Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [154,4,Mod(153,154)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(154, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("154.153");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 154 = 2 \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 154.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.08629414088\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
153.1 | − | 2.00000i | − | 8.81399i | −4.00000 | − | 3.81914i | −17.6280 | −6.10201 | + | 17.4862i | 8.00000i | −50.6865 | −7.63828 | |||||||||||||
153.2 | − | 2.00000i | − | 7.37278i | −4.00000 | − | 19.4906i | −14.7456 | −1.31020 | − | 18.4739i | 8.00000i | −27.3578 | −38.9812 | |||||||||||||
153.3 | − | 2.00000i | − | 6.22079i | −4.00000 | 7.04818i | −12.4416 | −15.3222 | − | 10.4034i | 8.00000i | −11.6982 | 14.0964 | ||||||||||||||
153.4 | − | 2.00000i | − | 3.65107i | −4.00000 | 9.62869i | −7.30215 | −1.84269 | + | 18.4284i | 8.00000i | 13.6697 | 19.2574 | ||||||||||||||
153.5 | − | 2.00000i | − | 3.50992i | −4.00000 | 13.7268i | −7.01983 | 18.5195 | − | 0.170481i | 8.00000i | 14.6805 | 27.4536 | ||||||||||||||
153.6 | − | 2.00000i | − | 1.89937i | −4.00000 | − | 6.22238i | −3.79874 | 14.9971 | − | 10.8668i | 8.00000i | 23.3924 | −12.4448 | |||||||||||||
153.7 | − | 2.00000i | 1.89937i | −4.00000 | 6.22238i | 3.79874 | −14.9971 | − | 10.8668i | 8.00000i | 23.3924 | 12.4448 | |||||||||||||||
153.8 | − | 2.00000i | 3.50992i | −4.00000 | − | 13.7268i | 7.01983 | −18.5195 | − | 0.170481i | 8.00000i | 14.6805 | −27.4536 | ||||||||||||||
153.9 | − | 2.00000i | 3.65107i | −4.00000 | − | 9.62869i | 7.30215 | 1.84269 | + | 18.4284i | 8.00000i | 13.6697 | −19.2574 | ||||||||||||||
153.10 | − | 2.00000i | 6.22079i | −4.00000 | − | 7.04818i | 12.4416 | 15.3222 | − | 10.4034i | 8.00000i | −11.6982 | −14.0964 | ||||||||||||||
153.11 | − | 2.00000i | 7.37278i | −4.00000 | 19.4906i | 14.7456 | 1.31020 | − | 18.4739i | 8.00000i | −27.3578 | 38.9812 | |||||||||||||||
153.12 | − | 2.00000i | 8.81399i | −4.00000 | 3.81914i | 17.6280 | 6.10201 | + | 17.4862i | 8.00000i | −50.6865 | 7.63828 | |||||||||||||||
153.13 | 2.00000i | − | 8.81399i | −4.00000 | − | 3.81914i | 17.6280 | 6.10201 | − | 17.4862i | − | 8.00000i | −50.6865 | 7.63828 | |||||||||||||
153.14 | 2.00000i | − | 7.37278i | −4.00000 | − | 19.4906i | 14.7456 | 1.31020 | + | 18.4739i | − | 8.00000i | −27.3578 | 38.9812 | |||||||||||||
153.15 | 2.00000i | − | 6.22079i | −4.00000 | 7.04818i | 12.4416 | 15.3222 | + | 10.4034i | − | 8.00000i | −11.6982 | −14.0964 | ||||||||||||||
153.16 | 2.00000i | − | 3.65107i | −4.00000 | 9.62869i | 7.30215 | 1.84269 | − | 18.4284i | − | 8.00000i | 13.6697 | −19.2574 | ||||||||||||||
153.17 | 2.00000i | − | 3.50992i | −4.00000 | 13.7268i | 7.01983 | −18.5195 | + | 0.170481i | − | 8.00000i | 14.6805 | −27.4536 | ||||||||||||||
153.18 | 2.00000i | − | 1.89937i | −4.00000 | − | 6.22238i | 3.79874 | −14.9971 | + | 10.8668i | − | 8.00000i | 23.3924 | 12.4448 | |||||||||||||
153.19 | 2.00000i | 1.89937i | −4.00000 | 6.22238i | −3.79874 | 14.9971 | + | 10.8668i | − | 8.00000i | 23.3924 | −12.4448 | |||||||||||||||
153.20 | 2.00000i | 3.50992i | −4.00000 | − | 13.7268i | −7.01983 | 18.5195 | + | 0.170481i | − | 8.00000i | 14.6805 | 27.4536 | ||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
77.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 154.4.c.a | ✓ | 24 |
7.b | odd | 2 | 1 | inner | 154.4.c.a | ✓ | 24 |
11.b | odd | 2 | 1 | inner | 154.4.c.a | ✓ | 24 |
77.b | even | 2 | 1 | inner | 154.4.c.a | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
154.4.c.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
154.4.c.a | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
154.4.c.a | ✓ | 24 | 11.b | odd | 2 | 1 | inner |
154.4.c.a | ✓ | 24 | 77.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(154, [\chi])\).