Properties

Label 1536.1.e.a
Level $1536$
Weight $1$
Character orbit 1536.e
Analytic conductor $0.767$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1536,1,Mod(1025,1536)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1536, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1536.1025");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1536 = 2^{9} \cdot 3 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1536.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.766563859404\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.4608.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{8}^{2} q^{3} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{5} + (\zeta_{8}^{3} - \zeta_{8}) q^{7} - q^{9} + (\zeta_{8}^{3} - \zeta_{8}) q^{15} + (\zeta_{8}^{3} + \zeta_{8}) q^{21} - q^{25} + \zeta_{8}^{2} q^{27} + \cdots - 2 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} - 4 q^{25} + 4 q^{49} + 4 q^{81} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1536\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(517\) \(1025\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1025.1
0.707107 + 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
0 1.00000i 0 1.41421i 0 −1.41421 0 −1.00000 0
1025.2 0 1.00000i 0 1.41421i 0 1.41421 0 −1.00000 0
1025.3 0 1.00000i 0 1.41421i 0 1.41421 0 −1.00000 0
1025.4 0 1.00000i 0 1.41421i 0 −1.41421 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1536.1.e.a 4
3.b odd 2 1 inner 1536.1.e.a 4
4.b odd 2 1 inner 1536.1.e.a 4
8.b even 2 1 inner 1536.1.e.a 4
8.d odd 2 1 inner 1536.1.e.a 4
12.b even 2 1 inner 1536.1.e.a 4
16.e even 4 1 1536.1.h.a 2
16.e even 4 1 1536.1.h.b 2
16.f odd 4 1 1536.1.h.a 2
16.f odd 4 1 1536.1.h.b 2
24.f even 2 1 inner 1536.1.e.a 4
24.h odd 2 1 CM 1536.1.e.a 4
32.g even 8 2 3072.1.i.e 4
32.g even 8 2 3072.1.i.h 4
32.h odd 8 2 3072.1.i.e 4
32.h odd 8 2 3072.1.i.h 4
48.i odd 4 1 1536.1.h.a 2
48.i odd 4 1 1536.1.h.b 2
48.k even 4 1 1536.1.h.a 2
48.k even 4 1 1536.1.h.b 2
96.o even 8 2 3072.1.i.e 4
96.o even 8 2 3072.1.i.h 4
96.p odd 8 2 3072.1.i.e 4
96.p odd 8 2 3072.1.i.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1536.1.e.a 4 1.a even 1 1 trivial
1536.1.e.a 4 3.b odd 2 1 inner
1536.1.e.a 4 4.b odd 2 1 inner
1536.1.e.a 4 8.b even 2 1 inner
1536.1.e.a 4 8.d odd 2 1 inner
1536.1.e.a 4 12.b even 2 1 inner
1536.1.e.a 4 24.f even 2 1 inner
1536.1.e.a 4 24.h odd 2 1 CM
1536.1.h.a 2 16.e even 4 1
1536.1.h.a 2 16.f odd 4 1
1536.1.h.a 2 48.i odd 4 1
1536.1.h.a 2 48.k even 4 1
1536.1.h.b 2 16.e even 4 1
1536.1.h.b 2 16.f odd 4 1
1536.1.h.b 2 48.i odd 4 1
1536.1.h.b 2 48.k even 4 1
3072.1.i.e 4 32.g even 8 2
3072.1.i.e 4 32.h odd 8 2
3072.1.i.e 4 96.o even 8 2
3072.1.i.e 4 96.p odd 8 2
3072.1.i.h 4 32.g even 8 2
3072.1.i.h 4 32.h odd 8 2
3072.1.i.h 4 96.o even 8 2
3072.1.i.h 4 96.p odd 8 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 2 \) acting on \(S_{1}^{\mathrm{new}}(1536, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T + 2)^{4} \) Copy content Toggle raw display
show more
show less