Properties

Label 1539.1.c.d.892.2
Level 15391539
Weight 11
Character 1539.892
Analytic conductor 0.7680.768
Analytic rank 00
Dimension 22
Projective image A4A_{4}
CM/RM no
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1539,1,Mod(892,1539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1539, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1539.892");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1539=3419 1539 = 3^{4} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1539.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7680610544420.768061054442
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 171)
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.29241.1
Artin image: SL(2,3):C2\SL(2,3):C_2
Artin field: Galois closure of Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)

Embedding invariants

Embedding label 892.2
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 1539.892
Dual form 1539.1.c.d.892.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq2+1.00000q5+1.00000q7+1.00000iq8+1.00000iq101.00000q11+1.00000iq13+1.00000iq141.00000q161.00000iq191.00000iq221.00000q231.00000q261.00000iq291.00000iq31+1.00000q35+1.00000q38+1.00000iq40+1.00000iq41+1.00000q431.00000iq46+1.00000q471.00000q55+1.00000iq56+1.00000q581.00000iq591.00000q61+1.00000q621.00000q64+1.00000iq651.00000iq67+1.00000iq701.00000q771.00000iq791.00000q801.00000q821.00000q83+1.00000iq861.00000iq88+1.00000iq91+1.00000iq941.00000iq95+1.00000iq97+O(q100)q+1.00000i q^{2} +1.00000 q^{5} +1.00000 q^{7} +1.00000i q^{8} +1.00000i q^{10} -1.00000 q^{11} +1.00000i q^{13} +1.00000i q^{14} -1.00000 q^{16} -1.00000i q^{19} -1.00000i q^{22} -1.00000 q^{23} -1.00000 q^{26} -1.00000i q^{29} -1.00000i q^{31} +1.00000 q^{35} +1.00000 q^{38} +1.00000i q^{40} +1.00000i q^{41} +1.00000 q^{43} -1.00000i q^{46} +1.00000 q^{47} -1.00000 q^{55} +1.00000i q^{56} +1.00000 q^{58} -1.00000i q^{59} -1.00000 q^{61} +1.00000 q^{62} -1.00000 q^{64} +1.00000i q^{65} -1.00000i q^{67} +1.00000i q^{70} -1.00000 q^{77} -1.00000i q^{79} -1.00000 q^{80} -1.00000 q^{82} -1.00000 q^{83} +1.00000i q^{86} -1.00000i q^{88} +1.00000i q^{91} +1.00000i q^{94} -1.00000i q^{95} +1.00000i q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q5+2q72q112q162q232q26+2q35+2q38+2q43+2q472q55+2q582q61+2q622q642q772q802q822q83+O(q100) 2 q + 2 q^{5} + 2 q^{7} - 2 q^{11} - 2 q^{16} - 2 q^{23} - 2 q^{26} + 2 q^{35} + 2 q^{38} + 2 q^{43} + 2 q^{47} - 2 q^{55} + 2 q^{58} - 2 q^{61} + 2 q^{62} - 2 q^{64} - 2 q^{77} - 2 q^{80} - 2 q^{82} - 2 q^{83}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1539Z)×\left(\mathbb{Z}/1539\mathbb{Z}\right)^\times.

