Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [153,2,Mod(5,153)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(153, base_ring=CyclotomicField(48))
chi = DirichletCharacter(H, H._module([40, 15]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("153.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 153 = 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 153.s (of order \(48\), degree \(16\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.22171115093\) |
Analytic rank: | \(0\) |
Dimension: | \(256\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{48})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{48}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −2.18373 | − | 1.67563i | 1.29886 | − | 1.14584i | 1.44329 | + | 5.38642i | −0.164844 | + | 0.187968i | −4.75638 | + | 0.325791i | 2.51761 | − | 2.20789i | 3.76722 | − | 9.09488i | 0.374089 | − | 2.97658i | 0.674941 | − | 0.134254i |
5.2 | −1.93474 | − | 1.48458i | −1.55420 | − | 0.764493i | 1.02161 | + | 3.81269i | 0.541710 | − | 0.617701i | 1.87203 | + | 3.78643i | −3.71094 | + | 3.25440i | 1.81720 | − | 4.38711i | 1.83110 | + | 2.37636i | −1.96509 | + | 0.390881i |
5.3 | −1.55959 | − | 1.19672i | 1.16178 | + | 1.28463i | 0.482560 | + | 1.80094i | −1.78450 | + | 2.03483i | −0.274574 | − | 3.39382i | −1.16370 | + | 1.02054i | −0.101958 | + | 0.246149i | −0.300523 | + | 2.98491i | 5.21821 | − | 1.03797i |
5.4 | −1.50245 | − | 1.15287i | −1.48352 | + | 0.893963i | 0.410611 | + | 1.53242i | −1.19430 | + | 1.36184i | 3.25954 | + | 0.367171i | 2.49823 | − | 2.19089i | −0.299691 | + | 0.723517i | 1.40166 | − | 2.65242i | 3.36440 | − | 0.669221i |
5.5 | −1.12404 | − | 0.862508i | 1.69438 | − | 0.359292i | 0.00191254 | + | 0.00713769i | 2.50849 | − | 2.86038i | −2.21444 | − | 1.05755i | −2.28298 | + | 2.00212i | −1.08038 | + | 2.60828i | 2.74182 | − | 1.21755i | −5.28675 | + | 1.05160i |
5.6 | −1.06065 | − | 0.813864i | −0.369214 | − | 1.69224i | −0.0550376 | − | 0.205403i | 0.984560 | − | 1.12268i | −0.985649 | + | 2.09536i | 2.03121 | − | 1.78132i | −1.13203 | + | 2.73296i | −2.72736 | + | 1.24960i | −1.95798 | + | 0.389466i |
5.7 | −0.490187 | − | 0.376133i | 0.343811 | + | 1.69758i | −0.418832 | − | 1.56310i | 1.49606 | − | 1.70593i | 0.469987 | − | 0.961452i | 1.62514 | − | 1.42521i | −0.855523 | + | 2.06542i | −2.76359 | + | 1.16730i | −1.37500 | + | 0.273505i |
5.8 | −0.183891 | − | 0.141104i | −1.43824 | − | 0.965129i | −0.503733 | − | 1.87996i | −2.35903 | + | 2.68996i | 0.128295 | + | 0.380420i | −0.826331 | + | 0.724673i | −0.350042 | + | 0.845077i | 1.13705 | + | 2.77617i | 0.813369 | − | 0.161789i |
5.9 | −0.0707646 | − | 0.0542996i | 1.70868 | + | 0.283550i | −0.515579 | − | 1.92417i | −1.47631 | + | 1.68341i | −0.105518 | − | 0.112846i | 3.03807 | − | 2.66432i | −0.136265 | + | 0.328973i | 2.83920 | + | 0.968993i | 0.195879 | − | 0.0389627i |
5.10 | 0.501640 | + | 0.384922i | 0.437145 | − | 1.67598i | −0.414160 | − | 1.54567i | 0.147778 | − | 0.168508i | 0.864411 | − | 0.672472i | −1.44130 | + | 1.26399i | 0.871146 | − | 2.10313i | −2.61781 | − | 1.46529i | 0.138994 | − | 0.0276476i |
5.11 | 0.564127 | + | 0.432870i | −1.71373 | + | 0.251259i | −0.386775 | − | 1.44347i | 1.71199 | − | 1.95215i | −1.07552 | − | 0.600080i | 0.0419494 | − | 0.0367886i | 0.950868 | − | 2.29560i | 2.87374 | − | 0.861179i | 1.81081 | − | 0.360192i |
