Properties

Label 1539.1.c.d.892.2
Level $1539$
Weight $1$
Character 1539.892
Analytic conductor $0.768$
Analytic rank $0$
Dimension $2$
Projective image $A_{4}$
CM/RM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1539,1,Mod(892,1539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1539, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1539.892");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1539 = 3^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1539.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.768061054442\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 171)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.29241.1
Artin image: $\SL(2,3):C_2$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{16} - \cdots)\)

Embedding invariants

Embedding label 892.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1539.892
Dual form 1539.1.c.d.892.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000 q^{5} +1.00000 q^{7} +1.00000i q^{8} +1.00000i q^{10} -1.00000 q^{11} +1.00000i q^{13} +1.00000i q^{14} -1.00000 q^{16} -1.00000i q^{19} -1.00000i q^{22} -1.00000 q^{23} -1.00000 q^{26} -1.00000i q^{29} -1.00000i q^{31} +1.00000 q^{35} +1.00000 q^{38} +1.00000i q^{40} +1.00000i q^{41} +1.00000 q^{43} -1.00000i q^{46} +1.00000 q^{47} -1.00000 q^{55} +1.00000i q^{56} +1.00000 q^{58} -1.00000i q^{59} -1.00000 q^{61} +1.00000 q^{62} -1.00000 q^{64} +1.00000i q^{65} -1.00000i q^{67} +1.00000i q^{70} -1.00000 q^{77} -1.00000i q^{79} -1.00000 q^{80} -1.00000 q^{82} -1.00000 q^{83} +1.00000i q^{86} -1.00000i q^{88} +1.00000i q^{91} +1.00000i q^{94} -1.00000i q^{95} +1.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + 2 q^{7} - 2 q^{11} - 2 q^{16} - 2 q^{23} - 2 q^{26} + 2 q^{35} + 2 q^{38} + 2 q^{43} + 2 q^{47} - 2 q^{55} + 2 q^{58} - 2 q^{61} + 2 q^{62} - 2 q^{64} - 2 q^{77} - 2 q^{80} - 2 q^{82} - 2 q^{83}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1539\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 0 0
\(7\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) 1.00000i 1.00000i
\(9\) 0 0
\(10\) 1.00000i 1.00000i
\(11\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(14\) 1.00000i 1.00000i
\(15\) 0 0
\(16\) −1.00000 −1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) − 1.00000i − 1.00000i
\(23\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.00000 −1.00000
\(27\) 0 0
\(28\) 0 0
\(29\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(30\) 0 0
\(31\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 1.00000
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 1.00000 1.00000
\(39\) 0 0
\(40\) 1.00000i 1.00000i
\(41\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 0 0
\(43\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) − 1.00000i − 1.00000i
\(47\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) −1.00000 −1.00000
\(56\) 1.00000i 1.00000i
\(57\) 0 0
\(58\) 1.00000 1.00000
\(59\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(60\) 0 0
\(61\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 1.00000 1.00000
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 1.00000i 1.00000i
\(66\) 0 0
\(67\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.00000i 1.00000i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.00000 −1.00000
\(78\) 0 0
\(79\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(80\) −1.00000 −1.00000
\(81\) 0 0
\(82\) −1.00000 −1.00000
\(83\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.00000i 1.00000i
\(87\) 0 0
\(88\) − 1.00000i − 1.00000i
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 1.00000i 1.00000i
\(92\) 0 0
\(93\) 0 0
\(94\) 1.00000i 1.00000i
\(95\) − 1.00000i − 1.00000i
\(96\) 0 0