nn 325325 12171217
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
33 0 0
44 0 0
55 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
66 0 0
77 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
88 1.00000i 1.00000i
99 0 0
1010 1.00000i 1.00000i
1111 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1212 0 0
1313 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1414 1.00000i 1.00000i
1515 0 0
1616 −1.00000 −1.00000
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 − 1.00000i − 1.00000i
2020 0 0
2121 0 0
2222 − 1.00000i − 1.00000i
2323 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2424 0 0
2525 0 0
2626 −1.00000 −1.00000
2727 0 0
2828 0 0
2929 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
3030 0 0
3131 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
3232 0 0
3333 0 0
3434 0 0
3535 1.00000 1.00000
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 1.00000 1.00000
3939 0 0
4040 1.00000i 1.00000i
4141 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4242 0 0
4343 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4444 0 0
4545 0 0
4646 − 1.00000i − 1.00000i
4747 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4848 0 0
4949 0 0
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 −1.00000 −1.00000
5656 1.00000i 1.00000i
5757 0 0
5858 1.00000 1.00000
5959 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
6060 0 0
6161 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6262 1.00000 1.00000
6363 0 0
6464 −1.00000 −1.00000
6565 1.00000i 1.00000i
6666 0 0
6767 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
6868 0 0
6969 0 0
7070 1.00000i 1.00000i
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 0 0
7676 0 0
7777 −1.00000 −1.00000
7878 0 0
7979 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
8080 −1.00000 −1.00000
8181 0 0
8282 −1.00000 −1.00000
8383 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 0 0
8585 0 0
8686 1.00000i 1.00000i
8787 0 0
8888 − 1.00000i − 1.00000i
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 1.00000i 1.00000i
9292 0 0
9393 0 0
9494 1.00000i 1.00000i
9595 − 1.00000i − 1.00000i
9696 0 0
9797 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
9898 0 0
9999 0 0
100100 0 0
101101 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
102102 0 0
103103 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
104104 −1.00000 −1.00000
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
110110 − 1.00000i − 1.00000i
111111 0 0
112112 −1.00000 −1.00000
113113 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
114114 0 0
115115 −1.00000 −1.00000
116116 0 0
117117 0 0
118118 1.00000 1.00000
119119 0 0
120120 0 0
121121 0 0
122122 − 1.00000i − 1.00000i
123123 0 0
124124 0 0
125125 −1.00000 −1.00000
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 − 1.00000i − 1.00000i
129129 0 0
130130 −1.00000 −1.00000
131131 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
132132 0 0
133133 − 1.00000i − 1.00000i
134134 1.00000 1.00000
135135 0 0
136136 0 0
137137 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
138138 0 0
139139 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 0 0
141141 0 0
142142 0 0
143143 − 1.00000i − 1.00000i
144144 0 0
145145 − 1.00000i − 1.00000i
146146 0 0
147147 0 0
148148 0 0
149149 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
150150 0 0
151151 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
152152 1.00000 1.00000
153153 0 0
154154 − 1.00000i − 1.00000i
155155 − 1.00000i − 1.00000i
156156 0 0
157157 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
158158 1.00000 1.00000
159159 0 0
160160 0 0
161161 −1.00000 −1.00000
162162 0 0
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 0 0
165165 0 0
166166 − 1.00000i − 1.00000i
167167 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
168168 0 0
169169 0 0
170170 0 0
171171 0 0
172172 0 0
173173 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
174174 0 0
175175 0 0
176176 1.00000 1.00000
177177 0 0
178178 0 0
179179 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 −1.00000 −1.00000
183183 0 0
184184 − 1.00000i − 1.00000i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 1.00000 1.00000
191191 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
192192 0 0
193193 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
194194 −1.00000 −1.00000
195195 0 0
196196 0 0
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 1.00000i 1.00000i
203203 − 1.00000i − 1.00000i
204204 0 0
205205 1.00000i 1.00000i
206206 −1.00000 −1.00000
207207 0 0
