Properties

Label 156.2.c.b.131.1
Level $156$
Weight $2$
Character 156.131
Analytic conductor $1.246$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [156,2,Mod(131,156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("156.131");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 156.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.24566627153\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.1
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 156.131
Dual form 156.2.c.b.131.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} +(1.00000 - 1.41421i) q^{3} -2.00000 q^{4} +1.41421i q^{5} +(-2.00000 - 1.41421i) q^{6} -4.24264i q^{7} +2.82843i q^{8} +(-1.00000 - 2.82843i) q^{9} +2.00000 q^{10} +(-2.00000 + 2.82843i) q^{12} +1.00000 q^{13} -6.00000 q^{14} +(2.00000 + 1.41421i) q^{15} +4.00000 q^{16} +5.65685i q^{17} +(-4.00000 + 1.41421i) q^{18} +4.24264i q^{19} -2.82843i q^{20} +(-6.00000 - 4.24264i) q^{21} +6.00000 q^{23} +(4.00000 + 2.82843i) q^{24} +3.00000 q^{25} -1.41421i q^{26} +(-5.00000 - 1.41421i) q^{27} +8.48528i q^{28} -2.82843i q^{29} +(2.00000 - 2.82843i) q^{30} -4.24264i q^{31} -5.65685i q^{32} +8.00000 q^{34} +6.00000 q^{35} +(2.00000 + 5.65685i) q^{36} +2.00000 q^{37} +6.00000 q^{38} +(1.00000 - 1.41421i) q^{39} -4.00000 q^{40} +1.41421i q^{41} +(-6.00000 + 8.48528i) q^{42} +8.48528i q^{43} +(4.00000 - 1.41421i) q^{45} -8.48528i q^{46} -12.0000 q^{47} +(4.00000 - 5.65685i) q^{48} -11.0000 q^{49} -4.24264i q^{50} +(8.00000 + 5.65685i) q^{51} -2.00000 q^{52} +5.65685i q^{53} +(-2.00000 + 7.07107i) q^{54} +12.0000 q^{56} +(6.00000 + 4.24264i) q^{57} -4.00000 q^{58} +(-4.00000 - 2.82843i) q^{60} +8.00000 q^{61} -6.00000 q^{62} +(-12.0000 + 4.24264i) q^{63} -8.00000 q^{64} +1.41421i q^{65} +4.24264i q^{67} -11.3137i q^{68} +(6.00000 - 8.48528i) q^{69} -8.48528i q^{70} -12.0000 q^{71} +(8.00000 - 2.82843i) q^{72} +2.00000 q^{73} -2.82843i q^{74} +(3.00000 - 4.24264i) q^{75} -8.48528i q^{76} +(-2.00000 - 1.41421i) q^{78} -8.48528i q^{79} +5.65685i q^{80} +(-7.00000 + 5.65685i) q^{81} +2.00000 q^{82} -12.0000 q^{83} +(12.0000 + 8.48528i) q^{84} -8.00000 q^{85} +12.0000 q^{86} +(-4.00000 - 2.82843i) q^{87} -7.07107i q^{89} +(-2.00000 - 5.65685i) q^{90} -4.24264i q^{91} -12.0000 q^{92} +(-6.00000 - 4.24264i) q^{93} +16.9706i q^{94} -6.00000 q^{95} +(-8.00000 - 5.65685i) q^{96} -10.0000 q^{97} +15.5563i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 4 q^{4} - 4 q^{6} - 2 q^{9} + 4 q^{10} - 4 q^{12} + 2 q^{13} - 12 q^{14} + 4 q^{15} + 8 q^{16} - 8 q^{18} - 12 q^{21} + 12 q^{23} + 8 q^{24} + 6 q^{25} - 10 q^{27} + 4 q^{30} + 16 q^{34}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.00000i
\(3\) 1.00000 1.41421i 0.577350 0.816497i
\(4\) −2.00000 −1.00000
\(5\) 1.41421i 0.632456i 0.948683 + 0.316228i \(0.102416\pi\)
−0.948683 + 0.316228i \(0.897584\pi\)
\(6\) −2.00000 1.41421i −0.816497 0.577350i
\(7\) 4.24264i 1.60357i −0.597614 0.801784i \(-0.703885\pi\)
