Properties

Label 1536.2.j.g
Level $1536$
Weight $2$
Character orbit 1536.j
Analytic conductor $12.265$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1536,2,Mod(385,1536)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1536, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1536.385");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1536 = 2^{9} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1536.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2650217505\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} - \beta_{5} q^{5} + ( - \beta_{6} + \beta_{4} + \beta_1) q^{7} - \beta_{2} q^{9} + (\beta_{7} + \beta_{6} + 2 \beta_1) q^{11} + (\beta_{2} - 1) q^{13} + \beta_{7} q^{15} + (\beta_{5} - \beta_{3} + 2) q^{17}+ \cdots + (\beta_{7} - \beta_{6} - 2 \beta_{4}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{13} + 16 q^{17} + 8 q^{21} - 16 q^{29} + 16 q^{33} - 24 q^{37} - 40 q^{49} + 48 q^{53} - 24 q^{61} + 32 q^{69} + 64 q^{77} - 8 q^{81} - 80 q^{85} + 40 q^{93} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 7x^{4} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 5\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 8\nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{6} + 2\nu^{4} - 18\nu^{2} + 7 ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 2\nu^{7} + 13\nu^{3} ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{6} - 2\nu^{4} - 18\nu^{2} - 7 ) / 3 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4\nu^{7} + \nu^{5} + 29\nu^{3} + 11\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -4\nu^{7} + \nu^{5} - 29\nu^{3} + 11\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} - 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{3} + 6\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{7} + \beta_{6} - 4\beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -3\beta_{5} + 3\beta_{3} - 14 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -5\beta_{7} - 5\beta_{6} + 22\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -2\beta_{5} - 2\beta_{3} - 9\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 13\beta_{7} - 13\beta_{6} + 58\beta_{4} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1536\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(517\) \(1025\)
\(\chi(n)\) \(1\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
385.1
1.14412 + 1.14412i
−0.437016 0.437016i
−1.14412 1.14412i
0.437016 + 0.437016i
1.14412 1.14412i
−0.437016 + 0.437016i
−1.14412 + 1.14412i
0.437016 0.437016i
0 −0.707107 + 0.707107i 0 −2.23607 2.23607i 0 4.57649i 0 1.00000i 0
385.2 0 −0.707107 + 0.707107i 0 2.23607 + 2.23607i 0 1.74806i 0 1.00000i 0
385.3 0 0.707107 0.707107i 0 −2.23607 2.23607i 0 4.57649i 0 1.00000i 0
385.4 0 0.707107 0.707107i 0 2.23607 + 2.23607i 0 1.74806i 0 1.00000i 0
1153.1 0 −0.707107 0.707107i 0 −2.23607 + 2.23607i 0 4.57649i 0 1.00000i 0
1153.2 0 −0.707107 0.707107i 0 2.23607 2.23607i 0 1.74806i 0 1.00000i 0
1153.3 0 0.707107 + 0.707107i 0 −2.23607 + 2.23607i 0 4.57649i 0 1.00000i 0
1153.4 0 0.707107 + 0.707107i 0 2.23607 2.23607i 0 1.74806i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 385.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
16.e even 4 1 inner
16.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1536.2.j.g 8
3.b odd 2 1 4608.2.k.bf 8
4.b odd 2 1 inner 1536.2.j.g 8
8.b even 2 1 1536.2.j.h yes 8
8.d odd 2 1 1536.2.j.h yes 8
12.b even 2 1 4608.2.k.bf 8
16.e even 4 1 inner 1536.2.j.g 8
16.e even 4 1 1536.2.j.h yes 8
16.f odd 4 1 inner 1536.2.j.g 8
16.f odd 4 1 1536.2.j.h yes 8
24.f even 2 1 4608.2.k.bg 8
24.h odd 2 1 4608.2.k.bg 8
32.g even 8 1 3072.2.a.k 4
32.g even 8 1 3072.2.a.q 4
32.g even 8 2 3072.2.d.g 8
32.h odd 8 1 3072.2.a.k 4
32.h odd 8 1 3072.2.a.q 4
32.h odd 8 2 3072.2.d.g 8
48.i odd 4 1 4608.2.k.bf 8
48.i odd 4 1 4608.2.k.bg 8
48.k even 4 1 4608.2.k.bf 8
48.k even 4 1 4608.2.k.bg 8
96.o even 8 1 9216.2.a.bd 4
96.o even 8 1 9216.2.a.bj 4
96.p odd 8 1 9216.2.a.bd 4
96.p odd 8 1 9216.2.a.bj 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1536.2.j.g 8 1.a even 1 1 trivial
1536.2.j.g 8 4.b odd 2 1 inner
1536.2.j.g 8 16.e even 4 1 inner
1536.2.j.g 8 16.f odd 4 1 inner
1536.2.j.h yes 8 8.b even 2 1
1536.2.j.h yes 8 8.d odd 2 1
1536.2.j.h yes 8 16.e even 4 1
1536.2.j.h yes 8 16.f odd 4 1
3072.2.a.k 4 32.g even 8 1
3072.2.a.k 4 32.h odd 8 1
3072.2.a.q 4 32.g even 8 1
3072.2.a.q 4 32.h odd 8 1
3072.2.d.g 8 32.g even 8 2
3072.2.d.g 8 32.h odd 8 2
4608.2.k.bf 8 3.b odd 2 1
4608.2.k.bf 8 12.b even 2 1
4608.2.k.bf 8 48.i odd 4 1
4608.2.k.bf 8 48.k even 4 1
4608.2.k.bg 8 24.f even 2 1
4608.2.k.bg 8 24.h odd 2 1
4608.2.k.bg 8 48.i odd 4 1
4608.2.k.bg 8 48.k even 4 1
9216.2.a.bd 4 96.o even 8 1
9216.2.a.bd 4 96.p odd 8 1
9216.2.a.bj 4 96.o even 8 1
9216.2.a.bj 4 96.p odd 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1536, [\chi])\):

\( T_{5}^{4} + 100 \) Copy content Toggle raw display
\( T_{7}^{4} + 24T_{7}^{2} + 64 \) Copy content Toggle raw display
\( T_{13}^{2} + 2T_{13} + 2 \) Copy content Toggle raw display
\( T_{19}^{8} + 1792T_{19}^{4} + 65536 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + 100)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 24 T^{2} + 64)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 1792 T^{4} + 65536 \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T + 2)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 4 T - 16)^{4} \) Copy content Toggle raw display
$19$ \( T^{8} + 1792 T^{4} + 65536 \) Copy content Toggle raw display
$23$ \( (T^{2} + 32)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} + 8 T^{3} + 32 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 120 T^{2} + 1600)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 12 T^{3} + \cdots + 484)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 48 T^{2} + 256)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 12032 T^{4} + 65536 \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} - 24 T^{3} + \cdots + 3844)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 6400)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 12 T^{3} + \cdots + 484)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 20736)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 96 T^{2} + 1024)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 232 T^{2} + 1936)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 56 T^{2} + 64)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 1792 T^{4} + 65536 \) Copy content Toggle raw display
$89$ \( (T^{2} + 100)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 8 T - 64)^{4} \) Copy content Toggle raw display
show more
show less