Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [153,4,Mod(25,153)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(153, base_ring=CyclotomicField(24))
chi = DirichletCharacter(H, H._module([16, 15]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("153.25");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 153 = 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 153.r (of order \(24\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.02729223088\) |
Analytic rank: | \(0\) |
Dimension: | \(416\) |
Relative dimension: | \(52\) over \(\Q(\zeta_{24})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{24}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | −1.43544 | − | 5.35713i | 4.01610 | + | 3.29711i | −19.7101 | + | 11.3797i | 0.208951 | + | 1.58714i | 11.8982 | − | 26.2476i | 1.19470 | − | 9.07462i | 57.8814 | + | 57.8814i | 5.25815 | + | 26.4830i | 8.20256 | − | 3.39761i |
25.2 | −1.33497 | − | 4.98219i | 0.502950 | − | 5.17175i | −16.1118 | + | 9.30216i | 0.892751 | + | 6.78112i | −26.4381 | + | 4.39836i | −2.46465 | + | 18.7209i | 38.6762 | + | 38.6762i | −26.4941 | − | 5.20227i | 32.5930 | − | 13.5005i |
25.3 | −1.31129 | − | 4.89379i | −4.16115 | + | 3.11204i | −15.3015 | + | 8.83432i | 1.23908 | + | 9.41172i | 20.6861 | + | 16.2830i | −0.0959621 | + | 0.728904i | 34.6379 | + | 34.6379i | 7.63036 | − | 25.8994i | 44.4342 | − | 18.4052i |
25.4 | −1.30359 | − | 4.86508i | −4.73407 | − | 2.14210i | −15.0415 | + | 8.68419i | −2.04204 | − | 15.5108i | −4.25018 | + | 25.8241i | −2.11270 | + | 16.0476i | 33.3654 | + | 33.3654i | 17.8228 | + | 20.2817i | −72.7993 | + | 30.1545i |
25.5 | −1.19391 | − | 4.45572i | 4.29216 | − | 2.92871i | −11.4998 | + | 6.63941i | 0.666026 | + | 5.05897i | −18.1739 | − | 15.6281i | 2.16384 | − | 16.4360i | 17.2185 | + | 17.2185i | 9.84532 | − | 25.1410i | 21.7462 | − | 9.00756i |
25.6 | −1.17482 | − | 4.38447i | −1.81442 | + | 4.86908i | −10.9152 | + | 6.30188i | −1.91562 | − | 14.5506i | 23.4799 | + | 2.23499i | 0.873593 | − | 6.63560i | 14.7765 | + | 14.7765i | −20.4158 | − | 17.6691i | −61.5462 | + | 25.4933i |
25.7 | −1.14940 | − | 4.28962i | −1.17168 | − | 5.06233i | −10.1515 | + | 5.86099i | −1.17583 | − | 8.93132i | −20.3687 | + | 10.8447i | 4.32711 | − | 32.8677i | 11.6879 | + | 11.6879i | −24.2543 | + | 11.8629i | −36.9605 | + | 15.3095i |
25.8 | −1.05324 | − | 3.93073i | 3.54407 | + | 3.79994i | −7.41316 | + | 4.27999i | −0.637464 | − | 4.84202i | 11.2038 | − | 17.9330i | −4.66708 | + | 35.4500i | 1.61133 | + | 1.61133i | −1.87908 | + | 26.9345i | −18.3613 | + | 7.60550i |
25.9 | −1.04078 | − | 3.88424i | 5.17689 | − | 0.447034i | −7.07588 | + | 4.08526i | −2.37395 | − | 18.0319i | −7.12438 | − | 19.6430i | 0.696851 | − | 5.29311i | 0.484882 | + | 0.484882i | 26.6003 | − | 4.62849i | −67.5695 | + | 27.9882i |
25.10 | −1.03544 | − | 3.86430i | −4.67565 | − | 2.26678i | −6.93247 | + | 4.00246i | 1.68998 | + | 12.8367i | −3.91819 | + | 20.4152i | −0.237977 | + | 1.80761i | 0.0139318 | + | 0.0139318i | 16.7234 | + | 21.1974i | 47.8549 | − | 19.8222i |
