Properties

Label 1521.4.a.m.1.1
Level $1521$
Weight $4$
Character 1521.1
Self dual yes
Analytic conductor $89.742$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,4,Mod(1,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.7419051187\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1521.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{4} -5.19615 q^{5} +10.3923 q^{7} +51.9615 q^{11} +64.0000 q^{16} -117.000 q^{17} +24.2487 q^{19} +41.5692 q^{20} +18.0000 q^{23} -98.0000 q^{25} -83.1384 q^{28} +99.0000 q^{29} +193.990 q^{31} -54.0000 q^{35} -112.583 q^{37} +36.3731 q^{41} +82.0000 q^{43} -415.692 q^{44} -72.7461 q^{47} -235.000 q^{49} +261.000 q^{53} -270.000 q^{55} +789.815 q^{59} -719.000 q^{61} -512.000 q^{64} -703.213 q^{67} +936.000 q^{68} -467.654 q^{71} -684.160 q^{73} -193.990 q^{76} +540.000 q^{77} -440.000 q^{79} -332.554 q^{80} -1195.12 q^{83} +607.950 q^{85} +1517.28 q^{89} -144.000 q^{92} -126.000 q^{95} +1157.01 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{4} + 128 q^{16} - 234 q^{17} + 36 q^{23} - 196 q^{25} + 198 q^{29} - 108 q^{35} + 164 q^{43} - 470 q^{49} + 522 q^{53} - 540 q^{55} - 1438 q^{61} - 1024 q^{64} + 1872 q^{68} + 1080 q^{77} - 880 q^{79}+ \cdots - 252 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −8.00000 −1.00000
\(5\) −5.19615 −0.464758 −0.232379 0.972625i \(-0.574651\pi\)
−0.232379 + 0.972625i \(0.574651\pi\)
\(6\) 0 0
\(7\) 10.3923 0.561132 0.280566 0.959835i \(-0.409478\pi\)
0.280566 + 0.959835i \(0.409478\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 51.9615 1.42427 0.712136 0.702042i \(-0.247728\pi\)
0.712136 + 0.702042i \(0.247728\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 64.0000 1.00000
\(17\) −117.000 −1.66922 −0.834608 0.550845i \(-0.814306\pi\)
−0.834608 + 0.550845i \(0.814306\pi\)
\(18\) 0 0
\(19\) 24.2487 0.292791 0.146396 0.989226i \(-0.453233\pi\)
0.146396 + 0.989226i \(0.453233\pi\)
\(20\) 41.5692 0.464758
\(21\) 0 0
\(22\) 0 0
\(23\) 18.0000 0.163185 0.0815926 0.996666i \(-0.473999\pi\)
0.0815926 + 0.996666i \(0.473999\pi\)
\(24\) 0 0
\(25\) −98.0000 −0.784000
\(26\) 0 0
\(27\) 0 0
\(28\) −83.1384 −0.561132
\(29\) 99.0000 0.633925 0.316963 0.948438i \(-0.397337\pi\)
0.316963 + 0.948438i \(0.397337\pi\)
\(30\) 0 0
\(31\) 193.990 1.12392 0.561961 0.827164i \(-0.310047\pi\)
0.561961 + 0.827164i \(0.310047\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −54.0000 −0.260790
\(36\) 0 0
\(37\) −112.583 −0.500232 −0.250116 0.968216i \(-0.580469\pi\)
−0.250116 + 0.968216i \(0.580469\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 36.3731 0.138549 0.0692746 0.997598i \(-0.477932\pi\)
0.0692746 + 0.997598i \(0.477932\pi\)
\(42\) 0 0
\(43\) 82.0000 0.290811 0.145406 0.989372i \(-0.453551\pi\)
0.145406 + 0.989372i \(0.453551\pi\)
\(44\) −415.692 −1.42427
\(45\) 0 0
\(46\) 0 0
\(47\) −72.7461 −0.225768 −0.112884 0.993608i \(-0.536009\pi\)
−0.112884 + 0.993608i \(0.536009\pi\)
\(48\) 0 0
\(49\) −235.000 −0.685131
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 261.000 0.676436 0.338218 0.941068i \(-0.390176\pi\)
0.338218 + 0.941068i \(0.390176\pi\)
\(54\) 0 0
\(55\) −270.000 −0.661942
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 789.815 1.74280 0.871400 0.490574i \(-0.163213\pi\)
0.871400 + 0.490574i \(0.163213\pi\)
\(60\) 0 0
\(61\) −719.000 −1.50916 −0.754578 0.656210i \(-0.772158\pi\)
−0.754578 + 0.656210i \(0.772158\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −512.000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −703.213 −1.28226 −0.641128 0.767434i \(-0.721533\pi\)
−0.641128 + 0.767434i \(0.721533\pi\)
\(68\) 936.000 1.66922
\(69\) 0 0
\(70\) 0 0
\(71\) −467.654 −0.781694 −0.390847 0.920456i \(-0.627818\pi\)
−0.390847 + 0.920456i \(0.627818\pi\)
\(72\) 0 0
\(73\) −684.160 −1.09692 −0.548458 0.836178i \(-0.684785\pi\)
−0.548458 + 0.836178i \(0.684785\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −193.990 −0.292791
\(77\) 540.000 0.799204
\(78\) 0 0
\(79\) −440.000 −0.626631 −0.313316 0.949649i \(-0.601440\pi\)
