Properties

Label 1539.1.o.a.379.1
Level 15391539
Weight 11
Character 1539.379
Analytic conductor 0.7680.768
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -19
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1539,1,Mod(379,1539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1539, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1539.379");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1539=3419 1539 = 3^{4} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1539.o (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7680610544420.768061054442
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.1539.1
Artin image: C3×S3C_3\times S_3
Artin field: Galois closure of 6.0.45001899.3

Embedding invariants

Embedding label 379.1
Root 0.5000000.866025i0.500000 - 0.866025i of defining polynomial
Character χ\chi == 1539.379
Dual form 1539.1.o.a.1405.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000000.866025i)q4+(1.000001.73205i)q5+(0.5000000.866025i)q7+(0.5000000.866025i)q11+(0.500000+0.866025i)q161.00000q17+1.00000q19+(1.00000+1.73205i)q20+(0.500000+0.866025i)q23+(1.50000+2.59808i)q251.00000q282.00000q35+(0.5000000.866025i)q431.00000q44+(0.5000000.866025i)q472.00000q55+(0.5000000.866025i)q61+1.00000q64+(0.500000+0.866025i)q681.00000q73+(0.5000000.866025i)q76+(0.5000000.866025i)q77+2.00000q80+(1.00000+1.73205i)q83+(1.00000+1.73205i)q85+(0.5000000.866025i)q92+(1.000001.73205i)q95+O(q100)q+(-0.500000 - 0.866025i) q^{4} +(-1.00000 - 1.73205i) q^{5} +(0.500000 - 0.866025i) q^{7} +(0.500000 - 0.866025i) q^{11} +(-0.500000 + 0.866025i) q^{16} -1.00000 q^{17} +1.00000 q^{19} +(-1.00000 + 1.73205i) q^{20} +(0.500000 + 0.866025i) q^{23} +(-1.50000 + 2.59808i) q^{25} -1.00000 q^{28} -2.00000 q^{35} +(0.500000 - 0.866025i) q^{43} -1.00000 q^{44} +(0.500000 - 0.866025i) q^{47} -2.00000 q^{55} +(0.500000 - 0.866025i) q^{61} +1.00000 q^{64} +(0.500000 + 0.866025i) q^{68} -1.00000 q^{73} +(-0.500000 - 0.866025i) q^{76} +(-0.500000 - 0.866025i) q^{77} +2.00000 q^{80} +(-1.00000 + 1.73205i) q^{83} +(1.00000 + 1.73205i) q^{85} +(0.500000 - 0.866025i) q^{92} +(-1.00000 - 1.73205i) q^{95} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq42q5+q7+q11q162q17+2q192q20+q233q252q284q35+q432q44+q474q55+q61+2q64+q682q73+2q95+O(q100) 2 q - q^{4} - 2 q^{5} + q^{7} + q^{11} - q^{16} - 2 q^{17} + 2 q^{19} - 2 q^{20} + q^{23} - 3 q^{25} - 2 q^{28} - 4 q^{35} + q^{43} - 2 q^{44} + q^{47} - 4 q^{55} + q^{61} + 2 q^{64} + q^{68} - 2 q^{73}+ \cdots - 2 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1539Z)×\left(\mathbb{Z}/1539\mathbb{Z}\right)^\times.

