Properties

Label 154.4.a.g.1.2
Level $154$
Weight $4$
Character 154.1
Self dual yes
Analytic conductor $9.086$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [154,4,Mod(1,154)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(154, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("154.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 154.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.08629414088\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{37}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.54138\) of defining polynomial
Character \(\chi\) \(=\) 154.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +9.08276 q^{3} +4.00000 q^{4} +6.91724 q^{5} -18.1655 q^{6} +7.00000 q^{7} -8.00000 q^{8} +55.4966 q^{9} -13.8345 q^{10} +11.0000 q^{11} +36.3311 q^{12} +7.08276 q^{13} -14.0000 q^{14} +62.8276 q^{15} +16.0000 q^{16} -68.3311 q^{17} -110.993 q^{18} -94.5725 q^{19} +27.6689 q^{20} +63.5793 q^{21} -22.0000 q^{22} +104.331 q^{23} -72.6621 q^{24} -77.1518 q^{25} -14.1655 q^{26} +258.828 q^{27} +28.0000 q^{28} +48.4966 q^{29} -125.655 q^{30} +38.8413 q^{31} -32.0000 q^{32} +99.9104 q^{33} +136.662 q^{34} +48.4207 q^{35} +221.986 q^{36} +144.317 q^{37} +189.145 q^{38} +64.3311 q^{39} -55.3379 q^{40} +409.986 q^{41} -127.159 q^{42} -16.8413 q^{43} +44.0000 q^{44} +383.883 q^{45} -208.662 q^{46} -535.449 q^{47} +145.324 q^{48} +49.0000 q^{49} +154.304 q^{50} -620.635 q^{51} +28.3311 q^{52} -155.807 q^{53} -517.655 q^{54} +76.0896 q^{55} -56.0000 q^{56} -858.979 q^{57} -96.9932 q^{58} +449.235 q^{59} +251.311 q^{60} -529.096 q^{61} -77.6826 q^{62} +388.476 q^{63} +64.0000 q^{64} +48.9932 q^{65} -199.821 q^{66} -296.814 q^{67} -273.324 q^{68} +947.614 q^{69} -96.8413 q^{70} -942.414 q^{71} -443.973 q^{72} -87.1587 q^{73} -288.635 q^{74} -700.752 q^{75} -378.290 q^{76} +77.0000 q^{77} -128.662 q^{78} -1328.97 q^{79} +110.676 q^{80} +852.462 q^{81} -819.973 q^{82} +611.001 q^{83} +254.317 q^{84} -472.662 q^{85} +33.6826 q^{86} +440.483 q^{87} -88.0000 q^{88} +1195.21 q^{89} -767.766 q^{90} +49.5793 q^{91} +417.324 q^{92} +352.787 q^{93} +1070.90 q^{94} -654.180 q^{95} -290.648 q^{96} -1854.79 q^{97} -98.0000 q^{98} +610.462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 6 q^{3} + 8 q^{4} + 26 q^{5} - 12 q^{6} + 14 q^{7} - 16 q^{8} + 38 q^{9} - 52 q^{10} + 22 q^{11} + 24 q^{12} + 2 q^{13} - 28 q^{14} + 4 q^{15} + 32 q^{16} - 88 q^{17} - 76 q^{18} + 42 q^{19}+ \cdots + 418 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 9.08276 1.74798 0.873989 0.485945i \(-0.161525\pi\)
0.873989 + 0.485945i \(0.161525\pi\)
\(4\) 4.00000 0.500000
\(5\) 6.91724 0.618697 0.309348 0.950949i \(-0.399889\pi\)
0.309348 + 0.950949i \(0.399889\pi\)
\(6\) −18.1655 −1.23601
\(7\) 7.00000 0.377964
\(8\) −8.00000 −0.353553
\(9\) 55.4966 2.05543
\(10\) −13.8345 −0.437485
\(11\) 11.0000 0.301511
\(12\) 36.3311 0.873989
\(13\) 7.08276 0.151108 0.0755540 0.997142i \(-0.475927\pi\)
0.0755540 + 0.997142i \(0.475927\pi\)
\(14\) −14.0000 −0.267261
\(15\) 62.8276 1.08147
\(16\) 16.0000 0.250000
\(17\) −68.3311 −0.974866 −0.487433 0.873161i \(-0.662067\pi\)
−0.487433 + 0.873161i \(0.662067\pi\)
\(18\) −110.993 −1.45341
\(19\) −94.5725 −1.14192 −0.570958 0.820979i \(-0.693428\pi\)
−0.570958 + 0.820979i \(0.693428\pi\)
\(20\) 27.6689 0.309348
\(21\) 63.5793 0.660674
\(22\) −22.0000 −0.213201
\(23\) 104.331 0.945849 0.472925 0.881103i \(-0.343198\pi\)
0.472925 + 0.881103i \(0.343198\pi\)
\(24\) −72.6621 −0.618004
\(25\) −77.1518 −0.617215
\(26\) −14.1655 −0.106850
\(27\) 258.828 1.84487
\(28\) 28.0000 0.188982
\(29\) 48.4966 0.310538 0.155269 0.987872i \(-0.450376\pi\)
0.155269 + 0.987872i \(0.450376\pi\)
\(30\) −125.655 −0.764714
\(31\) 38.8413 0.225036 0.112518 0.993650i \(-0.464108\pi\)
0.112518 + 0.993650i \(0.464108\pi\)
\(32\) −32.0000 −0.176777
\(33\) 99.9104 0.527035
\(34\) 136.662 0.689334
\(35\) 48.4207 0.233845
\(36\) 221.986 1.02771
\(37\) 144.317 0.641233 0.320617 0.947209i \(-0.396110\pi\)
0.320617 + 0.947209i \(0.396110\pi\)
\(38\) 189.145 0.807457
\(39\) 64.3311 0.264134
\(40\) −55.3379 −0.218742
\(41\) 409.986 1.56169 0.780843 0.624728i \(-0.214790\pi\)
0.780843 + 0.624728i \(0.214790\pi\)
\(42\) −127.159 −0.467167
\(43\) −16.8413 −0.0597274 −0.0298637 0.999554i \(-0.509507\pi\)
−0.0298637 + 0.999554i \(0.509507\pi\)
\(44\) 44.0000 0.150756
\(45\) 383.883 1.27169
\(46\) −208.662 −0.668816
\(47\) −535.449 −1.66177 −0.830885 0.556444i \(-0.812165\pi\)
−0.830885 + 0.556444i \(0.812165\pi\)
\(48\) 145.324 0.436995
\(49\) 49.0000 0.142857
\(50\) 154.304 0.436437
\(51\) −620.635 −1.70404
\(52\) 28.3311 0.0755540
\(53\) −155.807 −0.403807 −0.201903 0.979405i \(-0.564713\pi\)
−0.201903 + 0.979405i \(0.564713\pi\)
\(54\) −517.655 −1.30452
\(55\) 76.0896 0.186544
\(56\) −56.0000 −0.133631
\(57\) −858.979 −1.99605
\(58\) −96.9932 −0.219583
\(59\) 449.235 0.991277 0.495639 0.868529i \(-0.334934\pi\)
0.495639 + 0.868529i \(0.334934\pi\)
\(60\) 251.311 0.540734
\(61\) −529.096 −1.11056 −0.555278 0.831665i \(-0.687388\pi\)
−0.555278 + 0.831665i \(0.687388\pi\)
\(62\) −77.6826 −0.159124
\(63\) 388.476 0.776879