\(97\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(102\) 0 0
\(103\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) −1.00000 −1.00000
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) − 1.00000i − 1.00000i
\(111\) 0 0
\(112\) −1.00000 −1.00000
\(113\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(114\) 0 0
\(115\) −1.00000 −1.00000
\(116\) 0 0
\(117\) 0 0
\(118\) 1.00000 1.00000
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) − 1.00000i − 1.00000i
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −1.00000
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) − 1.00000i − 1.00000i
\(129\) 0 0
\(130\) −1.00000 −1.00000
\(131\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) − 1.00000i − 1.00000i
\(134\) 1.00000 1.00000
\(135\) 0 0
\(136\) 0 0
\(137\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 1.00000i − 1.00000i
\(144\) 0 0
\(145\) − 1.00000i − 1.00000i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(152\) 1.00000 1.00000
\(153\) 0 0
\(154\) − 1.00000i − 1.00000i
\(155\) − 1.00000i − 1.00000i
\(156\) 0 0
\(157\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 1.00000 1.00000
\(159\) 0 0
\(160\) 0 0
\(161\) −1.00000 −1.00000
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) − 1.00000i − 1.00000i
\(167\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 1.00000
\(177\) 0 0
\(178\) 0 0
\(179\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) −1.00000 −1.00000
\(183\) 0 0
\(184\) − 1.00000i − 1.00000i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 1.00000 1.00000
\(191\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(194\) −1.00000 −1.00000
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1.00000i 1.00000i
\(203\) − 1.00000i − 1.00000i
\(204\) 0 0
\(205\) 1.00000i 1.00000i
\(206\) −1.00000 −1.00000
\(207\) 0 0
\(208\) − 1.00000i − 1.00000i
\(209\) 1.00000i 1.00000i
\(210\) 0 0
\(211\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.00000 1.00000
\(216\) 0 0
\(217\) − 1.00000i − 1.00000i
\(218\) −2.00000 −2.00000
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.00000 1.00000
\(227\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(228\) 0 0
\(229\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) − 1.00000i − 1.00000i
\(231\) 0 0
\(232\) 1.00000 1.00000
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 1.00000 1.00000
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0 0
\(241\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.00000 1.00000
\(248\) 1.00000 1.00000
\(249\) 0 0
\(250\) − 1.00000i − 1.00000i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 1.00000 1.00000
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.00000i 1.00000i
\(263\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.00000 1.00000
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) − 1.00000i − 1.00000i
\(275\) 0 0
\(276\) 0 0
\(277\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) − 1.00000i − 1.00000i
\(279\) 0 0
\(280\) 1.00000i 1.00000i
\(281\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(282\) 0 0
\(283\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.00000 1.00000
\(287\) 1.00000i 1.00000i
\(288\) 0 0
\(289\) −1.00000 −1.00000
\(290\) 1.00000 1.00000
\(291\) 0 0
\(292\) 0 0
\(293\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(294\) 0 0
\(295\) − 1.00000i − 1.00000i
\(296\) 0 0
\(297\) 0 0
\(298\) 1.00000i 1.00000i
\(299\) − 1.00000i − 1.00000i
\(300\) 0 0
\(301\) 1.00000 1.00000
\(302\) −1.00000 −1.00000
\(303\) 0 0
\(304\) 1.00000i 1.00000i
\(305\) −1.00000 −1.00000
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.00000 1.00000
\(311\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 1.00000i 1.00000i