0.597614 0.801784i \(-0.296115\pi\)
\(8\) 2.82843i 1.00000i
\(9\) −1.00000 2.82843i −0.333333 0.942809i
\(10\) 2.00000 0.632456
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −2.00000 + 2.82843i −0.577350 + 0.816497i
\(13\) 1.00000 0.277350
\(14\) −6.00000 −1.60357
\(15\) 2.00000 + 1.41421i 0.516398 + 0.365148i
\(16\) 4.00000 1.00000
\(17\) 5.65685i 1.37199i 0.727607 + 0.685994i \(0.240633\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) −4.00000 + 1.41421i −0.942809 + 0.333333i
\(19\) 4.24264i 0.973329i 0.873589 + 0.486664i \(0.161786\pi\)
−0.873589 + 0.486664i \(0.838214\pi\)
\(20\) 2.82843i 0.632456i
\(21\) −6.00000 4.24264i −1.30931 0.925820i
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 4.00000 + 2.82843i 0.816497 + 0.577350i
\(25\) 3.00000 0.600000
\(26\) 1.41421i 0.277350i
\(27\) −5.00000 1.41421i −0.962250 0.272166i
\(28\) 8.48528i 1.60357i
\(29\) 2.82843i 0.525226i −0.964901 0.262613i \(-0.915416\pi\)
0.964901 0.262613i \(-0.0845842\pi\)
\(30\) 2.00000 2.82843i 0.365148 0.516398i
\(31\) 4.24264i 0.762001i −0.924575 0.381000i \(-0.875580\pi\)
0.924575 0.381000i \(-0.124420\pi\)
\(32\) 5.65685i 1.00000i
\(33\) 0 0
\(34\) 8.00000 1.37199
\(35\) 6.00000 1.01419
\(36\) 2.00000 + 5.65685i 0.333333 + 0.942809i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 6.00000 0.973329
\(39\) 1.00000 1.41421i 0.160128 0.226455i
\(40\) −4.00000 −0.632456
\(41\) 1.41421i 0.220863i 0.993884 + 0.110432i \(0.0352233\pi\)
−0.993884 + 0.110432i \(0.964777\pi\)
\(42\) −6.00000 + 8.48528i −0.925820 + 1.30931i
\(43\) 8.48528i 1.29399i 0.762493 + 0.646997i \(0.223975\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) 4.00000 1.41421i 0.596285 0.210819i
\(46\) 8.48528i 1.25109i
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 4.00000 5.65685i 0.577350 0.816497i
\(49\) −11.0000 −1.57143
\(50\) 4.24264i 0.600000i
\(51\) 8.00000 + 5.65685i 1.12022 + 0.792118i
\(52\) −2.00000 −0.277350
\(53\) 5.65685i 0.777029i 0.921443 + 0.388514i \(0.127012\pi\)
−0.921443 + 0.388514i \(0.872988\pi\)
\(54\) −2.00000 + 7.07107i −0.272166 + 0.962250i
\(55\) 0 0
\(56\) 12.0000 1.60357
\(57\) 6.00000 + 4.24264i 0.794719 + 0.561951i
\(58\) −4.00000 −0.525226
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) −4.00000 2.82843i −0.516398 0.365148i
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) −6.00000 −0.762001
\(63\) −12.0000 + 4.24264i −1.51186 + 0.534522i
\(64\) −8.00000 −1.00000
\(65\) 1.41421i 0.175412i
\(66\) 0 0
\(67\) 4.24264i 0.518321i 0.965834 + 0.259161i \(0.0834459\pi\)
−0.965834 + 0.259161i \(0.916554\pi\)
\(68\) 11.3137i 1.37199i
\(69\) 6.00000 8.48528i 0.722315 1.02151i
\(70\) 8.48528i 1.01419i
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 8.00000 2.82843i 0.942809 0.333333i
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 2.82843i 0.328798i
\(75\) 3.00000 4.24264i 0.346410 0.489898i
\(76\) 8.48528i 0.973329i
\(77\) 0 0