\(64\) 64.0000 0.125000
\(65\) 48.9932 0.0934900
\(66\) −199.821 −0.372670
\(67\) −296.814 −0.541218 −0.270609 0.962689i \(-0.587225\pi\)
−0.270609 + 0.962689i \(0.587225\pi\)
\(68\) −273.324 −0.487433
\(69\) 947.614 1.65332
\(70\) −96.8413 −0.165354
\(71\) −942.414 −1.57527 −0.787634 0.616144i \(-0.788694\pi\)
−0.787634 + 0.616144i \(0.788694\pi\)
\(72\) −443.973 −0.726704
\(73\) −87.1587 −0.139742 −0.0698709 0.997556i \(-0.522259\pi\)
−0.0698709 + 0.997556i \(0.522259\pi\)
\(74\) −288.635 −0.453420
\(75\) −700.752 −1.07888
\(76\) −378.290 −0.570958
\(77\) 77.0000 0.113961
\(78\) −128.662 −0.186771
\(79\) −1328.97 −1.89266 −0.946331 0.323198i \(-0.895242\pi\)
−0.946331 + 0.323198i \(0.895242\pi\)
\(80\) 110.676 0.154674
\(81\) 852.462 1.16936
\(82\) −819.973 −1.10428
\(83\) 611.001 0.808024 0.404012 0.914754i \(-0.367615\pi\)
0.404012 + 0.914754i \(0.367615\pi\)
\(84\) 254.317 0.330337
\(85\) −472.662 −0.603146
\(86\) 33.6826 0.0422336
\(87\) 440.483 0.542813
\(88\) −88.0000 −0.106600
\(89\) 1195.21 1.42351 0.711756 0.702427i \(-0.247900\pi\)
0.711756 + 0.702427i \(0.247900\pi\)
\(90\) −767.766 −0.899218
\(91\) 49.5793 0.0571135
\(92\) 417.324 0.472925
\(93\) 352.787 0.393358
\(94\) 1070.90 1.17505
\(95\) −654.180 −0.706500
\(96\) −290.648 −0.309002
\(97\) −1854.79 −1.94150 −0.970748 0.240102i \(-0.922819\pi\)
−0.970748 + 0.240102i \(0.922819\pi\)
\(98\) −98.0000 −0.101015
\(99\) 610.462 0.619735
\(100\) −308.607 −0.308607
\(101\) −1434.95 −1.41369 −0.706844 0.707370i \(-0.749882\pi\)
−0.706844 + 0.707370i \(0.749882\pi\)
\(102\) 1241.27 1.20494
\(103\) 568.745 0.544079 0.272040 0.962286i \(-0.412302\pi\)
0.272040 + 0.962286i \(0.412302\pi\)
\(104\) −56.6621 −0.0534248
\(105\) 439.793 0.408757
\(106\) 311.614 0.285534
\(107\) 1783.71 1.61157 0.805784 0.592209i \(-0.201744\pi\)
0.805784 + 0.592209i \(0.201744\pi\)
\(108\) 1035.31 0.922433
\(109\) −529.587 −0.465369 −0.232684 0.972552i \(-0.574751\pi\)
−0.232684 + 0.972552i \(0.574751\pi\)
\(110\) −152.179 −0.131907
\(111\) 1310.80 1.12086
\(112\) 112.000 0.0944911
\(113\) 1995.09 1.66091 0.830453 0.557089i \(-0.188082\pi\)
0.830453 + 0.557089i \(0.188082\pi\)
\(114\) 1717.96 1.41142
\(115\) 721.683 0.585194
\(116\) 193.986 0.155269
\(117\) 393.069 0.310592
\(118\) −898.469 −0.700939
\(119\) −478.317 −0.368465
\(120\) −502.621 −0.382357
\(121\) 121.000 0.0909091
\(122\) 1058.19 0.785281
\(123\) 3723.81 2.72979
\(124\) 155.365 0.112518
\(125\) −1398.33 −1.00057
\(126\) −776.952 −0.549336
\(127\) −1150.65 −0.803965 −0.401982 0.915647i \(-0.631679\pi\)
−0.401982 + 0.915647i \(0.631679\pi\)
\(128\) −128.000 −0.0883883
\(129\) −152.966 −0.104402
\(130\) −97.9863 −0.0661074
\(131\) −2230.85 −1.48786 −0.743932 0.668255i \(-0.767041\pi\)
−0.743932 + 0.668255i \(0.767041\pi\)
\(132\) 399.642 0.263518
\(133\) −662.007 −0.431604
\(134\) 593.628 0.382699
\(135\) 1790.37 1.14141
\(136\) 546.648 0.344667
\(137\) 656.594 0.409464 0.204732 0.978818i \(-0.434368\pi\)
0.204732 + 0.978818i \(0.434368\pi\)
\(138\) −1895.23 −1.16908
\(139\) 1012.17 0.617636 0.308818 0.951121i \(-0.400067\pi\)
0.308818 + 0.951121i \(0.400067\pi\)
\(140\) 193.683 0.116923
\(141\) −4863.35 −2.90474
\(142\) 1884.83 1.11388
\(143\) 77.9104 0.0455608
\(144\) 887.945 0.513857
\(145\) 335.462 0.192128
\(146\) 174.317 0.0988124
\(147\) 445.055 0.249711
\(148\) 577.269 0.320617
\(149\) −786.677 −0.432531 −0.216265 0.976335i \(-0.569388\pi\)
−0.216265 + 0.976335i \(0.569388\pi\)
\(150\) 1401.50 0.762882
\(151\) 205.573 0.110790 0.0553950 0.998465i \(-0.482358\pi\)
0.0553950 + 0.998465i \(0.482358\pi\)
\(152\) 756.580 0.403729
\(153\) −3792.14 −2.00377
\(154\) −154.000 −0.0805823
\(155\) 268.675 0.139229
\(156\) 257.324 0.132067
\(157\) −3284.08 −1.66941 −0.834707 0.550695i \(-0.814363\pi\)
−0.834707 + 0.550695i \(0.814363\pi\)
\(158\) 2657.93 1.33831
\(159\) −1415.16 −0.705845
\(160\) −221.352 −0.109371
\(161\) 730.317 0.357497
\(162\) −1704.92 −0.826861
\(163\) −1403.88 −0.674601 −0.337301 0.941397i \(-0.609514\pi\)
−0.337301 + 0.941397i \(0.609514\pi\)
\(164\) 1639.95 0.780843
\(165\) 691.104 0.326075
\(166\) −1222.00 −0.571360
\(167\) 4161.31 1.92822 0.964108 0.265512i \(-0.0855409\pi\)
0.964108 + 0.265512i \(0.0855409\pi\)
\(168\) −508.635 −0.233583
\(169\) −2146.83 −0.977166
\(170\) 945.324 0.426489
\(171\) −5248.45 −2.34713
\(172\) −67.3653 −0.0298637
\(173\) −2693.66 −1.18379 −0.591894 0.806016i \(-0.701620\pi\)
−0.591894 + 0.806016i \(0.701620\pi\)
\(174\) −880.966 −0.383827
\(175\) −540.063 −0.233285
\(176\) 176.000 0.0753778
\(177\) 4080.29 1.73273
\(178\) −2390.43 −1.00657
\(179\) 1877.74 0.784071 0.392035 0.919950i \(-0.371771\pi\)
0.392035 + 0.919950i \(0.371771\pi\)
\(180\) 1535.53 0.635843
\(181\) 639.291 0.262531 0.131265 0.991347i \(-0.458096\pi\)
0.131265 + 0.991347i \(0.458096\pi\)
\(182\) −99.1587 −0.0403853
\(183\) −4805.66 −1.94123
\(184\) −834.648 −0.334408
\(185\) 998.277 0.396729
\(186\) −705.573 −0.278146
\(187\) −751.642 −0.293933
\(188\) −2141.79 −0.830885
\(189\) 1811.79 0.697294
\(190\) 1308.36 0.499571
\(191\) 3705.56 1.40379 0.701897 0.712278i \(-0.252337\pi\)
0.701897 + 0.712278i \(0.252337\pi\)
