\)
\(648\) 0 0
\(649\) −20894.7 −1.26377
\(650\) 0 0
\(651\) 0 0
\(652\) 3751.25 0.225322
\(653\) −276.678 −0.0165808 −0.00829039 0.999966i \(-0.502639\pi\)
−0.00829039 + 0.999966i \(0.502639\pi\)
\(654\) 0 0
\(655\) 16929.5 1.00991
\(656\) −5396.49 −0.321185
\(657\) 0 0
\(658\) −29519.5 −1.74892
\(659\) −18114.9 −1.07080 −0.535398 0.844600i \(-0.679838\pi\)
−0.535398 + 0.844600i \(0.679838\pi\)
\(660\) 0 0
\(661\) −27094.4 −1.59433 −0.797163 0.603764i \(-0.793667\pi\)
−0.797163 + 0.603764i \(0.793667\pi\)
\(662\) −26312.5 −1.54481
\(663\) 0 0
\(664\) 18462.6 1.07905
\(665\) 49995.8 2.91542
\(666\) 0 0
\(667\) −2036.10 −0.118198
\(668\) 6300.70 0.364942
\(669\) 0 0
\(670\) 30317.1 1.74814
\(671\) −7085.64 −0.407657
\(672\) 0 0
\(673\) 2410.31 0.138054 0.0690272 0.997615i \(-0.478010\pi\)
0.0690272 + 0.997615i \(0.478010\pi\)
\(674\) 8048.99 0.459993
\(675\) 0 0
\(676\) 0 0
\(677\) −12508.3 −0.710091 −0.355046 0.934849i \(-0.615535\pi\)
−0.355046 + 0.934849i \(0.615535\pi\)
\(678\) 0 0
\(679\) −7929.83 −0.448187
\(680\) 35093.5 1.97908
\(681\) 0 0
\(682\) 13082.0 0.734511
\(683\) −16793.8 −0.940844 −0.470422 0.882442i \(-0.655898\pi\)
−0.470422 + 0.882442i \(0.655898\pi\)
\(684\) 0 0
\(685\) −12743.4 −0.710804
\(686\) −33152.3 −1.84513
\(687\) 0 0
\(688\) −1770.56 −0.0981131
\(689\) 0 0
\(690\) 0 0
\(691\) 26026.9 1.43286 0.716432 0.697657i \(-0.245774\pi\)
0.716432 + 0.697657i \(0.245774\pi\)
\(692\) 40335.8 2.21580
\(693\) 0 0
\(694\) 44834.4 2.45229
\(695\) −45240.8 −2.46918
\(696\) 0 0
\(697\) 4991.14 0.271238
\(698\) 25345.8 1.37443
\(699\) 0 0
\(700\) −81333.0 −4.39157
\(701\) −5079.08 −0.273658 −0.136829 0.990595i \(-0.543691\pi\)
−0.136829 + 0.990595i \(0.543691\pi\)
\(702\) 0 0
\(703\) −7199.04 −0.386226
\(704\) −18934.1 −1.01364
\(705\) 0 0
\(706\) −5892.11 −0.314097
\(707\) 12477.1 0.663717
\(708\) 0 0
\(709\) 2530.72 0.134052 0.0670262 0.997751i \(-0.478649\pi\)
0.0670262 + 0.997751i \(0.478649\pi\)
\(710\) 33759.9 1.78449
\(711\) 0 0
\(712\) 35247.7 1.85529
\(713\) 736.937 0.0387076
\(714\) 0 0
\(715\) 0 0
\(716\) −2515.22 −0.131283
\(717\) 0 0
\(718\) −25716.4 −1.33667
\(719\) −9503.67 −0.492944 −0.246472 0.969150i \(-0.579271\pi\)
−0.246472 + 0.969150i \(0.579271\pi\)
\(720\) 0 0
\(721\) −20023.0 −1.03425
\(722\) −68338.2 −3.52255
\(723\) 0 0
\(724\) −51026.0 −2.61929
\(725\) 78807.4 4.03701
\(726\) 0 0
\(727\) 33343.1 1.70100 0.850500 0.525975i \(-0.176300\pi\)
0.850500 + 0.525975i \(0.176300\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −5024.50 −0.254747
\(731\) 1637.56 0.0828556
\(732\) 0 0
\(733\) −32288.1 −1.62699 −0.813497 0.581569i \(-0.802439\pi\)
−0.813497 + 0.581569i \(0.802439\pi\)
\(734\) 1398.53 0.0703277
\(735\) 0 0
\(736\) −373.746 −0.0187180
\(737\) −9091.96 −0.454419
\(738\) 0 0
\(739\) 14168.8 0.705288 0.352644 0.935758i \(-0.385283\pi\)
0.352644 + 0.935758i \(0.385283\pi\)
