Properties

Label 1539.1.cf.a
Level $1539$
Weight $1$
Character orbit 1539.cf
Analytic conductor $0.768$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1539,1,Mod(188,1539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1539, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([3, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1539.188");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1539 = 3^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1539.cf (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.768061054442\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 513)
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.1002862414008009.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{18}^{7} q^{4} + ( - \zeta_{18}^{5} + \zeta_{18}^{4}) q^{7} + ( - \zeta_{18}^{5} - \zeta_{18}^{3}) q^{13} - \zeta_{18}^{5} q^{16} + \zeta_{18}^{6} q^{19} - \zeta_{18}^{7} q^{25} + ( - \zeta_{18}^{3} + \zeta_{18}^{2}) q^{28} + \cdots + 2 \zeta_{18}^{8} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{13} - 3 q^{19} - 3 q^{28} + 6 q^{43} + 6 q^{49} - 3 q^{52} + 6 q^{61} - 3 q^{64} - 3 q^{67} - 3 q^{73} - 3 q^{79} + 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1539\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\)
\(\chi(n)\) \(\zeta_{18}^{4}\) \(\zeta_{18}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
188.1
−0.766044 + 0.642788i
0.939693 0.342020i
−0.173648 0.984808i
−0.173648 + 0.984808i
−0.766044 0.642788i
0.939693 + 0.342020i
0 0 0.173648 + 0.984808i 0 0 −1.87939 0 0 0
215.1 0 0 0.766044 + 0.642788i 0 0 0.347296 0 0 0
917.1 0 0 −0.939693 0.342020i 0 0 1.53209 0 0 0
1106.1 0 0 −0.939693 + 0.342020i 0 0 1.53209 0 0 0
1187.1 0 0 0.173648 0.984808i 0 0 −1.87939 0 0 0
1403.1 0 0 0.766044 0.642788i 0 0 0.347296 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 188.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
171.w even 9 1 inner
171.bf odd 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1539.1.cf.a 6
3.b odd 2 1 CM 1539.1.cf.a 6
9.c even 3 1 513.1.bs.a 6
9.c even 3 1 1539.1.bq.a 6
9.d odd 6 1 513.1.bs.a 6
9.d odd 6 1 1539.1.bq.a 6
19.e even 9 1 1539.1.bq.a 6
57.l odd 18 1 1539.1.bq.a 6
171.v even 9 1 513.1.bs.a 6
171.w even 9 1 inner 1539.1.cf.a 6
171.z odd 18 1 513.1.bs.a 6
171.bf odd 18 1 inner 1539.1.cf.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
513.1.bs.a 6 9.c even 3 1
513.1.bs.a 6 9.d odd 6 1
513.1.bs.a 6 171.v even 9 1
513.1.bs.a 6 171.z odd 18 1
1539.1.bq.a 6 9.c even 3 1
1539.1.bq.a 6 9.d odd 6 1
1539.1.bq.a 6 19.e even 9 1
1539.1.bq.a 6 57.l odd 18 1
1539.1.cf.a 6 1.a even 1 1 trivial
1539.1.cf.a 6 3.b odd 2 1 CM
1539.1.cf.a 6 171.w even 9 1 inner
1539.1.cf.a 6 171.bf odd 18 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1539, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{3} - 3 T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( (T^{3} - 3 T + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( T^{6} - 6 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{6} \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( T^{6} - 6 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$79$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} + 8T^{3} + 64 \) Copy content Toggle raw display
show more
show less