\(192\) 581.297 0.218497
\(193\) 2147.38 0.800891 0.400445 0.916321i \(-0.368855\pi\)
0.400445 + 0.916321i \(0.368855\pi\)
\(194\) 3709.57 1.37284
\(195\) 444.993 0.163419
\(196\) 196.000 0.0714286
\(197\) 2356.98 0.852426 0.426213 0.904623i \(-0.359847\pi\)
0.426213 + 0.904623i \(0.359847\pi\)
\(198\) −1220.92 −0.438219
\(199\) 5191.26 1.84924 0.924619 0.380893i \(-0.124383\pi\)
0.924619 + 0.380893i \(0.124383\pi\)
\(200\) 617.215 0.218218
\(201\) −2695.89 −0.946037
\(202\) 2869.89 0.999628
\(203\) 339.476 0.117372
\(204\) −2482.54 −0.852022
\(205\) 2835.97 0.966209
\(206\) −1137.49 −0.384722
\(207\) 5790.02 1.94413
\(208\) 113.324 0.0377770
\(209\) −1040.30 −0.344301
\(210\) −879.587 −0.289035
\(211\) 4020.35 1.31172 0.655858 0.754884i \(-0.272307\pi\)
0.655858 + 0.754884i \(0.272307\pi\)
\(212\) −623.228 −0.201903
\(213\) −8559.73 −2.75353
\(214\) −3567.42 −1.13955
\(215\) −116.495 −0.0369531
\(216\) −2070.62 −0.652259
\(217\) 271.889 0.0850555
\(218\) 1059.17 0.329066
\(219\) −791.642 −0.244266
\(220\) 304.358 0.0932720
\(221\) −483.973 −0.147310
\(222\) −2621.60 −0.792569
\(223\) −444.758 −0.133557 −0.0667785 0.997768i \(-0.521272\pi\)
−0.0667785 + 0.997768i \(0.521272\pi\)
\(224\) −224.000 −0.0668153
\(225\) −4281.66 −1.26864
\(226\) −3990.18 −1.17444
\(227\) 4757.40 1.39101 0.695506 0.718520i \(-0.255180\pi\)
0.695506 + 0.718520i \(0.255180\pi\)
\(228\) −3435.92 −0.998023
\(229\) 1032.94 0.298073 0.149037 0.988832i \(-0.452383\pi\)
0.149037 + 0.988832i \(0.452383\pi\)
\(230\) −1443.37 −0.413794
\(231\) 699.373 0.199201
\(232\) −387.973 −0.109792
\(233\) −2952.57 −0.830168 −0.415084 0.909783i \(-0.636248\pi\)
−0.415084 + 0.909783i \(0.636248\pi\)
\(234\) −786.138 −0.219622
\(235\) −3703.83 −1.02813
\(236\) 1796.94 0.495639
\(237\) −12070.7 −3.30833
\(238\) 956.635 0.260544
\(239\) 5382.65 1.45680 0.728399 0.685154i \(-0.240265\pi\)
0.728399 + 0.685154i \(0.240265\pi\)
\(240\) 1005.24 0.270367
\(241\) 2758.35 0.737265 0.368632 0.929575i \(-0.379826\pi\)
0.368632 + 0.929575i \(0.379826\pi\)
\(242\) −242.000 −0.0642824
\(243\) 754.367 0.199147
\(244\) −2116.39 −0.555278
\(245\) 338.945 0.0883852
\(246\) −7447.62 −1.93025
\(247\) −669.834 −0.172553
\(248\) −310.731 −0.0795621
\(249\) 5549.57 1.41241
\(250\) 2796.66 0.707506
\(251\) −3814.42 −0.959220 −0.479610 0.877482i \(-0.659222\pi\)
−0.479610 + 0.877482i \(0.659222\pi\)
\(252\) 1553.90 0.388440
\(253\) 1147.64 0.285184
\(254\) 2301.30 0.568489
\(255\) −4293.08 −1.05429
\(256\) 256.000 0.0625000
\(257\) −6959.85 −1.68927 −0.844637 0.535339i \(-0.820184\pi\)
−0.844637 + 0.535339i \(0.820184\pi\)
\(258\) 305.932 0.0738235
\(259\) 1010.22 0.242363
\(260\) 195.973 0.0467450
\(261\) 2691.39 0.638288
\(262\) 4461.70 1.05208
\(263\) 956.774 0.224324 0.112162 0.993690i \(-0.464222\pi\)
0.112162 + 0.993690i \(0.464222\pi\)
\(264\) −799.283 −0.186335
\(265\) −1077.75 −0.249834
\(266\) 1324.01 0.305190
\(267\) 10855.9 2.48827
\(268\) −1187.26 −0.270609
\(269\) −974.888 −0.220966 −0.110483 0.993878i \(-0.535240\pi\)
−0.110483 + 0.993878i \(0.535240\pi\)
\(270\) −3580.74 −0.807101
\(271\) 3520.03 0.789027 0.394514 0.918890i \(-0.370913\pi\)
0.394514 + 0.918890i \(0.370913\pi\)
\(272\) −1093.30 −0.243716
\(273\) 450.317 0.0998331
\(274\) −1313.19 −0.289535
\(275\) −848.670 −0.186097
\(276\) 3790.46 0.826662
\(277\) 2310.59 0.501192 0.250596 0.968092i \(-0.419374\pi\)
0.250596 + 0.968092i \(0.419374\pi\)
\(278\) −2024.35 −0.436735
\(279\) 2155.56 0.462545
\(280\) −387.365 −0.0826768
\(281\) 5616.65 1.19239 0.596194 0.802840i \(-0.296679\pi\)
0.596194 + 0.802840i \(0.296679\pi\)
\(282\) 9726.71 2.05396
\(283\) −1065.17 −0.223737 −0.111869 0.993723i \(-0.535684\pi\)
−0.111869 + 0.993723i \(0.535684\pi\)
\(284\) −3769.66 −0.787634
\(285\) −5941.76 −1.23495
\(286\) −155.821 −0.0322163
\(287\) 2869.90 0.590262
\(288\) −1775.89 −0.363352
\(289\) −243.868 −0.0496372
\(290\) −670.925 −0.135855
\(291\) −16846.6 −3.39369
\(292\) −348.635 −0.0698709
\(293\) 3453.14 0.688514 0.344257 0.938875i \(-0.388131\pi\)
0.344257 + 0.938875i \(0.388131\pi\)
\(294\) −890.111 −0.176572
\(295\) 3107.46 0.613300
\(296\) −1154.54 −0.226710
\(297\) 2847.10 0.556248
\(298\) 1573.35 0.305845
\(299\) 738.952 0.142925
\(300\) −2803.01 −0.539439
\(301\) −117.889 −0.0225748
\(302\) −411.146 −0.0783404
\(303\) −13033.3 −2.47110
\(304\) −1513.16 −0.285479
\(305\) −3659.89 −0.687097
\(306\) 7584.28 1.41688
\(307\) 4864.91 0.904413 0.452207 0.891913i \(-0.350637\pi\)
0.452207 + 0.891913i \(0.350637\pi\)
\(308\) 308.000 0.0569803
\(309\) 5165.78 0.951039
\(310\) −537.349 −0.0984496
\(311\) 378.550 0.0690213 0.0345106 0.999404i \(-0.489013\pi\)
0.0345106 + 0.999404i \(0.489013\pi\)
\(312\) −514.648 −0.0933853
\(313\) 1912.52 0.345375 0.172687 0.984977i \(-0.444755\pi\)
0.172687 + 0.984977i \(0.444755\pi\)
\(314\) 6568.15 1.18045
\(315\) 2687.18 0.480652
\(316\) −5315.86 −0.946331
\(317\) −6640.27 −1.17651 −0.588256 0.808674i \(-0.700185\pi\)
−0.588256 + 0.808674i \(0.700185\pi\)
\(318\) 2830.32 0.499108
\(319\) 533.462 0.0936306
\(320\) 442.703 0.0773371
\(321\) 16201.0 2.81699
\(322\) −1460.63 −0.252789