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 1.00000i 1.00000i
\(320\) −1.00000 −1.00000
\(321\) 0 0
\(322\) − 1.00000i − 1.00000i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −1.00000 −1.00000
\(329\) 1.00000 1.00000
\(330\) 0 0
\(331\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.00000 −1.00000
\(335\) − 1.00000i − 1.00000i
\(336\) 0 0
\(337\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.00000i 1.00000i
\(342\) 0 0
\(343\) −1.00000 −1.00000
\(344\) 1.00000i 1.00000i
\(345\) 0 0
\(346\) 1.00000 1.00000
\(347\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 2.00000 2.00000
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −1.00000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 1.00000 1.00000
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.00000i 1.00000i
\(377\) 1.00000 1.00000
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.00000i 1.00000i
\(383\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(384\) 0 0
\(385\) −1.00000 −1.00000
\(386\) 1.00000 1.00000
\(387\) 0 0
\(388\) 0 0
\(389\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 1.00000i − 1.00000i
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) 1.00000 1.00000
\(404\) 0 0
\(405\) 0 0
\(406\) 1.00000 1.00000
\(407\) 0 0
\(408\) 0 0
\(409\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(410\) −1.00000 −1.00000
\(411\) 0 0
\(412\) 0 0
\(413\) − 1.00000i − 1.00000i
\(414\) 0 0
\(415\) −1.00000 −1.00000
\(416\) 0 0
\(417\) 0 0
\(418\) −1.00000 −1.00000
\(419\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(420\) 0 0
\(421\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(422\) −1.00000 −1.00000
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.00000 −1.00000
\(428\) 0 0
\(429\) 0 0
\(430\) 1.00000i 1.00000i
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 1.00000 1.00000
\(435\) 0 0
\(436\) 0 0
\(437\) 1.00000i 1.00000i
\(438\) 0 0
\(439\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) − 1.00000i − 1.00000i
\(441\) 0 0
\(442\) 0 0
\(443\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.00000 −1.00000
\(447\) 0 0
\(448\) −1.00000 −1.00000
\(449\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) − 1.00000i − 1.00000i
\(452\) 0 0
\(453\) 0 0
\(454\) 1.00000 1.00000
\(455\) 1.00000i 1.00000i
\(456\) 0 0
\(457\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) − 1.00000i − 1.00000i
\(459\) 0 0
\(460\) 0 0
\(461\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(462\) 0 0
\(463\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(464\) 1.00000i 1.00000i
\(465\) 0 0
\(466\) 0 0
\(467\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) − 1.00000i − 1.00000i
\(470\) 1.00000i 1.00000i
\(471\) 0 0
\(472\) 1.00000 1.00000
\(473\) −1.00000 −1.00000
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) − 1.00000i − 1.00000i
\(479\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.00000 1.00000
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000i 1.00000i
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) − 1.00000i − 1.00000i
\(489\) 0 0
\(490\) 0 0
\(491\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 1.00000i 1.00000i
\(495\) 0 0
\(496\) 1.00000i 1.00000i
\(497\) 0 0
\(498\) 0 0
\(499\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 1.00000 1.00000
\(506\) 1.00000i 1.00000i
\(507\) 0 0
\(508\) 0 0
\(509\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 1.00000i − 1.00000i
\(513\) 0 0
\(514\) −1.00000 −1.00000
\(515\) 1.00000i 1.00000i
\(516\) 0 0
\(517\) −1.00000 −1.00000
\(518\) 0 0
\(519\) 0 0
\(520\) −1.00000 −1.00000
\(521\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.00000i 1.00000i
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.00000 −1.00000
\(534\) 0 0