208208 − 1.00000i − 1.00000i
209209 1.00000i 1.00000i
210210 0 0
211211 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
212212 0 0
213213 0 0
214214 0 0
215215 1.00000 1.00000
216216 0 0
217217 − 1.00000i − 1.00000i
218218 −2.00000 −2.00000
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
224224 0 0
225225 0 0
226226 1.00000 1.00000
227227 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
228228 0 0
229229 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 − 1.00000i − 1.00000i
231231 0 0
232232 1.00000 1.00000
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 1.00000 1.00000
236236 0 0
237237 0 0
238238 0 0
239239 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 0 0
241241 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 1.00000 1.00000
248248 1.00000 1.00000
249249 0 0
250250 − 1.00000i − 1.00000i
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 1.00000 1.00000
254254 0 0
255255 0 0
256256 0 0
257257 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 1.00000i 1.00000i
263263 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
264264 0 0
265265 0 0
266266 1.00000 1.00000
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 − 1.00000i − 1.00000i
275275 0 0
276276 0 0
277277 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 − 1.00000i − 1.00000i
279279 0 0
280280 1.00000i 1.00000i
281281 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
282282 0 0
283283 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
284284 0 0
285285 0 0
286286 1.00000 1.00000
287287 1.00000i 1.00000i
288288 0 0
289289 −1.00000 −1.00000
290290 1.00000 1.00000
291291 0 0
292292 0 0
293293 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
294294 0 0
295295 − 1.00000i − 1.00000i
296296 0 0
297297 0 0
298298 1.00000i 1.00000i
299299 − 1.00000i − 1.00000i
300300 0 0
301301 1.00000 1.00000
302302 −1.00000 −1.00000
303303 0 0
304304 1.00000i 1.00000i
305305 −1.00000 −1.00000
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 1.00000 1.00000
311311 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 1.00000i 1.00000i
315315 0 0
316316 0 0
317317 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
318318 0 0
319319 1.00000i 1.00000i
320320 −1.00000 −1.00000
321321 0 0
322322 − 1.00000i − 1.00000i
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 −1.00000 −1.00000
329329 1.00000 1.00000
330330 0 0
331331 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
332332 0 0
333333 0 0
334334 −1.00000 −1.00000
335335 − 1.00000i − 1.00000i
336336 0 0
337337 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
338338 0 0
339339 0 0
340340 0 0
341341 1.00000i 1.00000i
342342 0 0
343343 −1.00000 −1.00000
344344 1.00000i 1.00000i
345345 0 0
346346 1.00000 1.00000
347347 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 0 0
353353 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 2.00000 2.00000
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −1.00000 −1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 1.00000 1.00000
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
374374 0 0
375375 0 0
376376 1.00000i 1.00000i
377377 1.00000 1.00000
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 1.00000i 1.00000i
383383 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
384384 0 0
385385 −1.00000 −1.00000
386386 1.00000 1.00000
387387 0 0
388388 0 0
389389 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 − 1.00000i − 1.00000i
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 0 0
399399 0 0
400400 0 0
401401 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
402402 0 0
403403 1.00000 1.00000
404404 0 0
405405 0 0
406406 1.00000 1.00000
407407 0 0
408408 0 0
409409 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
410410 −1.00000 −1.00000
411411 0 0
412412 0 0
413413 − 1.00000i − 1.00000i
414414 0 0
415415 −1.00000 −1.00000
416416 0 0
417417 0 0
418418 −1.00000 −1.00000
419419 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
420420 0 0
421421 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
422422 −1.00000 −1.00000
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 −1.00000 −1.00000
428428 0 0
429429 0 0
430430 1.00000i 1.00000i
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 1.00000 1.00000
435435 0 0
436436 0 0
437437 1.00000i 1.00000i
438438 0 0
439439 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
440440 − 1.00000i − 1.00000i
441441 0 0
442442 0 0
443443 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 0 0
445445 0 0
446446 −1.00000 −1.00000
447447 0 0