\(323\) 6462.24 1.11322
\(324\) 3409.85 0.584679
\(325\) −546.448 −0.0932661
\(326\) 2807.75 0.477015
\(327\) −4810.11 −0.813455
\(328\) −3279.89 −0.552139
\(329\) −3748.14 −0.628090
\(330\) −1382.21 −0.230570
\(331\) −5342.84 −0.887218 −0.443609 0.896220i \(-0.646302\pi\)
−0.443609 + 0.896220i \(0.646302\pi\)
\(332\) 2444.00 0.404012
\(333\) 8009.12 1.31801
\(334\) −8322.62 −1.36345
\(335\) −2053.13 −0.334850
\(336\) 1017.27 0.165168
\(337\) 4264.37 0.689303 0.344652 0.938731i \(-0.387997\pi\)
0.344652 + 0.938731i \(0.387997\pi\)
\(338\) 4293.67 0.690961
\(339\) 18120.9 2.90323
\(340\) −1890.65 −0.301573
\(341\) 427.255 0.0678508
\(342\) 10496.9 1.65967
\(343\) 343.000 0.0539949
\(344\) 134.731 0.0211168
\(345\) 6554.87 1.02291
\(346\) 5387.32 0.837064
\(347\) −3767.11 −0.582792 −0.291396 0.956602i \(-0.594120\pi\)
−0.291396 + 0.956602i \(0.594120\pi\)
\(348\) 1761.93 0.271406
\(349\) 5616.88 0.861503 0.430752 0.902471i \(-0.358249\pi\)
0.430752 + 0.902471i \(0.358249\pi\)
\(350\) 1080.13 0.164958
\(351\) 1833.21 0.278774
\(352\) −352.000 −0.0533002
\(353\) −1338.83 −0.201866 −0.100933 0.994893i \(-0.532183\pi\)
−0.100933 + 0.994893i \(0.532183\pi\)
\(354\) −8160.58 −1.22523
\(355\) −6518.90 −0.974613
\(356\) 4780.86 0.711756
\(357\) −4344.44 −0.644068
\(358\) −3755.47 −0.554422
\(359\) −3323.84 −0.488650 −0.244325 0.969693i \(-0.578566\pi\)
−0.244325 + 0.969693i \(0.578566\pi\)
\(360\) −3071.06 −0.449609
\(361\) 2084.96 0.303974
\(362\) −1278.58 −0.185637
\(363\) 1099.01 0.158907
\(364\) 198.317 0.0285567
\(365\) −602.897 −0.0864578
\(366\) 9611.32 1.37265
\(367\) 612.596 0.0871315 0.0435657 0.999051i \(-0.486128\pi\)
0.0435657 + 0.999051i \(0.486128\pi\)
\(368\) 1669.30 0.236462
\(369\) 22752.8 3.20993
\(370\) −1996.55 −0.280530
\(371\) −1090.65 −0.152625
\(372\) 1411.15 0.196679
\(373\) −11858.9 −1.64619 −0.823094 0.567905i \(-0.807754\pi\)
−0.823094 + 0.567905i \(0.807754\pi\)
\(374\) 1503.28 0.207842
\(375\) −12700.7 −1.74897
\(376\) 4283.59 0.587525
\(377\) 343.490 0.0469247
\(378\) −3623.59 −0.493061
\(379\) 6906.97 0.936114 0.468057 0.883698i \(-0.344954\pi\)
0.468057 + 0.883698i \(0.344954\pi\)
\(380\) −2616.72 −0.353250
\(381\) −10451.1 −1.40531
\(382\) −7411.12 −0.992633
\(383\) −5189.68 −0.692377 −0.346189 0.938165i \(-0.612524\pi\)
−0.346189 + 0.938165i \(0.612524\pi\)
\(384\) −1162.59 −0.154501
\(385\) 532.627 0.0705070
\(386\) −4294.76 −0.566315
\(387\) −934.636 −0.122765
\(388\) −7419.15 −0.970748
\(389\) 4600.72 0.599654 0.299827 0.953994i \(-0.403071\pi\)
0.299827 + 0.953994i \(0.403071\pi\)
\(390\) −889.986 −0.115554
\(391\) −7129.05 −0.922076
\(392\) −392.000 −0.0505076
\(393\) −20262.3 −2.60075
\(394\) −4713.96 −0.602756
\(395\) −9192.77 −1.17098
\(396\) 2441.85 0.309868
\(397\) −5313.96 −0.671788 −0.335894 0.941900i \(-0.609038\pi\)
−0.335894 + 0.941900i \(0.609038\pi\)
\(398\) −10382.5 −1.30761
\(399\) −6012.86 −0.754434
\(400\) −1234.43 −0.154304
\(401\) 15051.5 1.87440 0.937199 0.348794i \(-0.113409\pi\)
0.937199 + 0.348794i \(0.113409\pi\)
\(402\) 5391.78 0.668949
\(403\) 275.104 0.0340047
\(404\) −5739.78 −0.706844
\(405\) 5896.68 0.723478
\(406\) −678.952 −0.0829946
\(407\) 1587.49 0.193339
\(408\) 4965.08 0.602471
\(409\) 9547.20 1.15423 0.577113 0.816664i \(-0.304179\pi\)
0.577113 + 0.816664i \(0.304179\pi\)
\(410\) −5671.95 −0.683213
\(411\) 5963.68 0.715734
\(412\) 2274.98 0.272040
\(413\) 3144.64 0.374668
\(414\) −11580.0 −1.37470
\(415\) 4226.44 0.499922
\(416\) −226.648 −0.0267124
\(417\) 9193.33 1.07961
\(418\) 2080.59 0.243457
\(419\) −643.721 −0.0750545 −0.0375272 0.999296i \(-0.511948\pi\)
−0.0375272 + 0.999296i \(0.511948\pi\)
\(420\) 1759.17 0.204378
\(421\) 12480.4 1.44479 0.722396 0.691480i \(-0.243041\pi\)
0.722396 + 0.691480i \(0.243041\pi\)
\(422\) −8040.69 −0.927523
\(423\) −29715.6 −3.41565
\(424\) 1246.46 0.142767
\(425\) 5271.87 0.601701
\(426\) 17119.5 1.94704
\(427\) −3703.68 −0.419750
\(428\) 7134.84 0.805784
\(429\) 707.642 0.0796393
\(430\) 232.991 0.0261298
\(431\) −5652.33 −0.631701 −0.315850 0.948809i \(-0.602290\pi\)
−0.315850 + 0.948809i \(0.602290\pi\)
\(432\) 4141.24 0.461217
\(433\) −2179.80 −0.241928 −0.120964 0.992657i \(-0.538599\pi\)
−0.120964 + 0.992657i \(0.538599\pi\)
\(434\) −543.779 −0.0601433
\(435\) 3046.92 0.335836
\(436\) −2118.35 −0.232684
\(437\) −9866.85 −1.08008
\(438\) 1583.28 0.172722
\(439\) −3515.01 −0.382146 −0.191073 0.981576i \(-0.561197\pi\)
−0.191073 + 0.981576i \(0.561197\pi\)
\(440\) −608.717 −0.0659533
\(441\) 2719.33 0.293633
\(442\) 967.945 0.104164
\(443\) 6329.77 0.678863 0.339432 0.940631i \(-0.389765\pi\)
0.339432 + 0.940631i \(0.389765\pi\)
\(444\) 5243.20 0.560431
\(445\) 8267.58 0.880721
\(446\) 889.516 0.0944390
\(447\) −7145.20 −0.756054
\(448\) 448.000 0.0472456
\(449\) −10624.6 −1.11672 −0.558361 0.829598i \(-0.688570\pi\)
−0.558361 + 0.829598i \(0.688570\pi\)
\(450\) 8563.32 0.897064
\(451\) 4509.85 0.470866
\(452\) 7980.36 0.830453
\(453\) 1867.17 0.193659
\(454\) −9514.80 −0.983595
\(455\) 342.952 0.0353359
\(456\) 6871.84 0.705709
\(457\) −11373.9 −1.16422 −0.582110 0.813110i \(-0.697773\pi\)