\(78\) −2.00000 1.41421i −0.226455 0.160128i
\(79\) 8.48528i 0.954669i −0.878722 0.477334i \(-0.841603\pi\)
0.878722 0.477334i \(-0.158397\pi\)
\(80\) 5.65685i 0.632456i
\(81\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(82\) 2.00000 0.220863
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 12.0000 + 8.48528i 1.30931 + 0.925820i
\(85\) −8.00000 −0.867722
\(86\) 12.0000 1.29399
\(87\) −4.00000 2.82843i −0.428845 0.303239i
\(88\) 0 0
\(89\) 7.07107i 0.749532i −0.927119 0.374766i \(-0.877723\pi\)
0.927119 0.374766i \(-0.122277\pi\)
\(90\) −2.00000 5.65685i −0.210819 0.596285i
\(91\) 4.24264i 0.444750i
\(92\) −12.0000 −1.25109
\(93\) −6.00000 4.24264i −0.622171 0.439941i
\(94\) 16.9706i 1.75038i
\(95\) −6.00000 −0.615587
\(96\) −8.00000 5.65685i −0.816497 0.577350i
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 15.5563i 1.57143i
\(99\) 0 0
\(100\) −6.00000 −0.600000
\(101\) 2.82843i 0.281439i −0.990050 0.140720i \(-0.955058\pi\)
0.990050 0.140720i \(-0.0449416\pi\)
\(102\) 8.00000 11.3137i 0.792118 1.12022i
\(103\) 8.48528i 0.836080i 0.908429 + 0.418040i \(0.137283\pi\)
−0.908429 + 0.418040i \(0.862717\pi\)
\(104\) 2.82843i 0.277350i
\(105\) 6.00000 8.48528i 0.585540 0.828079i
\(106\) 8.00000 0.777029
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 10.0000 + 2.82843i 0.962250 + 0.272166i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 2.00000 2.82843i 0.189832 0.268462i
\(112\) 16.9706i 1.60357i
\(113\) 14.1421i 1.33038i 0.746674 + 0.665190i \(0.231650\pi\)
−0.746674 + 0.665190i \(0.768350\pi\)
\(114\) 6.00000 8.48528i 0.561951 0.794719i
\(115\) 8.48528i 0.791257i
\(116\) 5.65685i 0.525226i
\(117\) −1.00000 2.82843i −0.0924500 0.261488i
\(118\) 0 0
\(119\) 24.0000 2.20008
\(120\) −4.00000 + 5.65685i −0.365148 + 0.516398i
\(121\) −11.0000 −1.00000
\(122\) 11.3137i 1.02430i
\(123\) 2.00000 + 1.41421i 0.180334 + 0.127515i
\(124\) 8.48528i 0.762001i
\(125\) 11.3137i 1.01193i
\(126\) 6.00000 + 16.9706i 0.534522 + 1.51186i
\(127\) 16.9706i 1.50589i −0.658081 0.752947i \(-0.728632\pi\)
0.658081 0.752947i \(-0.271368\pi\)
\(128\) 11.3137i 1.00000i
\(129\) 12.0000 + 8.48528i 1.05654 + 0.747087i
\(130\) 2.00000 0.175412
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 18.0000 1.56080
\(134\) 6.00000 0.518321
\(135\) 2.00000 7.07107i 0.172133 0.608581i
\(136\) −16.0000 −1.37199
\(137\) 15.5563i 1.32907i −0.747258 0.664534i \(-0.768630\pi\)
0.747258 0.664534i \(-0.231370\pi\)
\(138\) −12.0000 8.48528i −1.02151 0.722315i
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −12.0000 −1.01419
\(141\) −12.0000 + 16.9706i −1.01058 + 1.42918i
\(142\) 16.9706i 1.42414i
\(143\) 0 0
\(144\) −4.00000 11.3137i −0.333333 0.942809i
\(145\) 4.00000 0.332182
\(146\) 2.82843i 0.234082i
\(147\) −11.0000 + 15.5563i −0.907265 + 1.28307i
\(148\) −4.00000 −0.328798
\(149\) 1.41421i 0.115857i 0.998321 + 0.0579284i \(0.0184495\pi\)
−0.998321 + 0.0579284i \(0.981550\pi\)