448448 −1.00000 −1.00000
449449 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 − 1.00000i − 1.00000i
452452 0 0
453453 0 0
454454 1.00000 1.00000
455455 1.00000i 1.00000i
456456 0 0
457457 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
458458 − 1.00000i − 1.00000i
459459 0 0
460460 0 0
461461 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
462462 0 0
463463 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
464464 1.00000i 1.00000i
465465 0 0
466466 0 0
467467 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
468468 0 0
469469 − 1.00000i − 1.00000i
470470 1.00000i 1.00000i
471471 0 0
472472 1.00000 1.00000
473473 −1.00000 −1.00000
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 − 1.00000i − 1.00000i
479479 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
480480 0 0
481481 0 0
482482 1.00000 1.00000
483483 0 0
484484 0 0
485485 1.00000i 1.00000i
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 − 1.00000i − 1.00000i
489489 0 0
490490 0 0
491491 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
492492 0 0
493493 0 0
494494 1.00000i 1.00000i
495495 0 0
496496 1.00000i 1.00000i
497497 0 0
498498 0 0
499499 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 1.00000 1.00000
506506 1.00000i 1.00000i
507507 0 0
508508 0 0
509509 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
510510 0 0
511511 0 0
512512 − 1.00000i − 1.00000i
513513 0 0
514514 −1.00000 −1.00000
515515 1.00000i 1.00000i
516516 0 0
517517 −1.00000 −1.00000
518518 0 0
519519 0 0
520520 −1.00000 −1.00000
521521 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 1.00000i 1.00000i
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 −1.00000 −1.00000
534534 0 0
535535 0 0
536536 1.00000 1.00000
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 0 0
544544 0 0
545545 2.00000i 2.00000i
546546 0 0
547547 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
548548 0 0
549549 0 0
550550 0 0
551551 −1.00000 −1.00000
552552 0 0
553553 − 1.00000i − 1.00000i
554554 1.00000i 1.00000i
555555 0 0
556556 0 0
557557 2.00000 2.00000 1.00000 00
1.00000 00
558558 0 0
559559 1.00000i 1.00000i
560560 −1.00000 −1.00000
561561 0 0
562562 −1.00000 −1.00000
563563 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
564564 0 0
565565 − 1.00000i − 1.00000i
566566 1.00000i 1.00000i
567567 0 0
568568 0 0
569569 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
570570 0 0
571571 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0 0
574574 −1.00000 −1.00000
575575 0 0
576576 0 0
577577 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
578578 − 1.00000i − 1.00000i
579579 0 0
580580 0 0
581581 −1.00000 −1.00000
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 1.00000 1.00000
587587 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
588588 0 0
589589 −1.00000 −1.00000
590590 1.00000 1.00000
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 1.00000 1.00000
599599 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
600600 0 0
601601 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
602602 1.00000i 1.00000i
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
608608 0 0
609609 0 0
610610 − 1.00000i − 1.00000i
611611 1.00000i 1.00000i
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 0 0
616616 − 1.00000i − 1.00000i
617617 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
618618 0 0
619619 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 0 0
622622 − 1.00000i − 1.00000i
623623 0 0
624624 0 0
625625 −1.00000 −1.00000
626626 − 1.00000i − 1.00000i
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
632632 1.00000 1.00000
633633 0 0
634634 −1.00000 −1.00000
635635 0 0
636636 0 0
637637 0 0
638638 −1.00000 −1.00000
639639 0 0
640640 − 1.00000i − 1.00000i
641641 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
642642 0 0
643643 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 1.00000i 1.00000i
650650 0 0
651651 0 0
652652 0 0
653653 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 0 0
655655 1.00000 1.00000
656656 − 1.00000i − 1.00000i
657657 0 0
658658 1.00000i 1.00000i
659659 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
660660 0 0
661661 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
662662 1.00000 1.00000
663663 0 0
664664 − 1.00000i − 1.00000i
665665 − 1.00000i − 1.00000i
666666 0 0
667667 1.00000i 1.00000i
668668 0 0
669669 0 0
670670 1.00000 1.00000
671671 1.00000 1.00000
672672 0 0
673673 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
674674 −1.00000 −1.00000
675675 0 0
676676 0 0