−0.582110 + 0.813110i \(0.697773\pi\)
\(458\) −2065.89 −0.210770
\(459\) −17686.0 −1.79850
\(460\) 2886.73 0.292597
\(461\) −8473.86 −0.856111 −0.428055 0.903753i \(-0.640801\pi\)
−0.428055 + 0.903753i \(0.640801\pi\)
\(462\) −1398.75 −0.140856
\(463\) 9796.71 0.983352 0.491676 0.870778i \(-0.336385\pi\)
0.491676 + 0.870778i \(0.336385\pi\)
\(464\) 775.945 0.0776344
\(465\) 2440.31 0.243369
\(466\) 5905.13 0.587017
\(467\) −3000.81 −0.297347 −0.148674 0.988886i \(-0.547500\pi\)
−0.148674 + 0.988886i \(0.547500\pi\)
\(468\) 1572.28 0.155296
\(469\) −2077.70 −0.204561
\(470\) 7407.65 0.726999
\(471\) −29828.5 −2.91810
\(472\) −3593.88 −0.350469
\(473\) −185.255 −0.0180085
\(474\) 24141.4 2.33934
\(475\) 7296.44 0.704808
\(476\) −1913.27 −0.184232
\(477\) −8646.76 −0.829996
\(478\) −10765.3 −1.03011
\(479\) 14384.2 1.37209 0.686047 0.727557i \(-0.259345\pi\)
0.686047 + 0.727557i \(0.259345\pi\)
\(480\) −2010.48 −0.191178
\(481\) 1022.17 0.0968955
\(482\) −5516.69 −0.521325
\(483\) 6633.30 0.624898
\(484\) 484.000 0.0454545
\(485\) −12830.0 −1.20120
\(486\) −1508.73 −0.140818
\(487\) −19562.5 −1.82025 −0.910126 0.414332i \(-0.864015\pi\)
−0.910126 + 0.414332i \(0.864015\pi\)
\(488\) 4232.77 0.392641
\(489\) −12751.1 −1.17919
\(490\) −677.889 −0.0624978
\(491\) 1724.88 0.158539 0.0792697 0.996853i \(-0.474741\pi\)
0.0792697 + 0.996853i \(0.474741\pi\)
\(492\) 14895.2 1.36490
\(493\) −3313.82 −0.302732
\(494\) 1339.67 0.122013
\(495\) 4222.71 0.383428
\(496\) 621.461 0.0562589
\(497\) −6596.90 −0.595395
\(498\) −11099.1 −0.998724
\(499\) 20898.7 1.87486 0.937430 0.348173i \(-0.113198\pi\)
0.937430 + 0.348173i \(0.113198\pi\)
\(500\) −5593.33 −0.500283
\(501\) 37796.2 3.37048
\(502\) 7628.84 0.678271
\(503\) −6062.13 −0.537369 −0.268685 0.963228i \(-0.586589\pi\)
−0.268685 + 0.963228i \(0.586589\pi\)
\(504\) −3107.81 −0.274668
\(505\) −9925.86 −0.874644
\(506\) −2295.28 −0.201656
\(507\) −19499.2 −1.70807
\(508\) −4602.59 −0.401982
\(509\) 310.270 0.0270186 0.0135093 0.999909i \(-0.495700\pi\)
0.0135093 + 0.999909i \(0.495700\pi\)
\(510\) 8586.16 0.745493
\(511\) −610.111 −0.0528174
\(512\) −512.000 −0.0441942
\(513\) −24478.0 −2.10668
\(514\) 13919.7 1.19450
\(515\) 3934.15 0.336620
\(516\) −611.863 −0.0522011
\(517\) −5889.93 −0.501043
\(518\) −2020.44 −0.171377
\(519\) −24465.9 −2.06924
\(520\) −391.945 −0.0330537
\(521\) −6406.10 −0.538688 −0.269344 0.963044i \(-0.586807\pi\)
−0.269344 + 0.963044i \(0.586807\pi\)
\(522\) −5382.79 −0.451338
\(523\) 21061.8 1.76094 0.880468 0.474106i \(-0.157229\pi\)
0.880468 + 0.474106i \(0.157229\pi\)
\(524\) −8923.39 −0.743932
\(525\) −4905.26 −0.407777
\(526\) −1913.55 −0.158621
\(527\) −2654.07 −0.219380
\(528\) 1598.57 0.131759
\(529\) −1282.03 −0.105370
\(530\) 2155.51 0.176659
\(531\) 24931.0 2.03750
\(532\) −2648.03 −0.215802
\(533\) 2903.84 0.235983
\(534\) −21711.7 −1.75947
\(535\) 12338.4 0.997072
\(536\) 2374.51 0.191349
\(537\) 17055.0 1.37054
\(538\) 1949.78 0.156247
\(539\) 539.000 0.0430730
\(540\) 7161.49 0.570706
\(541\) −6597.32 −0.524290 −0.262145 0.965029i \(-0.584430\pi\)
−0.262145 + 0.965029i \(0.584430\pi\)
\(542\) −7040.05 −0.557927
\(543\) 5806.52 0.458898
\(544\) 2186.59 0.172334
\(545\) −3663.28 −0.287922
\(546\) −900.635 −0.0705927
\(547\) 13719.3 1.07238 0.536192 0.844096i \(-0.319862\pi\)
0.536192 + 0.844096i \(0.319862\pi\)
\(548\) 2626.37 0.204732
\(549\) −29363.0 −2.28267
\(550\) 1697.34 0.131591
\(551\) −4586.44 −0.354608
\(552\) −7580.91 −0.584538
\(553\) −9302.76 −0.715359
\(554\) −4621.18 −0.354396
\(555\) 9067.12 0.693473
\(556\) 4048.69 0.308818
\(557\) 9528.54 0.724842 0.362421 0.932014i \(-0.381950\pi\)
0.362421 + 0.932014i \(0.381950\pi\)
\(558\) −4311.12 −0.327069
\(559\) −119.283 −0.00902529
\(560\) 774.731 0.0584613
\(561\) −6826.98 −0.513789
\(562\) −11233.3 −0.843146
\(563\) −12164.1 −0.910576 −0.455288 0.890344i \(-0.650464\pi\)
−0.455288 + 0.890344i \(0.650464\pi\)
\(564\) −19453.4 −1.45237
\(565\) 13800.5 1.02760
\(566\) 2130.34 0.158206
\(567\) 5967.24 0.441976
\(568\) 7539.32 0.556941
\(569\) 7553.23 0.556499 0.278249 0.960509i \(-0.410246\pi\)
0.278249 + 0.960509i \(0.410246\pi\)
\(570\) 11883.5 0.873239
\(571\) 18632.0 1.36555 0.682773 0.730631i \(-0.260774\pi\)
0.682773 + 0.730631i \(0.260774\pi\)
\(572\) 311.642 0.0227804
\(573\) 33656.7 2.45380
\(574\) −5739.81 −0.417378
\(575\) −8049.33 −0.583792
\(576\) 3551.78 0.256929
\(577\) −8150.64 −0.588069 −0.294034 0.955795i \(-0.594998\pi\)
−0.294034 + 0.955795i \(0.594998\pi\)
\(578\) 487.735 0.0350988
\(579\) 19504.2 1.39994
\(580\) 1341.85 0.0960642
\(581\) 4277.00 0.305405
\(582\) 33693.2 2.39970
\(583\) −1713.88 −0.121752
\(584\) 697.269 0.0494062
\(585\) 2718.95 0.192162
\(586\) −6906.28 −0.486853
\(587\) 14337.5 1.00813 0.504065 0.863666i \(-0.331837\pi\)
0.504065 + 0.863666i \(0.331837\pi\)
\(588\) 1780.22 0.124856
\(589\) −3673.32 −0.256972
\(590\) −6214.92 −0.433668
\(591\) 21407.9 1.49002
\(592\) 2309.08 0.160308
\(593\) −27017.3 −1.87094 −0.935471 0.353402i \(-0.885025\pi\)
−0.935471 + 0.353402i \(0.885025\pi\)
\(594\) −5694.21 −0.393327
\(595\) −3308.63 −0.227968