−0.313316 + 0.949649i \(0.601440\pi\)
\(80\) −332.554 −0.464758
\(81\) 0 0
\(82\) 0 0
\(83\) −1195.12 −1.58049 −0.790247 0.612789i \(-0.790048\pi\)
−0.790247 + 0.612789i \(0.790048\pi\)
\(84\) 0 0
\(85\) 607.950 0.775781
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1517.28 1.80709 0.903545 0.428493i \(-0.140955\pi\)
0.903545 + 0.428493i \(0.140955\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −144.000 −0.163185
\(93\) 0 0
\(94\) 0 0
\(95\) −126.000 −0.136077
\(96\) 0 0
\(97\) 1157.01 1.21110 0.605549 0.795808i \(-0.292953\pi\)
0.605549 + 0.795808i \(0.292953\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 784.000 0.784000
\(101\) 1575.00 1.55167 0.775833 0.630938i \(-0.217330\pi\)
0.775833 + 0.630938i \(0.217330\pi\)
\(102\) 0 0
\(103\) −794.000 −0.759565 −0.379782 0.925076i \(-0.624001\pi\)
−0.379782 + 0.925076i \(0.624001\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −450.000 −0.406571 −0.203286 0.979119i \(-0.565162\pi\)
−0.203286 + 0.979119i \(0.565162\pi\)
\(108\) 0 0
\(109\) 595.825 0.523576 0.261788 0.965125i \(-0.415688\pi\)
0.261788 + 0.965125i \(0.415688\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 665.108 0.561132
\(113\) 1701.00 1.41608 0.708038 0.706174i \(-0.249580\pi\)
0.708038 + 0.706174i \(0.249580\pi\)
\(114\) 0 0
\(115\) −93.5307 −0.0758416
\(116\) −792.000 −0.633925
\(117\) 0 0
\(118\) 0 0
\(119\) −1215.90 −0.936650
\(120\) 0 0
\(121\) 1369.00 1.02855
\(122\) 0 0
\(123\) 0 0
\(124\) −1551.92 −1.12392
\(125\) 1158.74 0.829128
\(126\) 0 0
\(127\) 1664.00 1.16265 0.581323 0.813673i \(-0.302535\pi\)
0.581323 + 0.813673i \(0.302535\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1476.00 0.984418 0.492209 0.870477i \(-0.336190\pi\)
0.492209 + 0.870477i \(0.336190\pi\)
\(132\) 0 0
\(133\) 252.000 0.164295
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1013.25 −0.631882 −0.315941 0.948779i \(-0.602320\pi\)
−0.315941 + 0.948779i \(0.602320\pi\)
\(138\) 0 0
\(139\) 1124.00 0.685874 0.342937 0.939358i \(-0.388578\pi\)
0.342937 + 0.939358i \(0.388578\pi\)
\(140\) 432.000 0.260790
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −514.419 −0.294622
\(146\) 0 0
\(147\) 0 0
\(148\) 900.666 0.500232
\(149\) 3268.38 1.79702 0.898510 0.438952i \(-0.144650\pi\)
0.898510 + 0.438952i \(0.144650\pi\)
\(150\) 0 0
\(151\) 1638.52 0.883052 0.441526 0.897248i \(-0.354437\pi\)
0.441526 + 0.897248i \(0.354437\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1008.00 −0.522352
\(156\) 0 0
\(157\) 1259.00 0.639995 0.319997 0.947418i \(-0.396318\pi\)
0.319997 + 0.947418i \(0.396318\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 187.061 0.0915684
\(162\) 0 0
\(163\) 2951.41 1.41824 0.709118 0.705089i \(-0.249093\pi\)
0.709118 + 0.705089i \(0.249093\pi\)
\(164\) −290.985 −0.138549
\(165\) 0 0
\(166\) 0 0
\(167\) −3138.48 −1.45427 −0.727133 0.686496i \(-0.759148\pi\)
−0.727133 + 0.686496i \(0.759148\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) −656.000 −0.290811
\(173\) 4266.00 1.87479 0.937393 0.348273i \(-0.113232\pi\)
0.937393 + 0.348273i \(0.113232\pi\)
\(174\) 0 0
\(175\) −1018.45 −0.439927
\(176\) 3325.54 1.42427
\(177\) 0 0
\(178\) 0 0
\(179\) 3006.00 1.25519 0.627595 0.778540i \(-0.284039\pi\)
0.627595 + 0.778540i \(0.284039\pi\)
\(180\) 0 0
\(181\) 1873.00 0.769166 0.384583 0.923090i \(-0.374345\pi\)
0.384583 + 0.923090i \(0.374345\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 585.000 0.232487
\(186\) 0 0
\(187\) −6079.50 −2.37742
\(188\) 581.969 0.225768
\(189\) 0 0
\(190\) 0 0
\(191\) 2736.00 1.03649 0.518246 0.855232i \(-0.326585\pi\)
0.518246 + 0.855232i \(0.326585\pi\)
\(192\) 0 0
\(193\) 2603.27 0.970920 0.485460 0.874259i \(-0.338652\pi\)
0.485460 + 0.874259i \(0.338652\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1880.00 0.685131
\(197\) −3720.45 −1.34554 −0.672768 0.739853i \(-0.734895\pi\)
−0.672768 + 0.739853i \(0.734895\pi\)
\(198\) 0 0
\(199\) −1198.00 −0.426754 −0.213377 0.976970i \(-0.568446\pi\)
−0.213377 + 0.976970i \(0.568446\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1028.84 0.355716
