Properties

Label 155.2.q
Level $155$
Weight $2$
Character orbit 155.q
Rep. character $\chi_{155}(41,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $80$
Newform subspaces $2$
Sturm bound $32$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 155 = 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 155.q (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{15})\)
Newform subspaces: \( 2 \)
Sturm bound: \(32\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(155, [\chi])\).

Total New Old
Modular forms 144 80 64
Cusp forms 112 80 32
Eisenstein series 32 0 32

Trace form

\( 80 q + 2 q^{3} - 12 q^{4} - 8 q^{6} + 2 q^{7} - 18 q^{8} + 8 q^{9} - 2 q^{10} - 12 q^{11} - 14 q^{12} - 4 q^{13} - 16 q^{14} - 8 q^{15} - 8 q^{16} - 6 q^{17} + 10 q^{18} - 22 q^{19} - 4 q^{20} - 32 q^{21}+ \cdots + 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(155, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
155.2.q.a 155.q 31.g $40$ $1.238$ None 155.2.q.a \(-2\) \(-1\) \(20\) \(4\) $\mathrm{SU}(2)[C_{15}]$
155.2.q.b 155.q 31.g $40$ $1.238$ None 155.2.q.b \(2\) \(3\) \(-20\) \(-2\) $\mathrm{SU}(2)[C_{15}]$

Decomposition of \(S_{2}^{\mathrm{old}}(155, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(155, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)