Properties

Label 1536.1.e.a
Level 15361536
Weight 11
Character orbit 1536.e
Analytic conductor 0.7670.767
Analytic rank 00
Dimension 44
Projective image D4D_{4}
CM discriminant -24
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1536,1,Mod(1025,1536)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1536, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1536.1025");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1536=293 1536 = 2^{9} \cdot 3
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1536.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7665638594040.766563859404
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.4608.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ82q3+(ζ83ζ8)q5+(ζ83ζ8)q7q9+(ζ83ζ8)q15+(ζ83+ζ8)q21q25+ζ82q27+2q97+O(q100) q - \zeta_{8}^{2} q^{3} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{5} + (\zeta_{8}^{3} - \zeta_{8}) q^{7} - q^{9} + (\zeta_{8}^{3} - \zeta_{8}) q^{15} + (\zeta_{8}^{3} + \zeta_{8}) q^{21} - q^{25} + \zeta_{8}^{2} q^{27} + \cdots - 2 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q94q25+4q49+4q818q97+O(q100) 4 q - 4 q^{9} - 4 q^{25} + 4 q^{49} + 4 q^{81} - 8 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1536Z)×\left(\mathbb{Z}/1536\mathbb{Z}\right)^\times.

nn 511511 517517 10251025
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1025.1
0.707107 + 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
0 1.00000i 0 1.41421i 0 −1.41421 0 −1.00000 0
1025.2 0 1.00000i 0 1.41421i 0 1.41421 0 −1.00000 0
1025.3 0 1.00000i 0 1.41421i 0 1.41421 0 −1.00000 0
1025.4 0 1.00000i 0 1.41421i 0 −1.41421 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by Q(6)\Q(\sqrt{-6})
3.b odd 2 1 inner
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1536.1.e.a 4
3.b odd 2 1 inner 1536.1.e.a 4
4.b odd 2 1 inner 1536.1.e.a 4
8.b even 2 1 inner 1536.1.e.a 4
8.d odd 2 1 inner 1536.1.e.a 4
12.b even 2 1 inner 1536.1.e.a 4
16.e even 4 1 1536.1.h.a 2
16.e even 4 1 1536.1.h.b 2
16.f odd 4 1 1536.1.h.a 2
16.f odd 4 1 1536.1.h.b 2
24.f even 2 1 inner 1536.1.e.a 4
24.h odd 2 1 CM 1536.1.e.a 4
32.g even 8 2 3072.1.i.e 4
32.g even 8 2 3072.1.i.h 4
32.h odd 8 2 3072.1.i.e 4
32.h odd 8 2 3072.1.i.h 4
48.i odd 4 1 1536.1.h.a 2
48.i odd 4 1 1536.1.h.b 2
48.k even 4 1 1536.1.h.a 2
48.k even 4 1 1536.1.h.b 2
96.o even 8 2 3072.1.i.e 4
96.o even 8 2 3072.1.i.h 4
96.p odd 8 2 3072.1.i.e 4
96.p odd 8 2 3072.1.i.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1536.1.e.a 4 1.a even 1 1 trivial
1536.1.e.a 4 3.b odd 2 1 inner
1536.1.e.a 4 4.b odd 2 1 inner
1536.1.e.a 4 8.b even 2 1 inner
1536.1.e.a 4 8.d odd 2 1 inner
1536.1.e.a 4 12.b even 2 1 inner
1536.1.e.a 4 24.f even 2 1 inner
1536.1.e.a 4 24.h odd 2 1 CM
1536.1.h.a 2 16.e even 4 1
1536.1.h.a 2 16.f odd 4 1
1536.1.h.a 2 48.i odd 4 1
1536.1.h.a 2 48.k even 4 1
1536.1.h.b 2 16.e even 4 1
1536.1.h.b 2 16.f odd 4 1
1536.1.h.b 2 48.i odd 4 1
1536.1.h.b 2 48.k even 4 1
3072.1.i.e 4 32.g even 8 2
3072.1.i.e 4 32.h odd 8 2
3072.1.i.e 4 96.o even 8 2
3072.1.i.e 4 96.p odd 8 2
3072.1.i.h 4 32.g even 8 2
3072.1.i.h 4 32.h odd 8 2
3072.1.i.h 4 96.o even 8 2
3072.1.i.h 4 96.p odd 8 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+2 T_{5}^{2} + 2 acting on S1new(1536,[χ])S_{1}^{\mathrm{new}}(1536, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
55 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
77 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
3131 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
5959 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
show more
show less