\(204\) 0 0
\(205\) −189.000 −0.0643919
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1260.00 0.417014
\(210\) 0 0
\(211\) 2392.00 0.780436 0.390218 0.920722i \(-0.372400\pi\)
0.390218 + 0.920722i \(0.372400\pi\)
\(212\) −2088.00 −0.676436
\(213\) 0 0
\(214\) 0 0
\(215\) −426.084 −0.135157
\(216\) 0 0
\(217\) 2016.00 0.630668
\(218\) 0 0
\(219\) 0 0
\(220\) 2160.00 0.661942
\(221\) 0 0
\(222\) 0 0
\(223\) −2036.89 −0.611661 −0.305830 0.952086i \(-0.598934\pi\)
−0.305830 + 0.952086i \(0.598934\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2151.21 0.628990 0.314495 0.949259i \(-0.398165\pi\)
0.314495 + 0.949259i \(0.398165\pi\)
\(228\) 0 0
\(229\) −3471.03 −1.00162 −0.500812 0.865556i \(-0.666965\pi\)
−0.500812 + 0.865556i \(0.666965\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1854.00 −0.521286 −0.260643 0.965435i \(-0.583935\pi\)
−0.260643 + 0.965435i \(0.583935\pi\)
\(234\) 0 0
\(235\) 378.000 0.104928
\(236\) −6318.52 −1.74280
\(237\) 0 0
\(238\) 0 0
\(239\) 4458.30 1.20662 0.603312 0.797505i \(-0.293847\pi\)
0.603312 + 0.797505i \(0.293847\pi\)
\(240\) 0 0
\(241\) −417.424 −0.111571 −0.0557856 0.998443i \(-0.517766\pi\)
−0.0557856 + 0.998443i \(0.517766\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 5752.00 1.50916
\(245\) 1221.10 0.318420
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4104.00 1.03204 0.516020 0.856576i \(-0.327413\pi\)
0.516020 + 0.856576i \(0.327413\pi\)
\(252\) 0 0
\(253\) 935.307 0.232420
\(254\) 0 0
\(255\) 0 0
\(256\) 4096.00 1.00000
\(257\) 1989.00 0.482764 0.241382 0.970430i \(-0.422399\pi\)
0.241382 + 0.970430i \(0.422399\pi\)
\(258\) 0 0
\(259\) −1170.00 −0.280696
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −738.000 −0.173031 −0.0865153 0.996251i \(-0.527573\pi\)
−0.0865153 + 0.996251i \(0.527573\pi\)
\(264\) 0 0
\(265\) −1356.20 −0.314379
\(266\) 0 0
\(267\) 0 0
\(268\) 5625.70 1.28226
\(269\) 2106.00 0.477342 0.238671 0.971100i \(-0.423288\pi\)
0.238671 + 0.971100i \(0.423288\pi\)
\(270\) 0 0
\(271\) −685.892 −0.153745 −0.0768727 0.997041i \(-0.524493\pi\)
−0.0768727 + 0.997041i \(0.524493\pi\)
\(272\) −7488.00 −1.66922
\(273\) 0 0
\(274\) 0 0
\(275\) −5092.23 −1.11663
\(276\) 0 0
\(277\) −3665.00 −0.794977 −0.397488 0.917607i \(-0.630118\pi\)
−0.397488 + 0.917607i \(0.630118\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1719.93 −0.365132 −0.182566 0.983194i \(-0.558440\pi\)
−0.182566 + 0.983194i \(0.558440\pi\)
\(282\) 0 0
\(283\) 1826.00 0.383549 0.191775 0.981439i \(-0.438576\pi\)
0.191775 + 0.981439i \(0.438576\pi\)
\(284\) 3741.23 0.781694
\(285\) 0 0
\(286\) 0 0
\(287\) 378.000 0.0777444
\(288\) 0 0
\(289\) 8776.00 1.78628
\(290\) 0 0
\(291\) 0 0
\(292\) 5473.28 1.09692
\(293\) 504.027 0.100497 0.0502484 0.998737i \(-0.483999\pi\)
0.0502484 + 0.998737i \(0.483999\pi\)
\(294\) 0 0
\(295\) −4104.00 −0.809980
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 852.169 0.163183
\(302\) 0 0
\(303\) 0 0
\(304\) 1551.92 0.292791
\(305\) 3736.03 0.701392
\(306\) 0 0
\(307\) −1950.29 −0.362570 −0.181285 0.983431i \(-0.558026\pi\)
−0.181285 + 0.983431i \(0.558026\pi\)
\(308\) −4320.00 −0.799204
\(309\) 0 0
\(310\) 0 0
\(311\) −3798.00 −0.692491 −0.346246 0.938144i \(-0.612544\pi\)
−0.346246 + 0.938144i \(0.612544\pi\)
\(312\) 0 0
\(313\) 1378.00 0.248847 0.124424 0.992229i \(-0.460292\pi\)
0.124424 + 0.992229i \(0.460292\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 3520.00 0.626631
\(317\) −7103.14 −1.25852 −0.629262 0.777193i \(-0.716643\pi\)
−0.629262 + 0.777193i \(0.716643\pi\)
\(318\) 0 0
\(319\) 5144.19 0.902882
\(320\) 2660.43 0.464758
\(321\) 0 0
\(322\) 0 0
\(323\) −2837.10 −0.488732
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −756.000 −0.126686
\(330\) 0 0
\(331\) −10073.6 −1.67280 −0.836398 0.548122i \(-0.815343\pi\)
−0.836398 + 0.548122i \(0.815343\pi\)
\(332\) 9560.92 1.58049
\(333\) 0 0
\(334\) 0 0
\(335\) 3654.00 0.595938
\(336\) 0 0
\(337\) −9001.00 −1.45494 −0.727471 0.686138i \(-0.759305\pi\)