25.11 | −0.962731 | − | 3.59296i | 1.26904 | + | 5.03880i | −5.05431 | + | 2.91810i | 2.48660 | + | 18.8876i | 16.8825 | − | 9.41061i | 2.04066 | − | 15.5003i | −5.69126 | − | 5.69126i | −23.7791 | + | 12.7888i | 65.4686 | − | 27.1180i |
25.12 | −0.951683 | − | 3.55173i | 5.11799 | − | 0.897897i | −4.78089 | + | 2.76025i | 2.09200 | + | 15.8903i | −8.05979 | − | 17.3232i | −2.44821 | + | 18.5960i | −6.44684 | − | 6.44684i | 25.3876 | − | 9.19085i | 54.4472 | − | 22.5528i |
25.13 | −0.797442 | − | 2.97609i | −5.14098 | + | 0.755177i | −1.29302 | + | 0.746523i | −0.128250 | − | 0.974157i | 6.34711 | + | 14.6978i | 3.79607 | − | 28.8340i | −14.1764 | − | 14.1764i | 25.8594 | − | 7.76471i | −2.79691 | + | 1.15852i |
25.14 | −0.718328 | − | 2.68084i | 0.600327 | + | 5.16136i | 0.257315 | − | 0.148561i | −0.378976 | − | 2.87861i | 13.4055 | − | 5.31693i | 0.717706 | − | 5.45152i | −16.2832 | − | 16.2832i | −26.2792 | + | 6.19701i | −7.44485 | + | 3.08376i |
25.15 | −0.694656 | − | 2.59249i | 1.75166 | − | 4.89200i | 0.689737 | − | 0.398220i | −1.45111 | − | 11.0223i | −13.8993 | − | 1.14292i | −2.29011 | + | 17.3951i | −16.6942 | − | 16.6942i | −20.8633 | − | 17.1383i | −27.5672 | + | 11.4187i |
25.16 | −0.644442 | − | 2.40509i | −4.50009 | + | 2.59792i | 1.55905 | − | 0.900121i | −0.693294 | − | 5.26609i | 9.14828 | + | 9.14891i | −4.07107 | + | 30.9228i | −17.2548 | − | 17.2548i | 13.5016 | − | 23.3818i | −12.2186 | + | 5.06113i |
25.17 | −0.599551 | − | 2.23756i | −2.68184 | − | 4.45059i | 2.28101 | − | 1.31694i | 0.917615 | + | 6.96998i | −8.35054 | + | 8.66912i | −1.21719 | + | 9.24544i | −17.4183 | − | 17.4183i | −12.6155 | + | 23.8715i | 15.0456 | − | 6.23208i |
25.18 | −0.462394 | − | 1.72568i | 4.51777 | + | 2.56705i | 4.16405 | − | 2.40411i | −1.01340 | − | 7.69757i | 2.34091 | − | 8.98320i | 3.21991 | − | 24.4576i | −16.1804 | − | 16.1804i | 13.8205 | + | 23.1947i | −12.8149 | + | 5.30812i |
25.19 | −0.398107 | − | 1.48575i | 1.15867 | − | 5.06532i | 4.87923 | − | 2.81702i | 2.31421 | + | 17.5782i | −7.98710 | + | 0.295044i | 3.44586 | − | 26.1739i | −14.8290 | − | 14.8290i | −24.3150 | − | 11.7380i | 25.1955 | − | 10.4363i |
25.20 | −0.397941 | − | 1.48514i | −3.33481 | + | 3.98486i | 4.88093 | − | 2.81801i | 2.12951 | + | 16.1752i | 7.24511 | + | 3.36690i | −2.44027 | + | 18.5357i | −14.8250 | − | 14.8250i | −4.75814 | − | 26.5774i | 23.1750 | − | 9.59939i |
See next 80 embeddings (of 416 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
17.d | even | 8 | 1 | inner |
153.r | even | 24 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 153.4.r.a | ✓ | 416 |
9.c | even | 3 | 1 | inner | 153.4.r.a | ✓ | 416 |
17.d | even | 8 | 1 | inner | 153.4.r.a | ✓ | 416 |
153.r | even | 24 | 1 | inner | 153.4.r.a | ✓ | 416 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
153.4.r.a | ✓ | 416 | 1.a | even | 1 | 1 | trivial |
153.4.r.a | ✓ | 416 | 9.c | even | 3 | 1 | inner |
153.4.r.a | ✓ | 416 | 17.d | even | 8 | 1 | inner |
153.4.r.a | ✓ | 416 | 153.r | even | 24 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(153, [\chi])\).