677677 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
678678 0 0
679679 1.00000i 1.00000i
680680 0 0
681681 0 0
682682 −1.00000 −1.00000
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 −1.00000 −1.00000
686686 − 1.00000i − 1.00000i
687687 0 0
688688 −1.00000 −1.00000
689689 0 0
690690 0 0
691691 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 − 1.00000i − 1.00000i
695695 −1.00000 −1.00000
696696 0 0
697697 0 0
698698 − 1.00000i − 1.00000i
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 1.00000 1.00000
705705 0 0
706706 1.00000i 1.00000i
707707 1.00000 1.00000
708708 0 0
709709 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
710710 0 0
711711 0 0
712712 0 0
713713 1.00000i 1.00000i
714714 0 0
715715 − 1.00000i − 1.00000i
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 1.00000i 1.00000i
722722 − 1.00000i − 1.00000i
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
728728 −1.00000 −1.00000
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
734734 − 1.00000i − 1.00000i
735735 0 0
736736 0 0
737737 1.00000i 1.00000i
738738 0 0
739739 2.00000 2.00000 1.00000 00
1.00000 00
740740 0 0
741741 0 0
742742 0 0
743743 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
744744 0 0
745745 1.00000 1.00000
746746 1.00000 1.00000
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
752752 −1.00000 −1.00000
753753 0 0
754754 1.00000i 1.00000i
755755 1.00000i 1.00000i
756756 0 0
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0 0
760760 1.00000 1.00000
761761 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 0 0
763763 2.00000i 2.00000i
764764 0 0
765765 0 0
766766 1.00000 1.00000
767767 1.00000 1.00000
768768 0 0
769769 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
770770 − 1.00000i − 1.00000i
771771 0 0
772772 0 0
773773 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
774774 0 0
775775 0 0
776776 −1.00000 −1.00000
777777 0 0
778778 − 1.00000i − 1.00000i
779779 1.00000 1.00000
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 1.00000 1.00000
786786 0 0
787787 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
788788 0 0
789789 0 0
790790 1.00000 1.00000
791791 − 1.00000i − 1.00000i
792792 0 0
793793 − 1.00000i − 1.00000i
794794 0 0
795795 0 0
796796 0 0
797797 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 −1.00000 −1.00000
803803 0 0
804804 0 0
805805 −1.00000 −1.00000
806806 1.00000i 1.00000i
807807 0 0
808808 1.00000i 1.00000i
809809 2.00000 2.00000 1.00000 00
1.00000 00
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 − 1.00000i − 1.00000i
818818 1.00000 1.00000
819819 0 0
820820 0 0
821821 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
822822 0 0
823823 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
824824 −1.00000 −1.00000
825825 0 0
826826 1.00000 1.00000
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 − 1.00000i − 1.00000i
831831 0 0
832832 − 1.00000i − 1.00000i
833833 0 0
834834 0 0
835835 1.00000i 1.00000i
836836 0 0
837837 0 0
838838 1.00000i 1.00000i
839839 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
840840 0 0
841841 0 0
842842 −1.00000 −1.00000
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
854854 − 1.00000i − 1.00000i
855855 0 0
856856 0 0
857857 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
858858 0 0
859859 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 − 1.00000i − 1.00000i
866866 0 0
867867 0 0
868868 0 0
869869 1.00000i 1.00000i
870870 0 0
871871 1.00000 1.00000
872872 −2.00000 −2.00000
873873 0 0
874874 −1.00000 −1.00000
875875 −1.00000 −1.00000
876876 0 0
877877 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
878878 −1.00000 −1.00000
879879 0 0
880880 1.00000 1.00000
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 0 0
885885 0 0
886886 1.00000i 1.00000i
887887 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 − 1.00000i − 1.00000i
894894 0 0
895895 − 2.00000i − 2.00000i
896896 − 1.00000i − 1.00000i
897897 0 0
898898 −2.00000 −2.00000
899899 −1.00000 −1.00000
900900 0 0
901901 0 0
902902 1.00000 1.00000
903903 0 0
904904 1.00000 1.00000
905905 0 0
906906 0 0
907907 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
908908 0 0
909909 0 0
910910 −1.00000 −1.00000
911911 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
912912 0 0
913913 1.00000 1.00000
914914 1.00000i 1.00000i
915915 0 0
916916 0 0
917917 1.00000 1.00000
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 − 1.00000i − 1.00000i
921921 0 0
922922 1.00000i 1.00000i
923923 0 0
924924 0 0
925925 0 0
926926 1.00000i 1.00000i