−0.727471 + 0.686138i \(0.759305\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −4863.60 −0.775781
\(341\) 10080.0 1.60077
\(342\) 0 0
\(343\) −6006.75 −0.945581
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3294.00 −0.509600 −0.254800 0.966994i \(-0.582010\pi\)
−0.254800 + 0.966994i \(0.582010\pi\)
\(348\) 0 0
\(349\) 10544.7 1.61732 0.808662 0.588273i \(-0.200192\pi\)
0.808662 + 0.588273i \(0.200192\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2478.56 0.373713 0.186856 0.982387i \(-0.440170\pi\)
0.186856 + 0.982387i \(0.440170\pi\)
\(354\) 0 0
\(355\) 2430.00 0.363299
\(356\) −12138.2 −1.80709
\(357\) 0 0
\(358\) 0 0
\(359\) −5414.39 −0.795991 −0.397995 0.917387i \(-0.630294\pi\)
−0.397995 + 0.917387i \(0.630294\pi\)
\(360\) 0 0
\(361\) −6271.00 −0.914273
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3555.00 0.509801
\(366\) 0 0
\(367\) −9946.00 −1.41465 −0.707326 0.706888i \(-0.750099\pi\)
−0.707326 + 0.706888i \(0.750099\pi\)
\(368\) 1152.00 0.163185
\(369\) 0 0
\(370\) 0 0
\(371\) 2712.39 0.379570
\(372\) 0 0
\(373\) −7301.00 −1.01349 −0.506745 0.862096i \(-0.669151\pi\)
−0.506745 + 0.862096i \(0.669151\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −3422.53 −0.463862 −0.231931 0.972732i \(-0.574504\pi\)
−0.231931 + 0.972732i \(0.574504\pi\)
\(380\) 1008.00 0.136077
\(381\) 0 0
\(382\) 0 0
\(383\) −5778.12 −0.770883 −0.385442 0.922732i \(-0.625951\pi\)
−0.385442 + 0.922732i \(0.625951\pi\)
\(384\) 0 0
\(385\) −2805.92 −0.371436
\(386\) 0 0
\(387\) 0 0
\(388\) −9256.08 −1.21110
\(389\) 9153.00 1.19300 0.596498 0.802614i \(-0.296558\pi\)
0.596498 + 0.802614i \(0.296558\pi\)
\(390\) 0 0
\(391\) −2106.00 −0.272391
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2286.31 0.291232
\(396\) 0 0
\(397\) 2023.04 0.255751 0.127876 0.991790i \(-0.459184\pi\)
0.127876 + 0.991790i \(0.459184\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −6272.00 −0.784000
\(401\) 8308.65 1.03470 0.517349 0.855774i \(-0.326919\pi\)
0.517349 + 0.855774i \(0.326919\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −12600.0 −1.55167
\(405\) 0 0
\(406\) 0 0
\(407\) −5850.00 −0.712466
\(408\) 0 0
\(409\) 10418.3 1.25954 0.629769 0.776782i \(-0.283150\pi\)
0.629769 + 0.776782i \(0.283150\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 6352.00 0.759565
\(413\) 8208.00 0.977940
\(414\) 0 0
\(415\) 6210.00 0.734547
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4176.00 −0.486900 −0.243450 0.969913i \(-0.578279\pi\)
−0.243450 + 0.969913i \(0.578279\pi\)
\(420\) 0 0
\(421\) 14471.3 1.67527 0.837633 0.546233i \(-0.183939\pi\)
0.837633 + 0.546233i \(0.183939\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11466.0 1.30867
\(426\) 0 0
\(427\) −7472.07 −0.846835
\(428\) 3600.00 0.406571
\(429\) 0 0
\(430\) 0 0
\(431\) 6578.33 0.735190 0.367595 0.929986i \(-0.380181\pi\)
0.367595 + 0.929986i \(0.380181\pi\)
\(432\) 0 0
\(433\) 6605.00 0.733062 0.366531 0.930406i \(-0.380545\pi\)
0.366531 + 0.930406i \(0.380545\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4766.60 −0.523576
\(437\) 436.477 0.0477792
\(438\) 0 0
\(439\) 8542.00 0.928673 0.464336 0.885659i \(-0.346293\pi\)
0.464336 + 0.885659i \(0.346293\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14328.0 1.53667 0.768334 0.640049i \(-0.221086\pi\)
0.768334 + 0.640049i \(0.221086\pi\)
\(444\) 0 0
\(445\) −7884.00 −0.839859
\(446\) 0 0
\(447\) 0 0
\(448\) −5320.86 −0.561132
\(449\) −3013.77 −0.316767 −0.158384 0.987378i \(-0.550628\pi\)
−0.158384 + 0.987378i \(0.550628\pi\)
\(450\) 0 0
\(451\) 1890.00 0.197332
\(452\) −13608.0 −1.41608
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2887.33 −0.295544 −0.147772 0.989021i \(-0.547210\pi\)
−0.147772 + 0.989021i \(0.547210\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 748.246 0.0758416
\(461\) 3600.93 0.363801 0.181900 0.983317i \(-0.441775\pi\)
0.181900 + 0.983317i \(0.441775\pi\)
\(462\) 0 0
\(463\) −2677.75 −0.268781 −0.134391 0.990928i \(-0.542908\pi\)
−0.134391 + 0.990928i \(0.542908\pi\)
\(464\) 6336.00 0.633925
\(465\) 0 0
\(466\) 0 0