\(740\) 16224.6 0.805983
\(741\) 0 0
\(742\) 27453.5 1.35829
\(743\) 13248.6 0.654165 0.327083 0.944996i \(-0.393934\pi\)
0.327083 + 0.944996i \(0.393934\pi\)
\(744\) 0 0
\(745\) 72920.5 3.58604
\(746\) −29818.3 −1.46344
\(747\) 0 0
\(748\) −21899.9 −1.07051
\(749\) 1250.78 0.0610178
\(750\) 0 0
\(751\) 5113.98 0.248484 0.124242 0.992252i \(-0.460350\pi\)
0.124242 + 0.992252i \(0.460350\pi\)
\(752\) −18737.8 −0.908641
\(753\) 0 0
\(754\) 0 0
\(755\) −47145.9 −2.27260
\(756\) 0 0
\(757\) 27380.4 1.31461 0.657303 0.753626i \(-0.271697\pi\)
0.657303 + 0.753626i \(0.271697\pi\)
\(758\) −11803.6 −0.565604
\(759\) 0 0
\(760\) 109951. 5.24781
\(761\) −10613.8 −0.505586 −0.252793 0.967520i \(-0.581349\pi\)
−0.252793 + 0.967520i \(0.581349\pi\)
\(762\) 0 0
\(763\) 10191.7 0.483569
\(764\) 65947.3 3.12289
\(765\) 0 0
\(766\) 31817.6 1.50080
\(767\) 0 0
\(768\) 0 0
\(769\) −9172.22 −0.430115 −0.215058 0.976601i \(-0.568994\pi\)
−0.215058 + 0.976601i \(0.568994\pi\)
\(770\) 51343.2 2.40296
\(771\) 0 0
\(772\) −28913.5 −1.34795
\(773\) 14952.1 0.695718 0.347859 0.937547i \(-0.386909\pi\)
0.347859 + 0.937547i \(0.386909\pi\)
\(774\) 0 0
\(775\) −28523.2 −1.32205
\(776\) −17439.3 −0.806745
\(777\) 0 0
\(778\) 24017.9 1.10679
\(779\) 15637.7 0.719226
\(780\) 0 0
\(781\) −10124.4 −0.463867
\(782\) −1874.47 −0.0857174
\(783\) 0 0
\(784\) −3896.48 −0.177500
\(785\) 52260.4 2.37612
\(786\) 0 0
\(787\) 2671.52 0.121003 0.0605015 0.998168i \(-0.480730\pi\)
0.0605015 + 0.998168i \(0.480730\pi\)
\(788\) −30668.1 −1.38643
\(789\) 0 0
\(790\) 11069.1 0.498508
\(791\) −21868.3 −0.982991
\(792\) 0 0
\(793\) 0 0
\(794\) −58407.4 −2.61058
\(795\) 0 0
\(796\) 20715.7 0.922423
\(797\) 12949.7 0.575536 0.287768 0.957700i \(-0.407087\pi\)
0.287768 + 0.957700i \(0.407087\pi\)
\(798\) 0 0
\(799\) 17330.4 0.767339
\(800\) 14465.9 0.639307
\(801\) 0 0
\(802\) 23785.5 1.04725
\(803\) 1506.82 0.0662200
\(804\) 0 0
\(805\) 2892.27 0.126632
\(806\) 0 0
\(807\) 0 0
\(808\) 27439.6 1.19470
\(809\) 11640.4 0.505876 0.252938 0.967482i \(-0.418603\pi\)
0.252938 + 0.967482i \(0.418603\pi\)
\(810\) 0 0
\(811\) −18135.3 −0.785225 −0.392613 0.919704i \(-0.628429\pi\)
−0.392613 + 0.919704i \(0.628429\pi\)
\(812\) −60920.4 −2.63286
\(813\) 0 0
\(814\) −7393.06 −0.318337
\(815\) 5163.16 0.221911
\(816\) 0 0
\(817\) 5130.61 0.219703
\(818\) 74260.0 3.17413
\(819\) 0 0
\(820\) −35242.8 −1.50089
\(821\) −10789.1 −0.458640 −0.229320 0.973351i \(-0.573650\pi\)
−0.229320 + 0.973351i \(0.573650\pi\)
\(822\) 0 0
\(823\) −12284.7 −0.520312 −0.260156 0.965567i \(-0.583774\pi\)
−0.260156 + 0.965567i \(0.583774\pi\)
\(824\) −44034.7 −1.86168
\(825\) 0 0
\(826\) −53510.2 −2.25407
\(827\) −36077.2 −1.51696 −0.758480 0.651696i \(-0.774058\pi\)
−0.758480 + 0.651696i \(0.774058\pi\)
\(828\) 0 0
\(829\) −8861.83 −0.371271 −0.185636 0.982619i \(-0.559434\pi\)