\(535\) 0 0
\(536\) 1.00000 1.00000
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.00000i 2.00000i
\(546\) 0 0
\(547\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.00000 −1.00000
\(552\) 0 0
\(553\) − 1.00000i − 1.00000i
\(554\) 1.00000i 1.00000i
\(555\) 0 0
\(556\) 0 0
\(557\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(558\) 0 0
\(559\) 1.00000i 1.00000i
\(560\) −1.00000 −1.00000
\(561\) 0 0
\(562\) −1.00000 −1.00000
\(563\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) − 1.00000i − 1.00000i
\(566\) 1.00000i 1.00000i
\(567\) 0 0
\(568\) 0 0
\(569\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −1.00000 −1.00000
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) − 1.00000i − 1.00000i
\(579\) 0 0
\(580\) 0 0
\(581\) −1.00000 −1.00000
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 1.00000 1.00000
\(587\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) 0 0
\(589\) −1.00000 −1.00000
\(590\) 1.00000 1.00000
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 1.00000 1.00000
\(599\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(600\) 0 0
\(601\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(602\) 1.00000i 1.00000i
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) − 1.00000i − 1.00000i
\(611\) 1.00000i 1.00000i
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) − 1.00000i − 1.00000i
\(617\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(618\) 0 0
\(619\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 1.00000i − 1.00000i
\(623\) 0 0
\(624\) 0 0
\(625\) −1.00000 −1.00000
\(626\) − 1.00000i − 1.00000i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 1.00000 1.00000
\(633\) 0 0
\(634\) −1.00000 −1.00000
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −1.00000 −1.00000
\(639\) 0 0
\(640\) − 1.00000i − 1.00000i
\(641\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(642\) 0 0
\(643\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 1.00000i 1.00000i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 1.00000 1.00000
\(656\) − 1.00000i − 1.00000i
\(657\) 0 0
\(658\) 1.00000i 1.00000i
\(659\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 1.00000 1.00000
\(663\) 0 0
\(664\) − 1.00000i − 1.00000i
\(665\) − 1.00000i − 1.00000i
\(666\) 0 0
\(667\) 1.00000i 1.00000i
\(668\) 0 0
\(669\) 0 0
\(670\) 1.00000 1.00000
\(671\) 1.00000 1.00000
\(672\) 0 0
\(673\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(674\) −1.00000 −1.00000
\(675\) 0 0
\(676\) 0 0
\(677\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 0 0
\(679\) 1.00000i 1.00000i
\(680\) 0 0
\(681\) 0 0
\(682\) −1.00000 −1.00000
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) −1.00000 −1.00000
\(686\) − 1.00000i − 1.00000i
\(687\) 0 0
\(688\) −1.00000 −1.00000
\(689\) 0 0
\(690\) 0 0
\(691\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) − 1.00000i − 1.00000i
\(695\) −1.00000 −1.00000
\(696\) 0 0
\(697\) 0 0
\(698\) − 1.00000i − 1.00000i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 1.00000 1.00000
\(705\) 0 0
\(706\) 1.00000i 1.00000i
\(707\) 1.00000 1.00000
\(708\) 0 0
\(709\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.00000i 1.00000i
\(714\) 0 0
\(715\) − 1.00000i − 1.00000i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 1.00000i 1.00000i
\(722\) − 1.00000i − 1.00000i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(728\) −1.00000 −1.00000
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) − 1.00000i − 1.00000i
\(735\) 0 0
\(736\) 0 0
\(737\) 1.00000i 1.00000i
\(738\) 0 0
\(739\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0 0
\(745\) 1.00000 1.00000
\(746\) 1.00000 1.00000
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) −1.00000 −1.00000