\(467\) 13878.0 1.37515 0.687577 0.726111i \(-0.258674\pi\)
0.687577 + 0.726111i \(0.258674\pi\)
\(468\) 0 0
\(469\) −7308.00 −0.719514
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4260.84 0.414194
\(474\) 0 0
\(475\) −2376.37 −0.229548
\(476\) 9727.20 0.936650
\(477\) 0 0
\(478\) 0 0
\(479\) 1101.58 0.105079 0.0525393 0.998619i \(-0.483269\pi\)
0.0525393 + 0.998619i \(0.483269\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −10952.0 −1.02855
\(485\) −6012.00 −0.562868
\(486\) 0 0
\(487\) 17123.1 1.59326 0.796632 0.604464i \(-0.206613\pi\)
0.796632 + 0.604464i \(0.206613\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 450.000 0.0413609 0.0206805 0.999786i \(-0.493417\pi\)
0.0206805 + 0.999786i \(0.493417\pi\)
\(492\) 0 0
\(493\) −11583.0 −1.05816
\(494\) 0 0
\(495\) 0 0
\(496\) 12415.3 1.12392
\(497\) −4860.00 −0.438633
\(498\) 0 0
\(499\) 13219.0 1.18590 0.592950 0.805239i \(-0.297963\pi\)
0.592950 + 0.805239i \(0.297963\pi\)
\(500\) −9269.94 −0.829128
\(501\) 0 0
\(502\) 0 0
\(503\) −5346.00 −0.473889 −0.236945 0.971523i \(-0.576146\pi\)
−0.236945 + 0.971523i \(0.576146\pi\)
\(504\) 0 0
\(505\) −8183.94 −0.721150
\(506\) 0 0
\(507\) 0 0
\(508\) −13312.0 −1.16265
\(509\) 5866.46 0.510857 0.255428 0.966828i \(-0.417783\pi\)
0.255428 + 0.966828i \(0.417783\pi\)
\(510\) 0 0
\(511\) −7110.00 −0.615514
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4125.75 0.353014
\(516\) 0 0
\(517\) −3780.00 −0.321556
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9657.00 0.812055 0.406028 0.913861i \(-0.366914\pi\)
0.406028 + 0.913861i \(0.366914\pi\)
\(522\) 0 0
\(523\) 21626.0 1.80811 0.904053 0.427421i \(-0.140578\pi\)
0.904053 + 0.427421i \(0.140578\pi\)
\(524\) −11808.0 −0.984418
\(525\) 0 0
\(526\) 0 0
\(527\) −22696.8 −1.87607
\(528\) 0 0
\(529\) −11843.0 −0.973371
\(530\) 0 0
\(531\) 0 0
\(532\) −2016.00 −0.164295
\(533\) 0 0
\(534\) 0 0
\(535\) 2338.27 0.188957
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12211.0 −0.975813
\(540\) 0 0
\(541\) 5371.09 0.426841 0.213421 0.976960i \(-0.431540\pi\)
0.213421 + 0.976960i \(0.431540\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3096.00 −0.243336
\(546\) 0 0
\(547\) 16946.0 1.32460 0.662302 0.749237i \(-0.269579\pi\)
0.662302 + 0.749237i \(0.269579\pi\)
\(548\) 8106.00 0.631882
\(549\) 0 0
\(550\) 0 0
\(551\) 2400.62 0.185608
\(552\) 0 0
\(553\) −4572.61 −0.351623
\(554\) 0 0
\(555\) 0 0
\(556\) −8992.00 −0.685874
\(557\) 3860.74 0.293689 0.146845 0.989160i \(-0.453088\pi\)
0.146845 + 0.989160i \(0.453088\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −3456.00 −0.260790
\(561\) 0 0
\(562\) 0 0
\(563\) 21672.0 1.62232 0.811160 0.584825i \(-0.198837\pi\)
0.811160 + 0.584825i \(0.198837\pi\)
\(564\) 0 0
\(565\) −8838.66 −0.658133
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1386.00 −0.102116 −0.0510581 0.998696i \(-0.516259\pi\)
−0.0510581 + 0.998696i \(0.516259\pi\)
\(570\) 0 0
\(571\) −1162.00 −0.0851632 −0.0425816 0.999093i \(-0.513558\pi\)
−0.0425816 + 0.999093i \(0.513558\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1764.00 −0.127937
\(576\) 0 0
\(577\) −8045.38 −0.580474 −0.290237 0.956955i \(-0.593734\pi\)
−0.290237 + 0.956955i \(0.593734\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 4115.35 0.294622
\(581\) −12420.0 −0.886865
\(582\) 0 0
\(583\) 13562.0 0.963429
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27622.7 1.94227 0.971135 0.238530i \(-0.0766654\pi\)
0.971135 + 0.238530i \(0.0766654\pi\)
\(588\) 0 0
\(589\) 4704.00 0.329075
\(590\) 0 0
\(591\) 0 0
\(592\) −7205.33 −0.500232
\(593\) −275.396 −0.0190711 −0.00953555 0.999955i \(-0.503035\pi\)
−0.00953555 + 0.999955i \(0.503035\pi\)
\(594\) 0 0
\(595\) 6318.00 0.435316
\(596\) −26147.0 −1.79702
\(597\) 0 0
\(598\) 0 0
\(599\) −22356.0 −1.52494 −0.762472 0.647021i \(-0.776014\pi\)
−0.762472 + 0.647021i \(0.776014\pi\)
\(600\) 0 0
\(601\) −18083.0 −1.22732 −0.613661 0.789569i \(-0.710304\pi\)
−0.613661 + 0.789569i \(0.710304\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −13108.2 −0.883052
\(605\) −7113.53 −0.478027
