Properties

Label 155.2
Level 155
Weight 2
Dimension 789
Nonzero newspaces 12
Newform subspaces 25
Sturm bound 3840
Trace bound 2

Downloads

Learn more

Defining parameters

Level: N N = 155=531 155 = 5 \cdot 31
Weight: k k = 2 2
Nonzero newspaces: 12 12
Newform subspaces: 25 25
Sturm bound: 38403840
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(155))M_{2}(\Gamma_1(155)).

Total New Old
Modular forms 1080 965 115
Cusp forms 841 789 52
Eisenstein series 239 176 63

Trace form

789q33q234q337q446q5102q638q745q843q948q10102q1158q1244q1354q1449q15121q1648q1769q18+36q99+O(q100) 789 q - 33 q^{2} - 34 q^{3} - 37 q^{4} - 46 q^{5} - 102 q^{6} - 38 q^{7} - 45 q^{8} - 43 q^{9} - 48 q^{10} - 102 q^{11} - 58 q^{12} - 44 q^{13} - 54 q^{14} - 49 q^{15} - 121 q^{16} - 48 q^{17} - 69 q^{18}+ \cdots - 36 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(155))S_{2}^{\mathrm{new}}(\Gamma_1(155))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
155.2.a χ155(1,)\chi_{155}(1, \cdot) 155.2.a.a 1 1
155.2.a.b 1
155.2.a.c 1
155.2.a.d 4
155.2.a.e 4
155.2.b χ155(94,)\chi_{155}(94, \cdot) 155.2.b.a 4 1
155.2.b.b 10
155.2.e χ155(36,)\chi_{155}(36, \cdot) 155.2.e.a 2 2
155.2.e.b 2
155.2.e.c 8
155.2.e.d 8
155.2.f χ155(92,)\chi_{155}(92, \cdot) 155.2.f.a 12 2
155.2.f.b 16
155.2.h χ155(16,)\chi_{155}(16, \cdot) 155.2.h.a 24 4
155.2.h.b 24
155.2.j χ155(129,)\chi_{155}(129, \cdot) 155.2.j.a 28 2
155.2.n χ155(4,)\chi_{155}(4, \cdot) 155.2.n.a 56 4
155.2.p χ155(37,)\chi_{155}(37, \cdot) 155.2.p.a 4 4
155.2.p.b 4
155.2.p.c 48
155.2.q χ155(41,)\chi_{155}(41, \cdot) 155.2.q.a 40 8
155.2.q.b 40
155.2.r χ155(23,)\chi_{155}(23, \cdot) 155.2.r.a 112 8
155.2.u χ155(9,)\chi_{155}(9, \cdot) 155.2.u.a 112 8
155.2.x χ155(3,)\chi_{155}(3, \cdot) 155.2.x.a 224 16

Decomposition of S2old(Γ1(155))S_{2}^{\mathrm{old}}(\Gamma_1(155)) into lower level spaces

S2old(Γ1(155)) S_{2}^{\mathrm{old}}(\Gamma_1(155)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))4^{\oplus 4}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))2^{\oplus 2}\oplusS2new(Γ1(31))S_{2}^{\mathrm{new}}(\Gamma_1(31))2^{\oplus 2}