Properties

Label 155.2
Level 155
Weight 2
Dimension 789
Nonzero newspaces 12
Newform subspaces 25
Sturm bound 3840
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 155 = 5 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 25 \)
Sturm bound: \(3840\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(155))\).

Total New Old
Modular forms 1080 965 115
Cusp forms 841 789 52
Eisenstein series 239 176 63

Trace form

\( 789 q - 33 q^{2} - 34 q^{3} - 37 q^{4} - 46 q^{5} - 102 q^{6} - 38 q^{7} - 45 q^{8} - 43 q^{9} - 48 q^{10} - 102 q^{11} - 58 q^{12} - 44 q^{13} - 54 q^{14} - 49 q^{15} - 121 q^{16} - 48 q^{17} - 69 q^{18}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(155))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
155.2.a \(\chi_{155}(1, \cdot)\) 155.2.a.a 1 1
155.2.a.b 1
155.2.a.c 1
155.2.a.d 4
155.2.a.e 4
155.2.b \(\chi_{155}(94, \cdot)\) 155.2.b.a 4 1
155.2.b.b 10
155.2.e \(\chi_{155}(36, \cdot)\) 155.2.e.a 2 2
155.2.e.b 2
155.2.e.c 8
155.2.e.d 8
155.2.f \(\chi_{155}(92, \cdot)\) 155.2.f.a 12 2
155.2.f.b 16
155.2.h \(\chi_{155}(16, \cdot)\) 155.2.h.a 24 4
155.2.h.b 24
155.2.j \(\chi_{155}(129, \cdot)\) 155.2.j.a 28 2
155.2.n \(\chi_{155}(4, \cdot)\) 155.2.n.a 56 4
155.2.p \(\chi_{155}(37, \cdot)\) 155.2.p.a 4 4
155.2.p.b 4
155.2.p.c 48
155.2.q \(\chi_{155}(41, \cdot)\) 155.2.q.a 40 8
155.2.q.b 40
155.2.r \(\chi_{155}(23, \cdot)\) 155.2.r.a 112 8
155.2.u \(\chi_{155}(9, \cdot)\) 155.2.u.a 112 8
155.2.x \(\chi_{155}(3, \cdot)\) 155.2.x.a 224 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(155))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(155)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(155))\)\(^{\oplus 1}\)