\(606\) 0 0
\(607\) 5480.00 0.366435 0.183218 0.983072i \(-0.441349\pi\)
0.183218 + 0.983072i \(0.441349\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 17737.9 1.16872 0.584362 0.811493i \(-0.301345\pi\)
0.584362 + 0.811493i \(0.301345\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9867.49 0.643842 0.321921 0.946767i \(-0.395672\pi\)
0.321921 + 0.946767i \(0.395672\pi\)
\(618\) 0 0
\(619\) −4115.35 −0.267221 −0.133611 0.991034i \(-0.542657\pi\)
−0.133611 + 0.991034i \(0.542657\pi\)
\(620\) 8064.00 0.522352
\(621\) 0 0
\(622\) 0 0
\(623\) 15768.0 1.01402
\(624\) 0 0
\(625\) 6229.00 0.398656
\(626\) 0 0
\(627\) 0 0
\(628\) −10072.0 −0.639995
\(629\) 13172.2 0.834995
\(630\) 0 0
\(631\) −12664.8 −0.799011 −0.399506 0.916731i \(-0.630818\pi\)
−0.399506 + 0.916731i \(0.630818\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8646.40 −0.540349
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3789.00 −0.233473 −0.116737 0.993163i \(-0.537243\pi\)
−0.116737 + 0.993163i \(0.537243\pi\)
\(642\) 0 0
\(643\) −16911.7 −1.03722 −0.518611 0.855010i \(-0.673551\pi\)
−0.518611 + 0.855010i \(0.673551\pi\)
\(644\) −1496.49 −0.0915684
\(645\) 0 0
\(646\) 0 0
\(647\) −27792.0 −1.68874 −0.844371 0.535759i \(-0.820026\pi\)
−0.844371 + 0.535759i \(0.820026\pi\)
\(648\) 0 0
\(649\) 41040.0 2.48222
\(650\) 0 0
\(651\) 0 0
\(652\) −23611.3 −1.41824
\(653\) 594.000 0.0355973 0.0177986 0.999842i \(-0.494334\pi\)
0.0177986 + 0.999842i \(0.494334\pi\)
\(654\) 0 0
\(655\) −7669.52 −0.457516
\(656\) 2327.88 0.138549
\(657\) 0 0
\(658\) 0 0
\(659\) −17748.0 −1.04911 −0.524555 0.851376i \(-0.675768\pi\)
−0.524555 + 0.851376i \(0.675768\pi\)
\(660\) 0 0
\(661\) −15791.1 −0.929203 −0.464601 0.885520i \(-0.653802\pi\)
−0.464601 + 0.885520i \(0.653802\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1309.43 −0.0763572
\(666\) 0 0
\(667\) 1782.00 0.103447
\(668\) 25107.8 1.45427
\(669\) 0 0
\(670\) 0 0
\(671\) −37360.3 −2.14945
\(672\) 0 0
\(673\) −20933.0 −1.19897 −0.599486 0.800385i \(-0.704628\pi\)
−0.599486 + 0.800385i \(0.704628\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3402.00 −0.193131 −0.0965653 0.995327i \(-0.530786\pi\)
−0.0965653 + 0.995327i \(0.530786\pi\)
\(678\) 0 0
\(679\) 12024.0 0.679586
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24983.1 −1.39964 −0.699818 0.714321i \(-0.746736\pi\)
−0.699818 + 0.714321i \(0.746736\pi\)
\(684\) 0 0
\(685\) 5265.00 0.293672
\(686\) 0 0
\(687\) 0 0
\(688\) 5248.00 0.290811
\(689\) 0 0
\(690\) 0 0
\(691\) 13866.8 0.763412 0.381706 0.924284i \(-0.375337\pi\)
0.381706 + 0.924284i \(0.375337\pi\)
\(692\) −34128.0 −1.87479
\(693\) 0 0
\(694\) 0 0
\(695\) −5840.48 −0.318765
\(696\) 0 0
\(697\) −4255.65 −0.231269
\(698\) 0 0
\(699\) 0 0
\(700\) 8147.57 0.439927
\(701\) −21906.0 −1.18028 −0.590141 0.807300i \(-0.700928\pi\)
−0.590141 + 0.807300i \(0.700928\pi\)
\(702\) 0 0
\(703\) −2730.00 −0.146464
\(704\) −26604.3 −1.42427
\(705\) 0 0
\(706\) 0 0
\(707\) 16367.9 0.870690
\(708\) 0 0
\(709\) −13057.9 −0.691680 −0.345840 0.938294i \(-0.612406\pi\)
−0.345840 + 0.938294i \(0.612406\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3491.81 0.183407
\(714\) 0 0
\(715\) 0 0
\(716\) −24048.0 −1.25519
\(717\) 0 0
\(718\) 0 0
\(719\) −14220.0 −0.737575 −0.368788 0.929514i \(-0.620227\pi\)
−0.368788 + 0.929514i \(0.620227\pi\)
\(720\) 0 0
\(721\) −8251.49 −0.426216
\(722\) 0 0
\(723\) 0 0
\(724\) −14984.0 −0.769166
\(725\) −9702.00 −0.496998
\(726\) 0 0
\(727\) 5282.00 0.269462 0.134731 0.990882i \(-0.456983\pi\)
0.134731 + 0.990882i \(0.456983\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9594.00 −0.485427
\(732\) 0 0
\(733\) 11419.4 0.575424 0.287712 0.957717i \(-0.407105\pi\)
0.287712 + 0.957717i \(0.407105\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −36540.0 −1.82628
\(738\) 0 0
\(739\) 20535.2 1.02219 0.511096 0.859524i \(-0.329240\pi\)
0.511096 + 0.859524i \(0.329240\pi\)
\(740\) −4680.00 −0.232487
\(741\) 0 0
\(742\) 0 0
\(743\) 20826.2 1.02832 0.514158 0.857696i \(-0.328105\pi\)