−0.185636 + 0.982619i \(0.559434\pi\)
\(830\) 52878.5 2.21137
\(831\) 0 0
\(832\) 0 0
\(833\) 3603.80 0.149897
\(834\) 0 0
\(835\) 8672.18 0.359417
\(836\) −68614.1 −2.83860
\(837\) 0 0
\(838\) −26551.0 −1.09450
\(839\) −5833.37 −0.240036 −0.120018 0.992772i \(-0.538295\pi\)
−0.120018 + 0.992772i \(0.538295\pi\)
\(840\) 0 0
\(841\) 34639.6 1.42030
\(842\) −4487.66 −0.183676
\(843\) 0 0
\(844\) −4447.37 −0.181380
\(845\) 0 0
\(846\) 0 0
\(847\) 6271.92 0.254434
\(848\) 17426.4 0.705692
\(849\) 0 0
\(850\) 72551.7 2.92765
\(851\) −416.466 −0.0167759
\(852\) 0 0
\(853\) −28649.5 −1.14999 −0.574995 0.818157i \(-0.694996\pi\)
−0.574995 + 0.818157i \(0.694996\pi\)
\(854\) −18146.0 −0.727098
\(855\) 0 0
\(856\) 2750.71 0.109833
\(857\) −32336.1 −1.28889 −0.644445 0.764651i \(-0.722911\pi\)
−0.644445 + 0.764651i \(0.722911\pi\)
\(858\) 0 0
\(859\) −13878.5 −0.551254 −0.275627 0.961265i \(-0.588885\pi\)
−0.275627 + 0.961265i \(0.588885\pi\)
\(860\) −11562.9 −0.458480
\(861\) 0 0
\(862\) −53223.7 −2.10302
\(863\) 32934.7 1.29908 0.649542 0.760326i \(-0.274961\pi\)
0.649542 + 0.760326i \(0.274961\pi\)
\(864\) 0 0
\(865\) 55517.5 2.18226
\(866\) 46424.3 1.82167
\(867\) 0 0
\(868\) 22049.3 0.862213
\(869\) −3319.57 −0.129584
\(870\) 0 0
\(871\) 0 0
\(872\) 22413.5 0.870434
\(873\) 0 0
\(874\) −5872.87 −0.227292
\(875\) −68805.4 −2.65834
\(876\) 0 0
\(877\) −18375.7 −0.707531 −0.353765 0.935334i \(-0.615099\pi\)
−0.353765 + 0.935334i \(0.615099\pi\)
\(878\) 50050.2 1.92382
\(879\) 0 0
\(880\) 32590.7 1.24845
\(881\) −46883.4 −1.79290 −0.896448 0.443150i \(-0.853861\pi\)
−0.896448 + 0.443150i \(0.853861\pi\)
\(882\) 0 0
\(883\) 1050.05 0.0400194 0.0200097 0.999800i \(-0.493630\pi\)
0.0200097 + 0.999800i \(0.493630\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 27333.7 1.03645
\(887\) −27916.8 −1.05677 −0.528385 0.849005i \(-0.677202\pi\)
−0.528385 + 0.849005i \(0.677202\pi\)
\(888\) 0 0
\(889\) 34949.4 1.31852
\(890\) 100952. 3.80217
\(891\) 0 0
\(892\) 27698.0 1.03968
\(893\) 54297.4 2.03471
\(894\) 0 0
\(895\) −3461.92 −0.129295
\(896\) −42680.6 −1.59136
\(897\) 0 0
\(898\) 57990.8 2.15499
\(899\) −21364.6 −0.792601
\(900\) 0 0
\(901\) −16117.5 −0.595950
\(902\) 16059.1 0.592804
\(903\) 0 0
\(904\) −48092.7 −1.76940
\(905\) −70231.3 −2.57963
\(906\) 0 0
\(907\) 23220.1 0.850066 0.425033 0.905178i \(-0.360263\pi\)
0.425033 + 0.905178i \(0.360263\pi\)
\(908\) 38289.5 1.39943
\(909\) 0 0
\(910\) 0 0
\(911\) −16344.9 −0.594435 −0.297217 0.954810i \(-0.596059\pi\)
−0.297217 + 0.954810i \(0.596059\pi\)
\(912\) 0 0
\(913\) −15858.0 −0.574834
\(914\) 79516.7 2.87766
\(915\) 0 0
\(916\) −93559.0 −3.37476
\(917\) −13002.1 −0.468231
\(918\) 0 0
\(919\) −32931.7 −1.18206 −0.591032 0.806648i \(-0.701279\pi\)
−0.591032 + 0.806648i \(0.701279\pi\)
\(920\) 6360.67 0.227940
\(921\) 0 0
\(922\) 42800.8 1.52882
