Defining parameters
Level: | \( N \) | \(=\) | \( 155 = 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 155.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(155, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 20 | 16 |
Cusp forms | 28 | 20 | 8 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(155, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
155.2.e.a | $2$ | $1.238$ | \(\Q(\sqrt{-3}) \) | None | \(-4\) | \(-2\) | \(-1\) | \(-4\) | \(q-2q^{2}+(-2+2\zeta_{6})q^{3}+2q^{4}-\zeta_{6}q^{5}+\cdots\) |
155.2.e.b | $2$ | $1.238$ | \(\Q(\sqrt{-3}) \) | None | \(4\) | \(-2\) | \(1\) | \(2\) | \(q+2q^{2}+(-2+2\zeta_{6})q^{3}+2q^{4}+\zeta_{6}q^{5}+\cdots\) |
155.2.e.c | $8$ | $1.238$ | 8.0.7007196681.1 | None | \(-2\) | \(3\) | \(4\) | \(-1\) | \(q-\beta _{6}q^{2}+(\beta _{1}-\beta _{4}-\beta _{6})q^{3}+(\beta _{2}+\beta _{5}+\cdots)q^{4}+\cdots\) |
155.2.e.d | $8$ | $1.238$ | 8.0.42575625.1 | None | \(2\) | \(-1\) | \(-4\) | \(1\) | \(q+(1+\beta _{4}+\beta _{7})q^{2}+(-\beta _{1}-\beta _{3}-\beta _{4}+\cdots)q^{3}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(155, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(155, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)