nn 325325 12171217
χ(n)\chi(n) 1-1 e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
33 0 0
44 −0.500000 0.866025i −0.500000 0.866025i
55 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
66 0 0
77 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
88 0 0
99 0 0
1010 0 0
1111 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
1212 0 0
1313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1414 0 0
1515 0 0
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 0 0
1919 1.00000 1.00000
2020 −1.00000 + 1.73205i −1.00000 + 1.73205i
2121 0 0
2222 0 0
2323 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
2424 0 0
2525 −1.50000 + 2.59808i −1.50000 + 2.59808i
2626 0 0
2727 0 0
2828 −1.00000 −1.00000
2929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3030 0 0
3131 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3232 0 0
3333 0 0
3434 0 0
3535 −2.00000 −2.00000
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4242 0 0
4343 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
4444 −1.00000 −1.00000
4545 0 0
4646 0 0
4747 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
4848 0 0
4949 0 0
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 −2.00000 −2.00000
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6060 0 0
6161 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
6262 0 0
6363 0 0
6464 1.00000 1.00000
6565 0 0
6666 0 0
6767 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6868 0.500000 + 0.866025i 0.500000 + 0.866025i
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 0 0
7575 0 0
7676 −0.500000 0.866025i −0.500000 0.866025i
7777 −0.500000 0.866025i −0.500000 0.866025i
7878 0 0
7979 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8080 2.00000 2.00000
8181 0 0
8282 0 0
8383 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 0 0
8585 1.00000 + 1.73205i 1.00000 + 1.73205i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0.500000 0.866025i 0.500000 0.866025i
9393 0 0
9494 0 0
9595 −1.00000 1.73205i −1.00000 1.73205i
9696 0 0
9797 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9898 0 0
9999 0 0
100100 3.00000 3.00000
101101 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
102102 0 0
103103 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0.500000 + 0.866025i 0.500000 + 0.866025i
113113 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
114114 0 0
115115 1.00000 1.73205i 1.00000 1.73205i
116116 0 0
117117 0 0
118118 0 0
119119 −0.500000 + 0.866025i −0.500000 + 0.866025i
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 0 0
125125 4.00000 4.00000
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0 0
129129 0 0
130130 0 0
131131 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 0 0
133133 0.500000 0.866025i 0.500000 0.866025i
134134 0 0
135135 0 0
136136 0 0
137137 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
138138 0 0
139139 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
140140 1.00000 + 1.73205i 1.00000 + 1.73205i
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
158158 0 0
159159 0 0
160160 0 0
161161 1.00000 1.00000
162162 0 0
163163 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
168168 0 0
169169 −0.500000 + 0.866025i −0.500000 + 0.866025i
170170 0 0
171171 0 0
172172 −1.00000 −1.00000
173173 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
174174 0 0
175175 1.50000 + 2.59808i 1.50000 + 2.59808i
176176 0.500000 + 0.866025i 0.500000 + 0.866025i
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 −0.500000 + 0.866025i −0.500000 + 0.866025i
188188 −1.00000 −1.00000
189189 0 0
190190 0 0
191191 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
192192 0 0
193193 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
194194 0 0
195195 0 0
196196 0 0
197197 2.00000 2.00000 1.00000 00
1.00000 00
198198 0 0
199199 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0.500000 0.866025i 0.500000 0.866025i
210210 0 0
211211 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
212212 0 0
213213 0 0
214214 0 0
215215 −2.00000 −2.00000
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 1.00000 + 1.73205i 1.00000 + 1.73205i
221221 0 0
222222 0 0
223223 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
228228 0 0
229229 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 0 0
231231 0 0
232232 0 0
233233 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 −2.00000 −2.00000
236236 0 0
237237 0 0
238238 0 0
239239 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 0 0
241241 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 0 0
243243 0 0
244244 −1.00000 −1.00000
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 2.00000 2.00000 1.00000 00
1.00000 00
252252 0 0
253253 1.00000 1.00000
254254 0 0
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
272272 0.500000 0.866025i 0.500000 0.866025i
273273 0 0
274274 0 0
275275 1.50000 + 2.59808i 1.50000 + 2.59808i
276276 0 0
277277 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
278278 0 0
279279 0 0
280280 0 0
281281 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
282282 0 0
283283 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0 0
290290 0 0
291291 0 0
292292 0.500000 + 0.866025i 0.500000 + 0.866025i
293293 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −0.500000 0.866025i −0.500000 0.866025i
302302 0 0
303303 0 0
304304 −0.500000 + 0.866025i −0.500000 + 0.866025i
305305 −2.00000 −2.00000
