Properties

Label 155.2.e
Level $155$
Weight $2$
Character orbit 155.e
Rep. character $\chi_{155}(36,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $20$
Newform subspaces $4$
Sturm bound $32$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 155 = 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 155.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(32\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(155, [\chi])\).

Total New Old
Modular forms 36 20 16
Cusp forms 28 20 8
Eisenstein series 8 0 8

Trace form

\( 20 q - 2 q^{3} + 12 q^{4} + 8 q^{6} - 2 q^{7} - 12 q^{8} - 8 q^{9} + 2 q^{10} + 2 q^{11} - 16 q^{12} - 6 q^{13} - 4 q^{14} + 8 q^{15} - 12 q^{16} - 14 q^{17} - 10 q^{18} + 2 q^{19} + 4 q^{20} + 2 q^{21}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(155, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
155.2.e.a 155.e 31.c $2$ $1.238$ \(\Q(\sqrt{-3}) \) None 155.2.e.a \(-4\) \(-2\) \(-1\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q-2q^{2}+(-2+2\zeta_{6})q^{3}+2q^{4}-\zeta_{6}q^{5}+\cdots\)
155.2.e.b 155.e 31.c $2$ $1.238$ \(\Q(\sqrt{-3}) \) None 155.2.e.b \(4\) \(-2\) \(1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+2q^{2}+(-2+2\zeta_{6})q^{3}+2q^{4}+\zeta_{6}q^{5}+\cdots\)
155.2.e.c 155.e 31.c $8$ $1.238$ 8.0.7007196681.1 None 155.2.e.c \(-2\) \(3\) \(4\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{6}q^{2}+(\beta _{1}-\beta _{4}-\beta _{6})q^{3}+(\beta _{2}+\beta _{5}+\cdots)q^{4}+\cdots\)
155.2.e.d 155.e 31.c $8$ $1.238$ 8.0.42575625.1 None 155.2.e.d \(2\) \(-1\) \(-4\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{4}+\beta _{7})q^{2}+(-\beta _{1}-\beta _{3}-\beta _{4}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(155, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(155, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)