\(150\) −6.00000 4.24264i −0.489898 0.346410i
\(151\) 4.24264i 0.345261i 0.984987 + 0.172631i \(0.0552267\pi\)
−0.984987 + 0.172631i \(0.944773\pi\)
\(152\) −12.0000 −0.973329
\(153\) 16.0000 5.65685i 1.29352 0.457330i
\(154\) 0 0
\(155\) 6.00000 0.481932
\(156\) −2.00000 + 2.82843i −0.160128 + 0.226455i
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) −12.0000 −0.954669
\(159\) 8.00000 + 5.65685i 0.634441 + 0.448618i
\(160\) 8.00000 0.632456
\(161\) 25.4558i 2.00620i
\(162\) 8.00000 + 9.89949i 0.628539 + 0.777778i
\(163\) 4.24264i 0.332309i 0.986100 + 0.166155i \(0.0531351\pi\)
−0.986100 + 0.166155i \(0.946865\pi\)
\(164\) 2.82843i 0.220863i
\(165\) 0 0
\(166\) 16.9706i 1.31717i
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 12.0000 16.9706i 0.925820 1.30931i
\(169\) 1.00000 0.0769231
\(170\) 11.3137i 0.867722i
\(171\) 12.0000 4.24264i 0.917663 0.324443i
\(172\) 16.9706i 1.29399i
\(173\) 2.82843i 0.215041i −0.994203 0.107521i \(-0.965709\pi\)
0.994203 0.107521i \(-0.0342912\pi\)
\(174\) −4.00000 + 5.65685i −0.303239 + 0.428845i
\(175\) 12.7279i 0.962140i
\(176\) 0 0
\(177\) 0 0
\(178\) −10.0000 −0.749532
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) −8.00000 + 2.82843i −0.596285 + 0.210819i
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) −6.00000 −0.444750
\(183\) 8.00000 11.3137i 0.591377 0.836333i
\(184\) 16.9706i 1.25109i
\(185\) 2.82843i 0.207950i
\(186\) −6.00000 + 8.48528i −0.439941 + 0.622171i
\(187\) 0 0
\(188\) 24.0000 1.75038
\(189\) −6.00000 + 21.2132i −0.436436 + 1.54303i
\(190\) 8.48528i 0.615587i
\(191\) −6.00000 −0.434145 −0.217072 0.976156i \(-0.569651\pi\)
−0.217072 + 0.976156i \(0.569651\pi\)
\(192\) −8.00000 + 11.3137i −0.577350 + 0.816497i
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 14.1421i 1.01535i
\(195\) 2.00000 + 1.41421i 0.143223 + 0.101274i
\(196\) 22.0000 1.57143
\(197\) 7.07107i 0.503793i −0.967754 0.251896i \(-0.918946\pi\)
0.967754 0.251896i \(-0.0810542\pi\)
\(198\) 0 0
\(199\) 16.9706i 1.20301i 0.798869 + 0.601506i \(0.205432\pi\)
−0.798869 + 0.601506i \(0.794568\pi\)
\(200\) 8.48528i 0.600000i
\(201\) 6.00000 + 4.24264i 0.423207 + 0.299253i
\(202\) −4.00000 −0.281439
\(203\) −12.0000 −0.842235
\(204\) −16.0000 11.3137i −1.12022 0.792118i
\(205\) −2.00000 −0.139686
\(206\) 12.0000 0.836080
\(207\) −6.00000 16.9706i −0.417029 1.17954i
\(208\) 4.00000 0.277350
\(209\) 0 0
\(210\) −12.0000 8.48528i −0.828079 0.585540i
\(211\) 8.48528i 0.584151i −0.956395 0.292075i \(-0.905654\pi\)
0.956395 0.292075i \(-0.0943458\pi\)
\(212\) 11.3137i 0.777029i
\(213\) −12.0000 + 16.9706i −0.822226 + 1.16280i
\(214\) 16.9706i 1.16008i
\(215\) −12.0000 −0.818393
\(216\) 4.00000 14.1421i 0.272166 0.962250i
\(217\) −18.0000 −1.22192
\(218\) 2.82843i 0.191565i
\(219\) 2.00000 2.82843i 0.135147 0.191127i
\(220\) 0 0
\(221\) 5.65685i 0.380521i
\(222\) −4.00000 2.82843i −0.268462 0.189832i
\(223\) 12.7279i 0.852325i −0.904647 0.426162i \(-0.859865\pi\)