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 −0.500000 + 0.866025i −0.500000 + 0.866025i
309309 0 0
310310 0 0
311311 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
312312 0 0
313313 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
318318 0 0
319319 0 0
320320 −1.00000 1.73205i −1.00000 1.73205i
321321 0 0
322322 0 0
323323 −1.00000 −1.00000
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 −0.500000 0.866025i −0.500000 0.866025i
330330 0 0
331331 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
332332 2.00000 2.00000
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
338338 0 0
339339 0 0
340340 1.00000 1.73205i 1.00000 1.73205i
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 0 0
345345 0 0
346346 0 0
347347 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
348348 0 0
349349 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
350350 0 0
351351 0 0
352352 0 0
353353 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 2.00000 2.00000 1.00000 00
1.00000 00
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 1.00000 + 1.73205i 1.00000 + 1.73205i
366366 0 0
367367 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
368368 −1.00000 −1.00000
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 −1.00000 + 1.73205i −1.00000 + 1.73205i
381381 0 0
382382 0 0
383383 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
384384 0 0
385385 −1.00000 + 1.73205i −1.00000 + 1.73205i
386386 0 0
387387 0 0
388388 0 0
389389 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
390390 0 0
391391 −0.500000 0.866025i −0.500000 0.866025i
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 2.00000 2.00000 1.00000 00
1.00000 00
398398 0 0
399399 0 0
400400 −1.50000 2.59808i −1.50000 2.59808i
401401 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
402402 0 0
403403 0 0
404404 −1.00000 −1.00000
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 4.00000 4.00000
416416 0 0
417417 0 0
418418 0 0
419419 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
420420 0 0
421421 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
422422 0 0
423423 0 0
424424 0 0
425425 1.50000 2.59808i 1.50000 2.59808i
426426 0 0
427427 −0.500000 0.866025i −0.500000 0.866025i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0.500000 + 0.866025i 0.500000 + 0.866025i
438438 0 0
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 0 0
442442 0 0
443443 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0.500000 0.866025i 0.500000 0.866025i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 0 0
459459 0 0
460460 −2.00000 −2.00000
461461 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
462462 0 0
463463 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
464464 0 0
465465 0 0
466466 0 0
467467 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −0.500000 0.866025i −0.500000 0.866025i
474474 0 0
475475 −1.50000 + 2.59808i −1.50000 + 2.59808i
476476 1.00000 1.00000
477477 0 0
478478 0 0
479479 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 −2.00000 3.46410i −2.00000 3.46410i
501501 0 0
502502 0 0
503503 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
504504 0 0
505505 −2.00000 −2.00000
506506 0 0
507507 0 0
508508 0 0
509509 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 0 0
511511 −0.500000 + 0.866025i −0.500000 + 0.866025i
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 −0.500000 0.866025i −0.500000 0.866025i
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0.500000 0.866025i 0.500000 0.866025i
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 −1.00000 −1.00000
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 2.00000 2.00000 1.00000 00
1.00000 00
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
548548 −1.00000 −1.00000
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 −1.00000 + 1.73205i −1.00000 + 1.73205i
557557 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
558558 0 0
559559 0 0
560560 1.00000 1.73205i 1.00000 1.73205i
561561 0 0
562562 0 0
563563 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
570570 0 0
571571 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0 0
574574 0 0
575575 −3.00000 −3.00000
576576 0 0
577577 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 0 0
579579 0 0
580580 0 0
581581 1.00000 + 1.73205i 1.00000 + 1.73205i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
594594 0 0
595595 2.00000 2.00000
596596 0.500000 0.866025i 0.500000 0.866025i
597597 0 0
598598 0 0
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0 0
601601 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
618618 0 0
619619 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −2.50000 4.33013i −2.50000 4.33013i
626626 0 0
627627 0 0
628628 −1.00000 + 1.73205i −1.00000 + 1.73205i
629629 0 0
630630 0 0
631631 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0 0
643643 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
644644 −0.500000 0.866025i −0.500000 0.866025i
645645 0 0
646646 0 0
647647 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0.500000 + 0.866025i 0.500000 + 0.866025i
653653 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 0 0
655655 1.00000 1.73205i 1.00000 1.73205i
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
662662 0 0
663663 0 0
664664 0 0
665665 −2.00000 −2.00000
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 −0.500000 0.866025i −0.500000 0.866025i
672672 0 0