\(596\) −3146.71 −0.216265
\(597\) 47151.0 3.23243
\(598\) −1477.90 −0.101064
\(599\) 18429.3 1.25710 0.628549 0.777770i \(-0.283649\pi\)
0.628549 + 0.777770i \(0.283649\pi\)
\(600\) 5606.01 0.381441
\(601\) −4515.02 −0.306442 −0.153221 0.988192i \(-0.548965\pi\)
−0.153221 + 0.988192i \(0.548965\pi\)
\(602\) 235.779 0.0159628
\(603\) −16472.2 −1.11243
\(604\) 822.292 0.0553950
\(605\) 836.986 0.0562451
\(606\) 26066.5 1.74733
\(607\) 9714.87 0.649612 0.324806 0.945781i \(-0.394701\pi\)
0.324806 + 0.945781i \(0.394701\pi\)
\(608\) 3026.32 0.201864
\(609\) 3083.38 0.205164
\(610\) 7319.77 0.485851
\(611\) −3792.46 −0.251107
\(612\) −15168.6 −1.00188
\(613\) 10724.5 0.706618 0.353309 0.935507i \(-0.385056\pi\)
0.353309 + 0.935507i \(0.385056\pi\)
\(614\) −9729.81 −0.639517
\(615\) 25758.5 1.68891
\(616\) −616.000 −0.0402911
\(617\) 28206.5 1.84044 0.920219 0.391404i \(-0.128010\pi\)
0.920219 + 0.391404i \(0.128010\pi\)
\(618\) −10331.6 −0.672486
\(619\) 156.324 0.0101505 0.00507526 0.999987i \(-0.498384\pi\)
0.00507526 + 0.999987i \(0.498384\pi\)
\(620\) 1074.70 0.0696144
\(621\) 27003.8 1.74497
\(622\) −757.100 −0.0488054
\(623\) 8366.50 0.538037
\(624\) 1029.30 0.0660334
\(625\) −28.6176 −0.00183152
\(626\) −3825.05 −0.244217
\(627\) −9448.77 −0.601830
\(628\) −13136.3 −0.834707
\(629\) −9861.36 −0.625116
\(630\) −5374.36 −0.339873
\(631\) 16349.5 1.03148 0.515740 0.856745i \(-0.327517\pi\)
0.515740 + 0.856745i \(0.327517\pi\)
\(632\) 10631.7 0.669157
\(633\) 36515.8 2.29285
\(634\) 13280.5 0.831920
\(635\) −7959.31 −0.497410
\(636\) −5660.63 −0.352923
\(637\) 347.055 0.0215869
\(638\) −1066.92 −0.0662068
\(639\) −52300.8 −3.23785
\(640\) −885.406 −0.0546856
\(641\) −16933.8 −1.04344 −0.521721 0.853116i \(-0.674710\pi\)
−0.521721 + 0.853116i \(0.674710\pi\)
\(642\) −32402.1 −1.99191
\(643\) 14717.7 0.902657 0.451328 0.892358i \(-0.350950\pi\)
0.451328 + 0.892358i \(0.350950\pi\)
\(644\) 2921.27 0.178749
\(645\) −1058.10 −0.0645933
\(646\) −12924.5 −0.787162
\(647\) −4572.55 −0.277845 −0.138922 0.990303i \(-0.544364\pi\)
−0.138922 + 0.990303i \(0.544364\pi\)
\(648\) −6819.70 −0.413431
\(649\) 4941.58 0.298881
\(650\) 1092.90 0.0659491
\(651\) 2469.51 0.148675
\(652\) −5615.50 −0.337301
\(653\) 400.476 0.0239997 0.0119999 0.999928i \(-0.496180\pi\)
0.0119999 + 0.999928i \(0.496180\pi\)
\(654\) 9620.22 0.575199
\(655\) −15431.3 −0.920536
\(656\) 6559.78 0.390421
\(657\) −4837.01 −0.287229
\(658\) 7496.28 0.444127
\(659\) 1761.23 0.104109 0.0520544 0.998644i \(-0.483423\pi\)
0.0520544 + 0.998644i \(0.483423\pi\)
\(660\) 2764.42 0.163037
\(661\) −20410.8 −1.20104 −0.600520 0.799610i \(-0.705040\pi\)
−0.600520 + 0.799610i \(0.705040\pi\)
\(662\) 10685.7 0.627358
\(663\) −4395.81 −0.257495
\(664\) −4888.00 −0.285680
\(665\) −4579.26 −0.267032
\(666\) −16018.2 −0.931973
\(667\) 5059.70 0.293722
\(668\) 16645.2 0.964108
\(669\) −4039.63 −0.233455
\(670\) 4106.26 0.236774
\(671\) −5820.06 −0.334845
\(672\) −2034.54 −0.116792
\(673\) 4578.55 0.262244 0.131122 0.991366i \(-0.458142\pi\)
0.131122 + 0.991366i \(0.458142\pi\)
\(674\) −8528.74 −0.487411
\(675\) −19969.0 −1.13868
\(676\) −8587.34 −0.488583
\(677\) −16330.1 −0.927057 −0.463528 0.886082i \(-0.653417\pi\)
−0.463528 + 0.886082i \(0.653417\pi\)
\(678\) −36241.9 −2.05289
\(679\) −12983.5 −0.733816
\(680\) 3781.30 0.213244
\(681\) 43210.4 2.43146
\(682\) −854.509 −0.0479778
\(683\) −25379.8 −1.42186 −0.710929 0.703263i \(-0.751725\pi\)
−0.710929 + 0.703263i \(0.751725\pi\)
\(684\) −20993.8 −1.17356
\(685\) 4541.81 0.253334
\(686\) −686.000 −0.0381802
\(687\) 9381.98 0.521026
\(688\) −269.461 −0.0149318
\(689\) −1103.54 −0.0610184
\(690\) −13109.7 −0.723304
\(691\) 18557.9 1.02167 0.510837 0.859678i \(-0.329336\pi\)
0.510837 + 0.859678i \(0.329336\pi\)
\(692\) −10774.6 −0.591894
\(693\) 4273.24 0.234238
\(694\) 7534.22 0.412096
\(695\) 7001.44 0.382129
\(696\) −3523.86 −0.191913
\(697\) −28014.8 −1.52243
\(698\) −11233.8 −0.609175
\(699\) −26817.5 −1.45112
\(700\) −2160.25 −0.116643
\(701\) 25115.0 1.35318 0.676590 0.736360i \(-0.263457\pi\)
0.676590 + 0.736360i \(0.263457\pi\)
\(702\) −3666.43 −0.197123
\(703\) −13648.5 −0.732235
\(704\) 704.000 0.0376889
\(705\) −33641.0 −1.79715
\(706\) 2677.66 0.142741
\(707\) −10044.6 −0.534324
\(708\) 16321.2 0.866366
\(709\) 36408.7 1.92857 0.964286 0.264864i \(-0.0853272\pi\)
0.964286 + 0.264864i \(0.0853272\pi\)
\(710\) 13037.8 0.689155
\(711\) −73753.0 −3.89023
\(712\) −9561.72 −0.503287
\(713\) 4052.36 0.212850
\(714\) 8688.89 0.455425
\(715\) 538.925 0.0281883
\(716\) 7510.95 0.392035
\(717\) 48889.3 2.54645
\(718\) 6647.67 0.345528
\(719\) 3503.59 0.181727 0.0908637 0.995863i \(-0.471037\pi\)
0.0908637 + 0.995863i \(0.471037\pi\)
\(720\) 6142.13 0.317922
\(721\) 3981.22 0.205643
\(722\) −4169.91 −0.214942
\(723\) 25053.4 1.28872
\(724\) 2557.16 0.131265
\(725\) −3741.60 −0.191668
\(726\) −2198.03 −0.112364
\(727\) −18869.2 −0.962613 −0.481306 0.876552i \(-0.659838\pi\)
−0.481306 + 0.876552i \(0.659838\pi\)
\(728\) −396.635 −0.0201927
\(729\) −16164.7 −0.821254
\(730\) 1205.79 0.0611349
\(731\) 1150.79 0.0582262
\(732\) −19222.6 −0.970613