0.904647 0.426162i \(-0.140135\pi\)
\(224\) −24.0000 −1.60357
\(225\) −3.00000 8.48528i −0.200000 0.565685i
\(226\) 20.0000 1.33038
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) −12.0000 8.48528i −0.794719 0.561951i
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 12.0000 0.791257
\(231\) 0 0
\(232\) 8.00000 0.525226
\(233\) 19.7990i 1.29707i −0.761183 0.648537i \(-0.775381\pi\)
0.761183 0.648537i \(-0.224619\pi\)
\(234\) −4.00000 + 1.41421i −0.261488 + 0.0924500i
\(235\) 16.9706i 1.10704i
\(236\) 0 0
\(237\) −12.0000 8.48528i −0.779484 0.551178i
\(238\) 33.9411i 2.20008i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 8.00000 + 5.65685i 0.516398 + 0.365148i
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 15.5563i 1.00000i
\(243\) 1.00000 + 15.5563i 0.0641500 + 0.997940i
\(244\) −16.0000 −1.02430
\(245\) 15.5563i 0.993859i
\(246\) 2.00000 2.82843i 0.127515 0.180334i
\(247\) 4.24264i 0.269953i
\(248\) 12.0000 0.762001
\(249\) −12.0000 + 16.9706i −0.760469 + 1.07547i
\(250\) 16.0000 1.01193
\(251\) −30.0000 −1.89358 −0.946792 0.321847i \(-0.895696\pi\)
−0.946792 + 0.321847i \(0.895696\pi\)
\(252\) 24.0000 8.48528i 1.51186 0.534522i
\(253\) 0 0
\(254\) −24.0000 −1.50589
\(255\) −8.00000 + 11.3137i −0.500979 + 0.708492i
\(256\) 16.0000 1.00000
\(257\) 14.1421i 0.882162i 0.897467 + 0.441081i \(0.145405\pi\)
−0.897467 + 0.441081i \(0.854595\pi\)
\(258\) 12.0000 16.9706i 0.747087 1.05654i
\(259\) 8.48528i 0.527250i
\(260\) 2.82843i 0.175412i
\(261\) −8.00000 + 2.82843i −0.495188 + 0.175075i
\(262\) 16.9706i 1.04844i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −8.00000 −0.491436
\(266\) 25.4558i 1.56080i
\(267\) −10.0000 7.07107i −0.611990 0.432742i
\(268\) 8.48528i 0.518321i
\(269\) 19.7990i 1.20717i −0.797300 0.603583i \(-0.793739\pi\)
0.797300 0.603583i \(-0.206261\pi\)
\(270\) −10.0000 2.82843i −0.608581 0.172133i
\(271\) 21.2132i 1.28861i 0.764768 + 0.644305i \(0.222853\pi\)
−0.764768 + 0.644305i \(0.777147\pi\)
\(272\) 22.6274i 1.37199i
\(273\) −6.00000 4.24264i −0.363137 0.256776i
\(274\) −22.0000 −1.32907
\(275\) 0 0
\(276\) −12.0000 + 16.9706i −0.722315 + 1.02151i
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) 0 0
\(279\) −12.0000 + 4.24264i −0.718421 + 0.254000i
\(280\) 16.9706i 1.01419i
\(281\) 15.5563i 0.928014i −0.885832 0.464007i \(-0.846411\pi\)
0.885832 0.464007i \(-0.153589\pi\)
\(282\) 24.0000 + 16.9706i 1.42918 + 1.01058i
\(283\) 16.9706i 1.00880i 0.863472 + 0.504398i \(0.168285\pi\)
−0.863472 + 0.504398i \(0.831715\pi\)
\(284\) 24.0000 1.42414
\(285\) −6.00000 + 8.48528i −0.355409 + 0.502625i
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) −16.0000 + 5.65685i −0.942809 + 0.333333i
\(289\) −15.0000 −0.882353
\(290\) 5.65685i 0.332182i
\(291\) −10.0000 + 14.1421i −0.586210 + 0.829027i
\(292\) −4.00000 −0.234082
\(293\) 1.41421i 0.0826192i 0.999146 + 0.0413096i \(0.0131530\pi\)
−0.999146 + 0.0413096i \(0.986847\pi\)