\(753\) 0 0
\(754\) 1.00000i 1.00000i
\(755\) 1.00000i 1.00000i
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 1.00000 1.00000
\(761\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) 2.00000i 2.00000i
\(764\) 0 0
\(765\) 0 0
\(766\) 1.00000 1.00000
\(767\) 1.00000 1.00000
\(768\) 0 0
\(769\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) − 1.00000i − 1.00000i
\(771\) 0 0
\(772\) 0 0
\(773\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.00000 −1.00000
\(777\) 0 0
\(778\) − 1.00000i − 1.00000i
\(779\) 1.00000 1.00000
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.00000 1.00000
\(786\) 0 0
\(787\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 1.00000 1.00000
\(791\) − 1.00000i − 1.00000i
\(792\) 0 0
\(793\) − 1.00000i − 1.00000i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) −1.00000 −1.00000
\(803\) 0 0
\(804\) 0 0
\(805\) −1.00000 −1.00000
\(806\) 1.00000i 1.00000i
\(807\) 0 0
\(808\) 1.00000i 1.00000i
\(809\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 1.00000i − 1.00000i
\(818\) 1.00000 1.00000
\(819\) 0 0
\(820\) 0 0
\(821\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 0 0
\(823\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) −1.00000 −1.00000
\(825\) 0 0
\(826\) 1.00000 1.00000
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) − 1.00000i − 1.00000i
\(831\) 0 0
\(832\) − 1.00000i − 1.00000i
\(833\) 0 0
\(834\) 0 0
\(835\) 1.00000i 1.00000i
\(836\) 0 0
\(837\) 0 0
\(838\) 1.00000i 1.00000i
\(839\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) −1.00000 −1.00000
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(854\) − 1.00000i − 1.00000i
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(858\) 0 0
\(859\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) − 1.00000i − 1.00000i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.00000i 1.00000i
\(870\) 0 0
\(871\) 1.00000 1.00000
\(872\) −2.00000 −2.00000
\(873\) 0 0
\(874\) −1.00000 −1.00000
\(875\) −1.00000 −1.00000
\(876\) 0 0
\(877\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(878\) −1.00000 −1.00000
\(879\) 0 0
\(880\) 1.00000 1.00000
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.00000i 1.00000i
\(887\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 1.00000i − 1.00000i
\(894\) 0 0
\(895\) − 2.00000i − 2.00000i
\(896\) − 1.00000i − 1.00000i
\(897\) 0 0
\(898\) −2.00000 −2.00000
\(899\) −1.00000 −1.00000
\(900\) 0 0
\(901\) 0 0
\(902\) 1.00000 1.00000
\(903\) 0 0
\(904\) 1.00000 1.00000
\(905\) 0 0
\(906\) 0 0
\(907\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −1.00000 −1.00000
\(911\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(912\) 0 0
\(913\) 1.00000 1.00000
\(914\) 1.00000i 1.00000i
\(915\) 0 0
\(916\) 0 0
\(917\) 1.00000 1.00000
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) − 1.00000i − 1.00000i
\(921\) 0 0
\(922\) 1.00000i 1.00000i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 1.00000i 1.00000i
\(927\) 0 0
\(928\) 0 0
\(929\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) − 2.00000i − 2.00000i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 1.00000 1.00000
\(939\) 0 0
\(940\) 0 0
\(941\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(942\) 0 0
\(943\) − 1.00000i − 1.00000i
\(944\) 1.00000i 1.00000i
\(945\) 0 0
\(946\) − 1.00000i − 1.00000i
\(947\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 1.00000 1.00000
\(956\) 0 0
\(957\) 0 0
\(958\) − 1.00000i − 1.00000i
\(959\) −1.00000 −1.00000
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 1.00000i − 1.00000i
\(966\) 0 0
\(967\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −1.00000 −1.00000
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) −1.00000 −1.00000