\(733\) −26123.3 −1.31635 −0.658176 0.752864i \(-0.728672\pi\)
−0.658176 + 0.752864i \(0.728672\pi\)
\(734\) −1225.19 −0.0616112
\(735\) 3078.55 0.154495
\(736\) −3338.59 −0.167204
\(737\) −3264.95 −0.163183
\(738\) −45505.7 −2.26977
\(739\) −1259.95 −0.0627170 −0.0313585 0.999508i \(-0.509983\pi\)
−0.0313585 + 0.999508i \(0.509983\pi\)
\(740\) 3993.11 0.198364
\(741\) −6083.95 −0.301619
\(742\) 2181.30 0.107922
\(743\) −6987.68 −0.345024 −0.172512 0.985007i \(-0.555188\pi\)
−0.172512 + 0.985007i \(0.555188\pi\)
\(744\) −2822.29 −0.139073
\(745\) −5441.63 −0.267605
\(746\) 23717.7 1.16403
\(747\) 33908.4 1.66084
\(748\) −3006.57 −0.146967
\(749\) 12486.0 0.609116
\(750\) 25401.4 1.23671
\(751\) 26501.3 1.28768 0.643838 0.765162i \(-0.277341\pi\)
0.643838 + 0.765162i \(0.277341\pi\)
\(752\) −8567.18 −0.415443
\(753\) −34645.5 −1.67670
\(754\) −686.979 −0.0331808
\(755\) 1422.00 0.0685454
\(756\) 7247.17 0.348647
\(757\) −18638.9 −0.894905 −0.447453 0.894308i \(-0.647669\pi\)
−0.447453 + 0.894308i \(0.647669\pi\)
\(758\) −13813.9 −0.661932
\(759\) 10423.8 0.498496
\(760\) 5233.44 0.249785
\(761\) 10502.8 0.500298 0.250149 0.968207i \(-0.419520\pi\)
0.250149 + 0.968207i \(0.419520\pi\)
\(762\) 20902.1 0.993707
\(763\) −3707.11 −0.175893
\(764\) 14822.2 0.701897
\(765\) −26231.1 −1.23972
\(766\) 10379.4 0.489585
\(767\) 3181.82 0.149790
\(768\) 2325.19 0.109249
\(769\) −31451.8 −1.47488 −0.737440 0.675413i \(-0.763965\pi\)
−0.737440 + 0.675413i \(0.763965\pi\)
\(770\) −1065.25 −0.0498560
\(771\) −63214.7 −2.95282
\(772\) 8589.53 0.400445
\(773\) −12785.3 −0.594897 −0.297448 0.954738i \(-0.596136\pi\)
−0.297448 + 0.954738i \(0.596136\pi\)
\(774\) 1869.27 0.0868082
\(775\) −2996.68 −0.138895
\(776\) 14838.3 0.686422
\(777\) 9175.60 0.423646
\(778\) −9201.43 −0.424020
\(779\) −38773.4 −1.78331
\(780\) 1779.97 0.0817093
\(781\) −10366.6 −0.474961
\(782\) 14258.1 0.652006
\(783\) 12552.3 0.572900
\(784\) 784.000 0.0357143
\(785\) −22716.7 −1.03286
\(786\) 40524.5 1.83901
\(787\) −26171.7 −1.18542 −0.592708 0.805418i \(-0.701941\pi\)
−0.592708 + 0.805418i \(0.701941\pi\)
\(788\) 9427.93 0.426213
\(789\) 8690.15 0.392114
\(790\) 18385.5 0.828010
\(791\) 13965.6 0.627763
\(792\) −4883.70 −0.219109
\(793\) −3747.46 −0.167814
\(794\) 10627.9 0.475026
\(795\) −9788.99 −0.436704
\(796\) 20765.0 0.924619
\(797\) −9956.37 −0.442500 −0.221250 0.975217i \(-0.571014\pi\)
−0.221250 + 0.975217i \(0.571014\pi\)
\(798\) 12025.7 0.533466
\(799\) 36587.8 1.62000
\(800\) 2468.86 0.109109
\(801\) 66330.3 2.92593
\(802\) −30102.9 −1.32540
\(803\) −958.745 −0.0421337
\(804\) −10783.6 −0.473019
\(805\) 5051.78 0.221182
\(806\) −550.208 −0.0240450
\(807\) −8854.67 −0.386244
\(808\) 11479.6 0.499814
\(809\) 27460.5 1.19340 0.596699 0.802465i \(-0.296478\pi\)
0.596699 + 0.802465i \(0.296478\pi\)
\(810\) −11793.4 −0.511576
\(811\) 13721.5 0.594116 0.297058 0.954859i \(-0.403994\pi\)
0.297058 + 0.954859i \(0.403994\pi\)
\(812\) 1357.90 0.0586861
\(813\) 31971.6 1.37920
\(814\) −3174.98 −0.136711
\(815\) −9710.94 −0.417374
\(816\) −9930.16 −0.426011
\(817\) 1592.73 0.0682037
\(818\) −19094.4 −0.816162
\(819\) 2751.48 0.117393
\(820\) 11343.9 0.483105
\(821\) −7959.34 −0.338347 −0.169173 0.985586i \(-0.554110\pi\)
−0.169173 + 0.985586i \(0.554110\pi\)
\(822\) −11927.4 −0.506101
\(823\) 15031.6 0.636659 0.318329 0.947980i \(-0.396878\pi\)
0.318329 + 0.947980i \(0.396878\pi\)
\(824\) −4549.96 −0.192361
\(825\) −7708.27 −0.325294
\(826\) −6289.28 −0.264930
\(827\) 34367.2 1.44506 0.722531 0.691339i \(-0.242979\pi\)
0.722531 + 0.691339i \(0.242979\pi\)
\(828\) 23160.1 0.972063
\(829\) 34355.0 1.43932 0.719662 0.694324i \(-0.244297\pi\)
0.719662 + 0.694324i \(0.244297\pi\)
\(830\) −8452.87 −0.353498
\(831\) 20986.6 0.876072
\(832\) 453.297 0.0188885
\(833\) −3348.22 −0.139267
\(834\) −18386.7 −0.763403
\(835\) 28784.8 1.19298
\(836\) −4161.19 −0.172150
\(837\) 10053.2 0.415161
\(838\) 1287.44 0.0530715
\(839\) 25095.0 1.03263 0.516314 0.856399i \(-0.327304\pi\)
0.516314 + 0.856399i \(0.327304\pi\)
\(840\) −3518.35 −0.144517
\(841\) −22037.1 −0.903566
\(842\) −24960.8 −1.02162
\(843\) 51014.7 2.08427
\(844\) 16081.4 0.655858
\(845\) −14850.2 −0.604569
\(846\) 59431.1 2.41523
\(847\) 847.000 0.0343604
\(848\) −2492.91 −0.100952
\(849\) −9674.67 −0.391088
\(850\) −10543.7 −0.425467
\(851\) 15056.8 0.606510
\(852\) −34238.9 −1.37677
\(853\) −8877.88 −0.356357 −0.178179 0.983998i \(-0.557020\pi\)
−0.178179 + 0.983998i \(0.557020\pi\)
\(854\) 7407.35 0.296808
\(855\) −36304.8 −1.45216
\(856\) −14269.7 −0.569776
\(857\) −28281.8 −1.12729 −0.563646 0.826016i \(-0.690602\pi\)
−0.563646 + 0.826016i \(0.690602\pi\)
\(858\) −1415.28 −0.0563135
\(859\) −25282.1 −1.00421 −0.502104 0.864807i \(-0.667441\pi\)
−0.502104 + 0.864807i \(0.667441\pi\)
\(860\) −465.982 −0.0184766
\(861\) 26066.7 1.03176
\(862\) 11304.7 0.446680
\(863\) −38721.6 −1.52735 −0.763673 0.645603i \(-0.776606\pi\)
−0.763673 + 0.645603i \(0.776606\pi\)
\(864\) −8282.48 −0.326129
\(865\) −18632.7 −0.732405
\(866\) 4359.61 0.171069
\(867\) −2214.99 −0.0867648
\(868\) 1087.56 0.0425278