\(923\) 0 0
\(924\) 0 0
\(925\) 16119.4 0.572975
\(926\) −49679.0 −1.76302
\(927\) 0 0
\(928\) 10835.3 0.383282
\(929\) 56305.5 1.98851 0.994253 0.107056i \(-0.0341424\pi\)
0.994253 + 0.107056i \(0.0341424\pi\)
\(930\) 0 0
\(931\) 11291.0 0.397473
\(932\) −98063.3 −3.44653
\(933\) 0 0
\(934\) 71258.5 2.49641
\(935\) −30142.7 −1.05430
\(936\) 0 0
\(937\) 7095.61 0.247389 0.123695 0.992320i \(-0.460526\pi\)
0.123695 + 0.992320i \(0.460526\pi\)
\(938\) −23284.0 −0.810502
\(939\) 0 0
\(940\) −122371. −4.24606
\(941\) 5185.17 0.179630 0.0898150 0.995958i \(-0.471372\pi\)
0.0898150 + 0.995958i \(0.471372\pi\)
\(942\) 0 0
\(943\) 904.641 0.0312398
\(944\) −33966.2 −1.17109
\(945\) 0 0
\(946\) 5268.89 0.181085
\(947\) −38451.7 −1.31944 −0.659722 0.751510i \(-0.729326\pi\)
−0.659722 + 0.751510i \(0.729326\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 227310. 7.76307
\(951\) 0 0
\(952\) −26952.4 −0.917575
\(953\) 20930.5 0.711445 0.355722 0.934592i \(-0.384235\pi\)
0.355722 + 0.934592i \(0.384235\pi\)
\(954\) 0 0
\(955\) 90768.8 3.07561
\(956\) −29053.7 −0.982910
\(957\) 0 0
\(958\) 3072.19 0.103609
\(959\) 9787.14 0.329555
\(960\) 0 0
\(961\) −22058.4 −0.740438
\(962\) 0 0
\(963\) 0 0
\(964\) −90066.1 −3.00916
\(965\) −39796.1 −1.32755
\(966\) 0 0
\(967\) −50788.1 −1.68897 −0.844486 0.535578i \(-0.820094\pi\)
−0.844486 + 0.535578i \(0.820094\pi\)
\(968\) 13793.2 0.457986
\(969\) 0 0
\(970\) −49947.6 −1.65332
\(971\) −15277.5 −0.504922 −0.252461 0.967607i \(-0.581240\pi\)
−0.252461 + 0.967607i \(0.581240\pi\)
\(972\) 0 0
\(973\) 34745.7 1.14481
\(974\) 80356.3 2.64351
\(975\) 0 0
\(976\) −11518.4 −0.377760
\(977\) −1293.19 −0.0423469 −0.0211734 0.999776i \(-0.506740\pi\)
−0.0211734 + 0.999776i \(0.506740\pi\)
\(978\) 0 0
\(979\) −30275.1 −0.988353
\(980\) −25446.7 −0.829453
\(981\) 0 0
\(982\) −12500.8 −0.406227
\(983\) −8474.63 −0.274973 −0.137487 0.990504i \(-0.543902\pi\)
−0.137487 + 0.990504i \(0.543902\pi\)
\(984\) 0 0
\(985\) −42211.1 −1.36544
\(986\) 54343.0 1.75521
\(987\) 0 0
\(988\) 0 0
\(989\) 296.807 0.00954289
\(990\) 0 0
\(991\) −7080.71 −0.226969 −0.113484 0.993540i \(-0.536201\pi\)
−0.113484 + 0.993540i \(0.536201\pi\)
\(992\) −3921.68 −0.125518
\(993\) 0 0
\(994\) −25928.1 −0.827354
\(995\) 28512.8 0.908458
\(996\) 0 0
\(997\) 19423.1 0.616985 0.308493 0.951227i \(-0.400175\pi\)
0.308493 + 0.951227i \(0.400175\pi\)
\(998\) −10564.5 −0.335084
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.4.a.bi.1.1 9
3.2 odd 2 507.4.a.o.1.9 9
13.12 even 2 1521.4.a.bf.1.9 9
39.5 even 4 507.4.b.k.337.2 18
39.8 even 4 507.4.b.k.337.17 18
39.38 odd 2 507.4.a.p.1.1 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
507.4.a.o.1.9 9 3.2 odd 2
507.4.a.p.1.1 yes 9 39.38 odd 2
507.4.b.k.337.2 18 39.5 even 4
507.4.b.k.337.17 18 39.8 even 4
1521.4.a.bf.1.9 9 13.12 even 2
1521.4.a.bi.1.1 9 1.1 even 1 trivial