0.514158 + 0.857696i \(0.328105\pi\)
\(744\) 0 0
\(745\) −16983.0 −0.835180
\(746\) 0 0
\(747\) 0 0
\(748\) 48636.0 2.37742
\(749\) −4676.54 −0.228140
\(750\) 0 0
\(751\) 4834.00 0.234880 0.117440 0.993080i \(-0.462531\pi\)
0.117440 + 0.993080i \(0.462531\pi\)
\(752\) −4655.75 −0.225768
\(753\) 0 0
\(754\) 0 0
\(755\) −8514.00 −0.410406
\(756\) 0 0
\(757\) 9046.00 0.434323 0.217161 0.976136i \(-0.430320\pi\)
0.217161 + 0.976136i \(0.430320\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12034.3 0.573249 0.286625 0.958043i \(-0.407467\pi\)
0.286625 + 0.958043i \(0.407467\pi\)
\(762\) 0 0
\(763\) 6192.00 0.293795
\(764\) −21888.0 −1.03649
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 37543.9 1.76056 0.880279 0.474457i \(-0.157355\pi\)
0.880279 + 0.474457i \(0.157355\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −20826.2 −0.970920
\(773\) −15713.2 −0.731130 −0.365565 0.930786i \(-0.619124\pi\)
−0.365565 + 0.930786i \(0.619124\pi\)
\(774\) 0 0
\(775\) −19011.0 −0.881155
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 882.000 0.0405660
\(780\) 0 0
\(781\) −24300.0 −1.11334
\(782\) 0 0
\(783\) 0 0
\(784\) −15040.0 −0.685131
\(785\) −6541.96 −0.297443
\(786\) 0 0
\(787\) −3755.09 −0.170082 −0.0850409 0.996377i \(-0.527102\pi\)
−0.0850409 + 0.996377i \(0.527102\pi\)
\(788\) 29763.6 1.34554
\(789\) 0 0
\(790\) 0 0
\(791\) 17677.3 0.794605
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 9584.00 0.426754
\(797\) −7830.00 −0.347996 −0.173998 0.984746i \(-0.555669\pi\)
−0.173998 + 0.984746i \(0.555669\pi\)
\(798\) 0 0
\(799\) 8511.30 0.376856
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −35550.0 −1.56231
\(804\) 0 0
\(805\) −972.000 −0.0425571
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6165.00 0.267923 0.133962 0.990987i \(-0.457230\pi\)
0.133962 + 0.990987i \(0.457230\pi\)
\(810\) 0 0
\(811\) −29839.8 −1.29201 −0.646003 0.763335i \(-0.723560\pi\)
−0.646003 + 0.763335i \(0.723560\pi\)
\(812\) −8230.71 −0.355716
\(813\) 0 0
\(814\) 0 0
\(815\) −15336.0 −0.659137
\(816\) 0 0
\(817\) 1988.39 0.0851470
\(818\) 0 0
\(819\) 0 0
\(820\) 1512.00 0.0643919
\(821\) 29763.6 1.26523 0.632616 0.774466i \(-0.281981\pi\)
0.632616 + 0.774466i \(0.281981\pi\)
\(822\) 0 0
\(823\) 8920.00 0.377803 0.188901 0.981996i \(-0.439507\pi\)
0.188901 + 0.981996i \(0.439507\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18041.0 −0.758583 −0.379292 0.925277i \(-0.623832\pi\)
−0.379292 + 0.925277i \(0.623832\pi\)
\(828\) 0 0
\(829\) 21023.0 0.880771 0.440385 0.897809i \(-0.354842\pi\)
0.440385 + 0.897809i \(0.354842\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 27495.0 1.14363
\(834\) 0 0
\(835\) 16308.0 0.675882
\(836\) −10080.0 −0.417014
\(837\) 0 0
\(838\) 0 0
\(839\) 22073.3 0.908288 0.454144 0.890928i \(-0.349945\pi\)
0.454144 + 0.890928i \(0.349945\pi\)
\(840\) 0 0
\(841\) −14588.0 −0.598139
\(842\) 0 0
\(843\) 0 0
\(844\) −19136.0 −0.780436
\(845\) 0 0
\(846\) 0 0
\(847\) 14227.1 0.577152
\(848\) 16704.0 0.676436
\(849\) 0 0
\(850\) 0 0
\(851\) −2026.50 −0.0816304
\(852\) 0 0
\(853\) 26609.5 1.06810 0.534051 0.845452i \(-0.320669\pi\)
0.534051 + 0.845452i \(0.320669\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12771.0 −0.509042 −0.254521 0.967067i \(-0.581918\pi\)
−0.254521 + 0.967067i \(0.581918\pi\)
\(858\) 0 0
\(859\) 17134.0 0.680564 0.340282 0.940323i \(-0.389477\pi\)
0.340282 + 0.940323i \(0.389477\pi\)
\(860\) 3408.68 0.135157
\(861\) 0 0
\(862\) 0 0
\(863\) 7929.33 0.312766 0.156383 0.987696i \(-0.450017\pi\)
0.156383 + 0.987696i \(0.450017\pi\)
\(864\) 0 0
\(865\) −22166.8 −0.871322
\(866\) 0 0
\(867\) 0 0
\(868\) −16128.0 −0.630668
\(869\) −22863.1 −0.892493
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 12042.0 0.465250
\(876\) 0 0
\(877\) −9864.03 −0.379800 −0.189900 0.981803i \(-0.560816\pi\)
−0.189900 + 0.981803i \(0.560816\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −17280.0 −0.661942
\(881\) 29169.0 1.11547 0.557735 0.830019i \(-0.311671\pi\)
0.557735 + 0.830019i \(0.311671\pi\)
\(882\) 0 0
