Defining parameters
Level: | \( N \) | \(=\) | \( 155 = 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 155.q (of order \(15\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
Character field: | \(\Q(\zeta_{15})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(155, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 144 | 80 | 64 |
Cusp forms | 112 | 80 | 32 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(155, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
155.2.q.a | $40$ | $1.238$ | None | \(-2\) | \(-1\) | \(20\) | \(4\) | ||
155.2.q.b | $40$ | $1.238$ | None | \(2\) | \(3\) | \(-20\) | \(-2\) |
Decomposition of \(S_{2}^{\mathrm{old}}(155, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(155, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)