Defining parameters
Level: | \( N \) | = | \( 155 = 5 \cdot 31 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 12 \) | ||
Newform subspaces: | \( 25 \) | ||
Sturm bound: | \(3840\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(155))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1080 | 965 | 115 |
Cusp forms | 841 | 789 | 52 |
Eisenstein series | 239 | 176 | 63 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(155))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(155))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(155)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(155))\)\(^{\oplus 1}\)