927927 0 0
928928 0 0
929929 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 − 2.00000i − 2.00000i
935935 0 0
936936 0 0
937937 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
938938 1.00000 1.00000
939939 0 0
940940 0 0
941941 − 1.00000i − 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
942942 0 0
943943 − 1.00000i − 1.00000i
944944 1.00000i 1.00000i
945945 0 0
946946 − 1.00000i − 1.00000i
947947 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 1.00000 1.00000
956956 0 0
957957 0 0
958958 − 1.00000i − 1.00000i
959959 −1.00000 −1.00000
960960 0 0
961961 0 0
962962 0 0
963963 0 0
964964 0 0
965965 − 1.00000i − 1.00000i
966966 0 0
967967 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
968968 0 0
969969 0 0
970970 −1.00000 −1.00000
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 −1.00000 −1.00000
974974 0 0
975975 0 0
976976 1.00000 1.00000
977977 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 1.00000i 1.00000i
983983 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 −1.00000 −1.00000
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
998998 − 1.00000i − 1.00000i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1539.1.c.d.892.2 2
3.2 odd 2 1539.1.c.c.892.1 2
9.2 odd 6 513.1.o.a.37.1 4
9.4 even 3 171.1.o.a.151.1 yes 4
9.5 odd 6 513.1.o.a.208.2 4
9.7 even 3 171.1.o.a.94.2 yes 4
19.18 odd 2 inner 1539.1.c.d.892.1 2
36.7 odd 6 2736.1.bs.a.1633.2 4
36.31 odd 6 2736.1.bs.a.2545.2 4
57.56 even 2 1539.1.c.c.892.2 2
171.4 even 9 3249.1.be.a.2473.1 12
171.7 even 3 3249.1.i.a.3181.2 4
171.13 odd 18 3249.1.be.a.3004.2 12
171.16 even 9 3249.1.be.a.1777.2 12
171.22 odd 18 3249.1.bc.a.2860.1 12
171.25 even 9 3249.1.bc.a.1921.1 12
171.31 odd 6 3249.1.s.a.1015.1 4
171.34 odd 18 3249.1.bc.a.1390.1 12
171.40 odd 18 3249.1.bc.a.2428.1 12
171.43 even 9 3249.1.be.a.1210.2 12
171.49 even 3 3249.1.i.a.430.2 4
171.52 odd 18 3249.1.be.a.1210.1 12
171.56 even 6 513.1.o.a.37.2 4
171.61 even 9 3249.1.bc.a.1390.2 12
171.67 odd 18 3249.1.be.a.2104.1 12
171.70 odd 18 3249.1.bc.a.1921.2 12
171.79 odd 18 3249.1.be.a.1777.1 12
171.85 even 9 3249.1.be.a.2104.2 12
171.88 odd 6 3249.1.i.a.3181.1 4
171.94 odd 6 171.1.o.a.151.2 yes 4
171.97 odd 18 3249.1.be.a.1345.2 12
171.103 odd 6 3249.1.i.a.430.1 4
171.106 even 3 3249.1.s.a.2596.1 4
171.112 even 9 3249.1.bc.a.2428.2 12
171.113 even 6 513.1.o.a.208.1 4
171.121 even 3 3249.1.s.a.1015.2 4
171.124 odd 18 3249.1.bc.a.1021.2 12
171.130 even 9 3249.1.bc.a.2860.2 12
171.139 even 9 3249.1.be.a.3004.1 12
171.142 even 9 3249.1.bc.a.1021.1 12
171.148 odd 18 3249.1.be.a.2473.2 12
171.151 odd 6 171.1.o.a.94.1 4
171.157 even 9 3249.1.bc.a.2293.1 12
171.160 odd 6 3249.1.s.a.2596.2 4
171.166 odd 18 3249.1.bc.a.2293.2 12
171.169 even 9 3249.1.be.a.1345.1 12
684.151 even 6 2736.1.bs.a.1633.1 4
684.607 even 6 2736.1.bs.a.2545.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.1.o.a.94.1 4 171.151 odd 6
171.1.o.a.94.2 yes 4 9.7 even 3
171.1.o.a.151.1 yes 4 9.4 even 3
171.1.o.a.151.2 yes 4 171.94 odd 6
513.1.o.a.37.1 4 9.2 odd 6
513.1.o.a.37.2 4 171.56 even 6
513.1.o.a.208.1 4 171.113 even 6
513.1.o.a.208.2 4 9.5 odd 6
1539.1.c.c.892.1 2 3.2 odd 2
1539.1.c.c.892.2 2 57.56 even 2
1539.1.c.d.892.1 2 19.18 odd 2 inner
1539.1.c.d.892.2 2 1.1 even 1 trivial
2736.1.bs.a.1633.1 4 684.151 even 6
2736.1.bs.a.1633.2 4 36.7 odd 6
2736.1.bs.a.2545.1 4 684.607 even 6
2736.1.bs.a.2545.2 4 36.31 odd 6
3249.1.i.a.430.1 4 171.103 odd 6
3249.1.i.a.430.2 4 171.49 even 3
3249.1.i.a.3181.1 4 171.88 odd 6
3249.1.i.a.3181.2 4 171.7 even 3
3249.1.s.a.1015.1 4 171.31 odd 6
3249.1.s.a.1015.2 4 171.121 even 3
3249.1.s.a.2596.1 4 171.106 even 3
3249.1.s.a.2596.2 4 171.160 odd 6
3249.1.bc.a.1021.1 12 171.142 even 9
3249.1.bc.a.1021.2 12 171.124 odd 18
3249.1.bc.a.1390.1 12 171.34 odd 18
3249.1.bc.a.1390.2 12 171.61 even 9
3249.1.bc.a.1921.1 12 171.25 even 9
3249.1.bc.a.1921.2 12 171.70 odd 18
3249.1.bc.a.2293.1 12 171.157 even 9
3249.1.bc.a.2293.2 12 171.166 odd 18
3249.1.bc.a.2428.1 12 171.40 odd 18
3249.1.bc.a.2428.2 12 171.112 even 9
3249.1.bc.a.2860.1 12 171.22 odd 18
3249.1.bc.a.2860.2 12 171.130 even 9
3249.1.be.a.1210.1 12 171.52 odd 18
3249.1.be.a.1210.2 12 171.43 even 9
3249.1.be.a.1345.1 12 171.169 even 9
3249.1.be.a.1345.2 12 171.97 odd 18
3249.1.be.a.1777.1 12 171.79 odd 18
3249.1.be.a.1777.2 12 171.16 even 9
3249.1.be.a.2104.1 12 171.67 odd 18
3249.1.be.a.2104.2 12 171.85 even 9
3249.1.be.a.2473.1 12 171.4 even 9
3249.1.be.a.2473.2 12 171.148 odd 18
3249.1.be.a.3004.1 12 171.139 even 9
3249.1.be.a.3004.2 12 171.13 odd 18