\(869\) −14618.6 −0.570659
\(870\) −6093.85 −0.237472
\(871\) −2102.26 −0.0817824
\(872\) 4236.69 0.164533
\(873\) −102934. −3.99061
\(874\) 19733.7 0.763732
\(875\) −9788.33 −0.378178
\(876\) −3166.57 −0.122133
\(877\) 47198.6 1.81731 0.908656 0.417546i \(-0.137110\pi\)
0.908656 + 0.417546i \(0.137110\pi\)
\(878\) 7030.02 0.270218
\(879\) 31364.1 1.20351
\(880\) 1217.43 0.0466360
\(881\) 12794.1 0.489266 0.244633 0.969616i \(-0.421333\pi\)
0.244633 + 0.969616i \(0.421333\pi\)
\(882\) −5438.66 −0.207630
\(883\) −22310.6 −0.850295 −0.425148 0.905124i \(-0.639778\pi\)
−0.425148 + 0.905124i \(0.639778\pi\)
\(884\) −1935.89 −0.0736550
\(885\) 28224.3 1.07203
\(886\) −12659.5 −0.480029
\(887\) −31281.7 −1.18415 −0.592073 0.805884i \(-0.701690\pi\)
−0.592073 + 0.805884i \(0.701690\pi\)
\(888\) −10486.4 −0.396284
\(889\) −8054.54 −0.303870
\(890\) −16535.2 −0.622764
\(891\) 9377.09 0.352575
\(892\) −1779.03 −0.0667785
\(893\) 50638.7 1.89760
\(894\) 14290.4 0.534611
\(895\) 12988.8 0.485102
\(896\) −896.000 −0.0334077
\(897\) 6711.73 0.249831
\(898\) 21249.3 0.789642
\(899\) 1883.67 0.0698820
\(900\) −17126.6 −0.634320
\(901\) 10646.5 0.393657
\(902\) −9019.70 −0.332952
\(903\) −1070.76 −0.0394603
\(904\) −15960.7 −0.587219
\(905\) 4422.12 0.162427
\(906\) −3734.34 −0.136937
\(907\) −31863.9 −1.16651 −0.583255 0.812289i \(-0.698221\pi\)
−0.583255 + 0.812289i \(0.698221\pi\)
\(908\) 19029.6 0.695506
\(909\) −79634.6 −2.90573
\(910\) −685.904 −0.0249863
\(911\) −38643.5 −1.40540 −0.702698 0.711488i \(-0.748022\pi\)
−0.702698 + 0.711488i \(0.748022\pi\)
\(912\) −13743.7 −0.499011
\(913\) 6721.01 0.243629
\(914\) 22747.8 0.823227
\(915\) −33241.9 −1.20103
\(916\) 4131.77 0.149037
\(917\) −15615.9 −0.562360
\(918\) 35371.9 1.27173
\(919\) −22868.7 −0.820857 −0.410428 0.911893i \(-0.634621\pi\)
−0.410428 + 0.911893i \(0.634621\pi\)
\(920\) −5773.46 −0.206897
\(921\) 44186.8 1.58090
\(922\) 16947.7 0.605362
\(923\) −6674.90 −0.238036
\(924\) 2797.49 0.0996003
\(925\) −11134.3 −0.395778
\(926\) −19593.4 −0.695335
\(927\) 31563.4 1.11832
\(928\) −1551.89 −0.0548958
\(929\) 9352.39 0.330293 0.165146 0.986269i \(-0.447190\pi\)
0.165146 + 0.986269i \(0.447190\pi\)
\(930\) −4880.62 −0.172088
\(931\) −4634.05 −0.163131
\(932\) −11810.3 −0.415084
\(933\) 3438.28 0.120648
\(934\) 6001.63 0.210256
\(935\) −5199.28 −0.181855
\(936\) −3144.55 −0.109811
\(937\) 6943.74 0.242094 0.121047 0.992647i \(-0.461375\pi\)
0.121047 + 0.992647i \(0.461375\pi\)
\(938\) 4155.39 0.144647
\(939\) 17371.0 0.603707
\(940\) −14815.3 −0.514066
\(941\) −17294.1 −0.599120 −0.299560 0.954077i \(-0.596840\pi\)
−0.299560 + 0.954077i \(0.596840\pi\)
\(942\) 59657.0 2.06341
\(943\) 42774.3 1.47712
\(944\) 7187.75 0.247819
\(945\) 12532.6 0.431413
\(946\) 370.509 0.0127339
\(947\) 52139.8 1.78914 0.894570 0.446928i \(-0.147482\pi\)
0.894570 + 0.446928i \(0.147482\pi\)
\(948\) −48282.7 −1.65417
\(949\) −617.324 −0.0211161
\(950\) −14592.9 −0.498374
\(951\) −60312.0 −2.05652
\(952\) 3826.54 0.130272
\(953\) 13921.4 0.473197 0.236599 0.971607i \(-0.423967\pi\)
0.236599 + 0.971607i \(0.423967\pi\)
\(954\) 17293.5 0.586896
\(955\) 25632.2 0.868523
\(956\) 21530.6 0.728399
\(957\) 4845.31 0.163664
\(958\) −28768.5 −0.970217
\(959\) 4596.16 0.154763
\(960\) 4020.97 0.135184
\(961\) −28282.4 −0.949359
\(962\) −2044.33 −0.0685155
\(963\) 98989.9 3.31246
\(964\) 11033.4 0.368632
\(965\) 14853.9 0.495508
\(966\) −13266.6 −0.441869
\(967\) −18698.2 −0.621812 −0.310906 0.950441i \(-0.600632\pi\)
−0.310906 + 0.950441i \(0.600632\pi\)
\(968\) −968.000 −0.0321412
\(969\) 58695.0 1.94588
\(970\) 25660.0 0.849374
\(971\) −46060.5 −1.52230 −0.761149 0.648578i \(-0.775364\pi\)
−0.761149 + 0.648578i \(0.775364\pi\)
\(972\) 3017.47 0.0995734
\(973\) 7085.21 0.233444
\(974\) 39125.0 1.28711
\(975\) −4963.26 −0.163027
\(976\) −8465.54 −0.277639
\(977\) −2625.78 −0.0859839 −0.0429919 0.999075i \(-0.513689\pi\)
−0.0429919 + 0.999075i \(0.513689\pi\)
\(978\) 25502.1 0.833812
\(979\) 13147.4 0.429205
\(980\) 1355.78 0.0441926
\(981\) −29390.3 −0.956533
\(982\) −3449.76 −0.112104
\(983\) −21740.7 −0.705412 −0.352706 0.935734i \(-0.614739\pi\)
−0.352706 + 0.935734i \(0.614739\pi\)
\(984\) −29790.5 −0.965127
\(985\) 16303.8 0.527393
\(986\) 6627.64 0.214064
\(987\) −34043.5 −1.09789
\(988\) −2679.34 −0.0862764
\(989\) −1757.07 −0.0564931
\(990\) −8445.43 −0.271124
\(991\) 8494.35 0.272282 0.136141 0.990689i \(-0.456530\pi\)
0.136141 + 0.990689i \(0.456530\pi\)
\(992\) −1242.92 −0.0397811
\(993\) −48527.8 −1.55084
\(994\) 13193.8 0.421008
\(995\) 35909.2 1.14412
\(996\) 22198.3 0.706205
\(997\) −9802.62 −0.311386 −0.155693 0.987805i \(-0.549761\pi\)
−0.155693 + 0.987805i \(0.549761\pi\)
\(998\) −41797.5 −1.32573
\(999\) 37353.3 1.18299
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 154.4.a.g.1.2 2
3.2 odd 2 1386.4.a.u.1.2 2
4.3 odd 2 1232.4.a.j.1.1 2
7.6 odd 2 1078.4.a.i.1.1 2
11.10 odd 2 1694.4.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
154.4.a.g.1.2 2 1.1 even 1 trivial
1078.4.a.i.1.1 2 7.6 odd 2
1232.4.a.j.1.1 2 4.3 odd 2
1386.4.a.u.1.2 2 3.2 odd 2
1694.4.a.p.1.2 2 11.10 odd 2