5.12 | 1.00677 | + | 0.772524i | 1.70648 | + | 0.296551i | −0.100840 | − | 0.376340i | 0.0953134 | − | 0.108684i | 1.48894 | + | 1.61685i | −2.38350 | + | 2.09027i | 1.16047 | − | 2.80161i | 2.82411 | + | 1.01211i | 0.179920 | − | 0.0357883i |
5.13 | 1.40306 | + | 1.07661i | 0.184815 | + | 1.72216i | 0.291859 | + | 1.08923i | 0.349197 | − | 0.398183i | −1.59478 | + | 2.61527i | 0.487217 | − | 0.427278i | 0.590386 | − | 1.42532i | −2.93169 | + | 0.636563i | 0.918630 | − | 0.182727i |
5.14 | 1.78424 | + | 1.36910i | 0.827829 | − | 1.52141i | 0.791458 | + | 2.95376i | −2.27494 | + | 2.59407i | 3.56001 | − | 1.58119i | 2.00390 | − | 1.75737i | −0.910532 | + | 2.19822i | −1.62940 | − | 2.51894i | −7.61057 | + | 1.51384i |
5.15 | 1.78977 | + | 1.37334i | −1.65992 | + | 0.494620i | 0.799582 | + | 2.98408i | −1.53223 | + | 1.74718i | −3.65017 | − | 1.39438i | −0.511998 | + | 0.449011i | −0.940452 | + | 2.27045i | 2.51070 | − | 1.64206i | −5.14182 | + | 1.02277i |
5.16 | 2.00872 | + | 1.54135i | −0.894687 | − | 1.48308i | 1.14157 | + | 4.26041i | 2.50546 | − | 2.85693i | 0.488768 | − | 4.35812i | −1.62924 | + | 1.42880i | −2.33580 | + | 5.63913i | −1.39907 | + | 2.65379i | 9.43628 | − | 1.87699i |
11.1 | −1.63540 | − | 2.13130i | 1.11938 | + | 1.32173i | −1.35025 | + | 5.03920i | −2.13674 | − | 0.140050i | 0.986361 | − | 4.54731i | 0.0884715 | + | 1.34981i | 7.98434 | − | 3.30722i | −0.493955 | + | 2.95906i | 3.19595 | + | 4.78307i |
11.2 | −1.53625 | − | 2.00208i | −1.72157 | + | 0.190287i | −1.13062 | + | 4.21953i | 3.62526 | + | 0.237612i | 3.02572 | + | 3.15438i | 0.115282 | + | 1.75887i | 5.52180 | − | 2.28721i | 2.92758 | − | 0.655185i | −5.09359 | − | 7.62309i |
11.3 | −1.34967 | − | 1.75893i | −0.353226 | − | 1.69565i | −0.754572 | + | 2.81610i | −1.95144 | − | 0.127904i | −2.50579 | + | 2.90987i | −0.0117682 | − | 0.179547i | 1.87511 | − | 0.776696i | −2.75046 | + | 1.19790i | 2.40883 | + | 3.60506i |
11.4 | −1.03701 | − | 1.35146i | −0.776090 | + | 1.54845i | −0.233410 | + | 0.871097i | −0.974191 | − | 0.0638519i | 2.89747 | − | 0.556901i | −0.213223 | − | 3.25316i | −1.72831 | + | 0.715890i | −1.79537 | − | 2.40347i | 0.923953 | + | 1.38279i |
See next 80 embeddings (of 256 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
17.e | odd | 16 | 1 | inner |
153.s | even | 48 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 153.2.s.a | ✓ | 256 |
3.b | odd | 2 | 1 | 459.2.y.a | 256 | ||
9.c | even | 3 | 1 | 459.2.y.a | 256 | ||
9.d | odd | 6 | 1 | inner | 153.2.s.a | ✓ | 256 |
17.e | odd | 16 | 1 | inner | 153.2.s.a | ✓ | 256 |
51.i | even | 16 | 1 | 459.2.y.a | 256 | ||
153.s | even | 48 | 1 | inner | 153.2.s.a | ✓ | 256 |
153.t | odd | 48 | 1 | 459.2.y.a | 256 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
153.2.s.a | ✓ | 256 | 1.a | even | 1 | 1 | trivial |
153.2.s.a | ✓ | 256 | 9.d | odd | 6 | 1 | inner |
153.2.s.a | ✓ | 256 | 17.e | odd | 16 | 1 | inner |
153.2.s.a | ✓ | 256 | 153.s | even | 48 | 1 | inner |
459.2.y.a | 256 | 3.b | odd | 2 | 1 | ||
459.2.y.a | 256 | 9.c | even | 3 | 1 | ||
459.2.y.a | 256 | 51.i | even | 16 | 1 | ||
459.2.y.a | 256 | 153.t | odd | 48 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(153, [\chi])\).