673673 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
674674 0 0
675675 0 0
676676 1.00000 1.00000
677677 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 −2.00000 −2.00000
686686 0 0
687687 0 0
688688 0.500000 + 0.866025i 0.500000 + 0.866025i
689689 0 0
690690 0 0
691691 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 0 0
695695 −2.00000 + 3.46410i −2.00000 + 3.46410i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 1.50000 2.59808i 1.50000 2.59808i
701701 2.00000 2.00000 1.00000 00
1.00000 00
702702 0 0
703703 0 0
704704 0.500000 0.866025i 0.500000 0.866025i
705705 0 0
706706 0 0
707707 −0.500000 0.866025i −0.500000 0.866025i
708708 0 0
709709 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 2.00000 2.00000 1.00000 00
1.00000 00
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
728728 0 0
729729 0 0
730730 0 0
731731 −0.500000 + 0.866025i −0.500000 + 0.866025i
732732 0 0
733733 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 2.00000 2.00000 1.00000 00
1.00000 00
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
744744 0 0
745745 1.00000 1.73205i 1.00000 1.73205i
746746 0 0
747747 0 0
748748 1.00000 1.00000
749749 0 0
750750 0 0
751751 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
752752 0.500000 + 0.866025i 0.500000 + 0.866025i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 2.00000 2.00000 1.00000 00
1.00000 00
758758 0 0
759759 0 0
760760 0 0
761761 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
762762 0 0
763763 0 0
764764 −1.00000 −1.00000
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 −2.00000 + 3.46410i −2.00000 + 3.46410i
786786 0 0
787787 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
788788 −1.00000 1.73205i −1.00000 1.73205i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0.500000 + 0.866025i 0.500000 + 0.866025i
797797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
798798 0 0
799799 −0.500000 + 0.866025i −0.500000 + 0.866025i
800800 0 0
801801 0 0
802802 0 0
803803 −0.500000 + 0.866025i −0.500000 + 0.866025i
804804 0 0
805805 −1.00000 1.73205i −1.00000 1.73205i
806806 0 0
807807 0 0
808808 0 0
809809 2.00000 2.00000 1.00000 00
1.00000 00
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 1.00000 + 1.73205i 1.00000 + 1.73205i
816816 0 0
817817 0.500000 0.866025i 0.500000 0.866025i
818818 0 0
819819 0 0
820820 0 0
821821 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
822822 0 0
823823 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 −1.00000 −1.00000
837837 0 0
838838 0 0
839839 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
840840 0 0
841841 −0.500000 0.866025i −0.500000 0.866025i
842842 0 0
843843 0 0
844844 0 0
845845 2.00000 2.00000
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
854854 0 0
855855 0 0
856856 0 0
857857 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
858858 0 0
859859 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 1.00000 + 1.73205i 1.00000 + 1.73205i
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 2.00000 3.46410i 2.00000 3.46410i
876876 0 0
877877 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
878878 0 0
879879 0 0
880880 1.00000 1.73205i 1.00000 1.73205i
881881 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
882882 0 0
883883 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0.500000 0.866025i 0.500000 0.866025i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
912912 0 0
913913 1.00000 + 1.73205i 1.00000 + 1.73205i
914914 0 0
915915 0 0
916916 0.500000 0.866025i 0.500000 0.866025i
917917 1.00000 1.00000
918918 0 0
919919 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
930930 0 0
931931 0 0
932932 0.500000 + 0.866025i 0.500000 + 0.866025i
933933 0 0
934934 0 0
935935 2.00000 2.00000
936936 0 0
937937 2.00000 2.00000 1.00000 00
1.00000 00
938938 0 0
939939 0 0
940940 1.00000 + 1.73205i 1.00000 + 1.73205i
941941 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 −2.00000 −2.00000
956956 0.500000 0.866025i 0.500000 0.866025i
957957 0 0
958958 0 0
959959 −0.500000 0.866025i −0.500000 0.866025i
960960 0 0
961961 −0.500000 + 0.866025i −0.500000 + 0.866025i
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 −2.00000 −2.00000
974974 0 0
975975 0 0
976976 0.500000 + 0.866025i 0.500000 + 0.866025i
977977 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
984984 0 0
985985 −2.00000 3.46410i −2.00000 3.46410i
986986 0 0
987987 0 0
988988 0 0
989989 1.00000 1.00000
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 1.00000 + 1.73205i 1.00000 + 1.73205i
996996 0 0
997997 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1539.1.o.a.379.1 2
3.2 odd 2 1539.1.o.c.379.1 2
9.2 odd 6 1539.1.c.a.892.1 1
9.4 even 3 inner 1539.1.o.a.1405.1 2
9.5 odd 6 1539.1.o.c.1405.1 2
9.7 even 3 1539.1.c.b.892.1 yes 1
19.18 odd 2 CM 1539.1.o.a.379.1 2
57.56 even 2 1539.1.o.c.379.1 2
171.56 even 6 1539.1.c.a.892.1 1
171.94 odd 6 inner 1539.1.o.a.1405.1 2
171.113 even 6 1539.1.o.c.1405.1 2
171.151 odd 6 1539.1.c.b.892.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1539.1.c.a.892.1 1 9.2 odd 6
1539.1.c.a.892.1 1 171.56 even 6
1539.1.c.b.892.1 yes 1 9.7 even 3
1539.1.c.b.892.1 yes 1 171.151 odd 6
1539.1.o.a.379.1 2 1.1 even 1 trivial
1539.1.o.a.379.1 2 19.18 odd 2 CM
1539.1.o.a.1405.1 2 9.4 even 3 inner
1539.1.o.a.1405.1 2 171.94 odd 6 inner
1539.1.o.c.379.1 2 3.2 odd 2
1539.1.o.c.379.1 2 57.56 even 2
1539.1.o.c.1405.1 2 9.5 odd 6
1539.1.o.c.1405.1 2 171.113 even 6