\(974\) 0 0
\(975\) 0 0
\(976\) 1.00000 1.00000
\(977\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 1.00000i 1.00000i
\(983\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.00000 −1.00000
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) − 1.00000i − 1.00000i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1539.1.c.d.892.2 2
3.2 odd 2 1539.1.c.c.892.1 2
9.2 odd 6 513.1.o.a.37.1 4
9.4 even 3 171.1.o.a.151.1 yes 4
9.5 odd 6 513.1.o.a.208.2 4
9.7 even 3 171.1.o.a.94.2 yes 4
19.18 odd 2 inner 1539.1.c.d.892.1 2
36.7 odd 6 2736.1.bs.a.1633.2 4
36.31 odd 6 2736.1.bs.a.2545.2 4
57.56 even 2 1539.1.c.c.892.2 2
171.4 even 9 3249.1.be.a.2473.1 12
171.7 even 3 3249.1.i.a.3181.2 4
171.13 odd 18 3249.1.be.a.3004.2 12
171.16 even 9 3249.1.be.a.1777.2 12
171.22 odd 18 3249.1.bc.a.2860.1 12
171.25 even 9 3249.1.bc.a.1921.1 12
171.31 odd 6 3249.1.s.a.1015.1 4
171.34 odd 18 3249.1.bc.a.1390.1 12
171.40 odd 18 3249.1.bc.a.2428.1 12
171.43 even 9 3249.1.be.a.1210.2 12
171.49 even 3 3249.1.i.a.430.2 4
171.52 odd 18 3249.1.be.a.1210.1 12
171.56 even 6 513.1.o.a.37.2 4
171.61 even 9 3249.1.bc.a.1390.2 12
171.67 odd 18 3249.1.be.a.2104.1 12
171.70 odd 18 3249.1.bc.a.1921.2 12
171.79 odd 18 3249.1.be.a.1777.1 12
171.85 even 9 3249.1.be.a.2104.2 12
171.88 odd 6 3249.1.i.a.3181.1 4
171.94 odd 6 171.1.o.a.151.2 yes 4
171.97 odd 18 3249.1.be.a.1345.2 12
171.103 odd 6 3249.1.i.a.430.1 4
171.106 even 3 3249.1.s.a.2596.1 4
171.112 even 9 3249.1.bc.a.2428.2 12
171.113 even 6 513.1.o.a.208.1 4
171.121 even 3 3249.1.s.a.1015.2 4
171.124 odd 18 3249.1.bc.a.1021.2 12
171.130 even 9 3249.1.bc.a.2860.2 12
171.139 even 9 3249.1.be.a.3004.1 12
171.142 even 9 3249.1.bc.a.1021.1 12
171.148 odd 18 3249.1.be.a.2473.2 12
171.151 odd 6 171.1.o.a.94.1 4
171.157 even 9 3249.1.bc.a.2293.1 12
171.160 odd 6 3249.1.s.a.2596.2 4
171.166 odd 18 3249.1.bc.a.2293.2 12
171.169 even 9 3249.1.be.a.1345.1 12
684.151 even 6 2736.1.bs.a.1633.1 4
684.607 even 6 2736.1.bs.a.2545.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.1.o.a.94.1 4 171.151 odd 6
171.1.o.a.94.2 yes 4 9.7 even 3
171.1.o.a.151.1 yes 4 9.4 even 3
171.1.o.a.151.2 yes 4 171.94 odd 6
513.1.o.a.37.1 4 9.2 odd 6
513.1.o.a.37.2 4 171.56 even 6
513.1.o.a.208.1 4 171.113 even 6
513.1.o.a.208.2 4 9.5 odd 6
1539.1.c.c.892.1 2 3.2 odd 2
1539.1.c.c.892.2 2 57.56 even 2
1539.1.c.d.892.1 2 19.18 odd 2 inner
1539.1.c.d.892.2 2 1.1 even 1 trivial
2736.1.bs.a.1633.1 4 684.151 even 6
2736.1.bs.a.1633.2 4 36.7 odd 6
2736.1.bs.a.2545.1 4 684.607 even 6
2736.1.bs.a.2545.2 4 36.31 odd 6
3249.1.i.a.430.1 4 171.103 odd 6
3249.1.i.a.430.2 4 171.49 even 3
3249.1.i.a.3181.1 4 171.88 odd 6
3249.1.i.a.3181.2 4 171.7 even 3
3249.1.s.a.1015.1 4 171.31 odd 6
3249.1.s.a.1015.2 4 171.121 even 3
3249.1.s.a.2596.1 4 171.106 even 3
3249.1.s.a.2596.2 4 171.160 odd 6
3249.1.bc.a.1021.1 12 171.142 even 9
3249.1.bc.a.1021.2 12 171.124 odd 18
3249.1.bc.a.1390.1 12 171.34 odd 18
3249.1.bc.a.1390.2 12 171.61 even 9
3249.1.bc.a.1921.1 12 171.25 even 9
3249.1.bc.a.1921.2 12 171.70 odd 18
3249.1.bc.a.2293.1 12 171.157 even 9
3249.1.bc.a.2293.2 12 171.166 odd 18
3249.1.bc.a.2428.1 12 171.40 odd 18
3249.1.bc.a.2428.2 12 171.112 even 9
3249.1.bc.a.2860.1 12 171.22 odd 18
3249.1.bc.a.2860.2 12 171.130 even 9
3249.1.be.a.1210.1 12 171.52 odd 18
3249.1.be.a.1210.2 12 171.43 even 9
3249.1.be.a.1345.1 12 171.169 even 9
3249.1.be.a.1345.2 12 171.97 odd 18
3249.1.be.a.1777.1 12 171.79 odd 18
3249.1.be.a.1777.2 12 171.16 even 9
3249.1.be.a.2104.1 12 171.67 odd 18
3249.1.be.a.2104.2 12 171.85 even 9
3249.1.be.a.2473.1 12 171.4 even 9
3249.1.be.a.2473.2 12 171.148 odd 18
3249.1.be.a.3004.1 12 171.139 even 9
3249.1.be.a.3004.2 12 171.13 odd 18