\(883\) −928.000 −0.0353677 −0.0176839 0.999844i \(-0.505629\pi\)
−0.0176839 + 0.999844i \(0.505629\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14400.0 0.545101 0.272551 0.962141i \(-0.412133\pi\)
0.272551 + 0.962141i \(0.412133\pi\)
\(888\) 0 0
\(889\) 17292.8 0.652398
\(890\) 0 0
\(891\) 0 0
\(892\) 16295.1 0.611661
\(893\) −1764.00 −0.0661030
\(894\) 0 0
\(895\) −15619.6 −0.583360
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 19205.0 0.712483
\(900\) 0 0
\(901\) −30537.0 −1.12912
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9732.39 −0.357476
\(906\) 0 0
\(907\) −19684.0 −0.720614 −0.360307 0.932834i \(-0.617328\pi\)
−0.360307 + 0.932834i \(0.617328\pi\)
\(908\) −17209.7 −0.628990
\(909\) 0 0
\(910\) 0 0
\(911\) −24480.0 −0.890295 −0.445147 0.895457i \(-0.646849\pi\)
−0.445147 + 0.895457i \(0.646849\pi\)
\(912\) 0 0
\(913\) −62100.0 −2.25105
\(914\) 0 0
\(915\) 0 0
\(916\) 27768.2 1.00162
\(917\) 15339.0 0.552388
\(918\) 0 0
\(919\) 38608.0 1.38581 0.692906 0.721028i \(-0.256330\pi\)
0.692906 + 0.721028i \(0.256330\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 11033.2 0.392182
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10210.4 0.360596 0.180298 0.983612i \(-0.442294\pi\)
0.180298 + 0.983612i \(0.442294\pi\)
\(930\) 0 0
\(931\) −5698.45 −0.200600
\(932\) 14832.0 0.521286
\(933\) 0 0
\(934\) 0 0
\(935\) 31590.0 1.10492
\(936\) 0 0
\(937\) 28495.0 0.993480 0.496740 0.867899i \(-0.334530\pi\)
0.496740 + 0.867899i \(0.334530\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −3024.00 −0.104928
\(941\) −10724.9 −0.371541 −0.185771 0.982593i \(-0.559478\pi\)
−0.185771 + 0.982593i \(0.559478\pi\)
\(942\) 0 0
\(943\) 654.715 0.0226092
\(944\) 50548.2 1.74280
\(945\) 0 0
\(946\) 0 0
\(947\) 33962.1 1.16538 0.582692 0.812693i \(-0.301999\pi\)
0.582692 + 0.812693i \(0.301999\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 23814.0 0.809456 0.404728 0.914437i \(-0.367366\pi\)
0.404728 + 0.914437i \(0.367366\pi\)
\(954\) 0 0
\(955\) −14216.7 −0.481718
\(956\) −35666.4 −1.20662
\(957\) 0 0
\(958\) 0 0
\(959\) −10530.0 −0.354569
\(960\) 0 0
\(961\) 7841.00 0.263200
\(962\) 0 0
\(963\) 0 0
\(964\) 3339.39 0.111571
\(965\) −13527.0 −0.451243
\(966\) 0 0
\(967\) 51549.3 1.71429 0.857143 0.515079i \(-0.172238\pi\)
0.857143 + 0.515079i \(0.172238\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12312.0 0.406911 0.203456 0.979084i \(-0.434783\pi\)
0.203456 + 0.979084i \(0.434783\pi\)
\(972\) 0 0
\(973\) 11681.0 0.384865
\(974\) 0 0
\(975\) 0 0
\(976\) −46016.0 −1.50916
\(977\) −21538.1 −0.705285 −0.352642 0.935758i \(-0.614717\pi\)
−0.352642 + 0.935758i \(0.614717\pi\)
\(978\) 0 0
\(979\) 78840.0 2.57379
\(980\) −9768.77 −0.318420
\(981\) 0 0
\(982\) 0 0
\(983\) −32611.1 −1.05812 −0.529060 0.848585i \(-0.677455\pi\)
−0.529060 + 0.848585i \(0.677455\pi\)
\(984\) 0 0
\(985\) 19332.0 0.625349
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1476.00 0.0474561
\(990\) 0 0
\(991\) −22330.0 −0.715778 −0.357889 0.933764i \(-0.616503\pi\)
−0.357889 + 0.933764i \(0.616503\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6224.99 0.198337
\(996\) 0 0
\(997\) −24931.0 −0.791949 −0.395974 0.918262i \(-0.629593\pi\)
−0.395974 + 0.918262i \(0.629593\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.4.a.m.1.1 2
3.2 odd 2 507.4.a.g.1.2 2
13.2 odd 12 117.4.q.b.82.1 2
13.7 odd 12 117.4.q.b.10.1 2
13.12 even 2 inner 1521.4.a.m.1.2 2
39.2 even 12 39.4.j.a.4.1 2
39.5 even 4 507.4.b.a.337.1 2
39.8 even 4 507.4.b.a.337.2 2
39.20 even 12 39.4.j.a.10.1 yes 2
39.38 odd 2 507.4.a.g.1.1 2
156.59 odd 12 624.4.bv.a.49.1 2
156.119 odd 12 624.4.bv.a.433.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.4.j.a.4.1 2 39.2 even 12
39.4.j.a.10.1 yes 2 39.20 even 12
117.4.q.b.10.1 2 13.7 odd 12
117.4.q.b.82.1 2 13.2 odd 12
507.4.a.g.1.1 2 39.38 odd 2
507.4.a.g.1.2 2 3.2 odd 2
507.4.b.a.337.1 2 39.5 even 4
507.4.b.a.337.2 2 39.8 even 4
624.4.bv.a.49.1 2 156.59 odd 12
624.4.bv.a.433.1 2 156.119 odd 12
1521.4.a.m.1.1 2 1.1 even 1 trivial
1521.4.a.m.1.2 2 13.12 even 2 inner