\(294\) 22.0000 + 15.5563i 1.28307 + 0.907265i
\(295\) 0 0
\(296\) 5.65685i 0.328798i
\(297\) 0 0
\(298\) 2.00000 0.115857
\(299\) 6.00000 0.346989
\(300\) −6.00000 + 8.48528i −0.346410 + 0.489898i
\(301\) 36.0000 2.07501
\(302\) 6.00000 0.345261
\(303\) −4.00000 2.82843i −0.229794 0.162489i
\(304\) 16.9706i 0.973329i
\(305\) 11.3137i 0.647821i
\(306\) −8.00000 22.6274i −0.457330 1.29352i
\(307\) 12.7279i 0.726421i 0.931707 + 0.363210i \(0.118319\pi\)
−0.931707 + 0.363210i \(0.881681\pi\)
\(308\) 0 0
\(309\) 12.0000 + 8.48528i 0.682656 + 0.482711i
\(310\) 8.48528i 0.481932i
\(311\) −6.00000 −0.340229 −0.170114 0.985424i \(-0.554414\pi\)
−0.170114 + 0.985424i \(0.554414\pi\)
\(312\) 4.00000 + 2.82843i 0.226455 + 0.160128i
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 5.65685i 0.319235i
\(315\) −6.00000 16.9706i −0.338062 0.956183i
\(316\) 16.9706i 0.954669i
\(317\) 9.89949i 0.556011i 0.960579 + 0.278006i \(0.0896734\pi\)
−0.960579 + 0.278006i \(0.910327\pi\)
\(318\) 8.00000 11.3137i 0.448618 0.634441i
\(319\) 0 0
\(320\) 11.3137i 0.632456i
\(321\) 12.0000 16.9706i 0.669775 0.947204i
\(322\) −36.0000 −2.00620
\(323\) −24.0000 −1.33540
\(324\) 14.0000 11.3137i 0.777778 0.628539i
\(325\) 3.00000 0.166410
\(326\) 6.00000 0.332309
\(327\) 2.00000 2.82843i 0.110600 0.156412i
\(328\) −4.00000 −0.220863
\(329\) 50.9117i 2.80685i
\(330\) 0 0
\(331\) 21.2132i 1.16598i 0.812478 + 0.582992i \(0.198118\pi\)
−0.812478 + 0.582992i \(0.801882\pi\)
\(332\) 24.0000 1.31717
\(333\) −2.00000 5.65685i −0.109599 0.309994i
\(334\) 16.9706i 0.928588i
\(335\) −6.00000 −0.327815
\(336\) −24.0000 16.9706i −1.30931 0.925820i
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 1.41421i 0.0769231i
\(339\) 20.0000 + 14.1421i 1.08625 + 0.768095i
\(340\) 16.0000 0.867722
\(341\) 0 0
\(342\) −6.00000 16.9706i −0.324443 0.917663i
\(343\) 16.9706i 0.916324i
\(344\) −24.0000 −1.29399
\(345\) 12.0000 + 8.48528i 0.646058 + 0.456832i
\(346\) −4.00000 −0.215041
\(347\) −18.0000 −0.966291 −0.483145 0.875540i \(-0.660506\pi\)
−0.483145 + 0.875540i \(0.660506\pi\)
\(348\) 8.00000 + 5.65685i 0.428845 + 0.303239i
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) −18.0000 −0.962140
\(351\) −5.00000 1.41421i −0.266880 0.0754851i
\(352\) 0 0
\(353\) 9.89949i 0.526897i 0.964673 + 0.263448i \(0.0848599\pi\)
−0.964673 + 0.263448i \(0.915140\pi\)
\(354\) 0 0
\(355\) 16.9706i 0.900704i
\(356\) 14.1421i 0.749532i
\(357\) 24.0000 33.9411i 1.27021 1.79635i
\(358\) 16.9706i 0.896922i
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 4.00000 + 11.3137i 0.210819 + 0.596285i
\(361\) 1.00000 0.0526316
\(362\) 22.6274i 1.18927i
\(363\) −11.0000 + 15.5563i −0.577350 + 0.816497i
\(364\) 8.48528i 0.444750i
\(365\) 2.82843i 0.148047i
\(366\) −16.0000 11.3137i −0.836333 0.591377i
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 24.0000 1.25109
\(369\) 4.00000 1.41421i 0.208232 0.0736210i
\(370\) 4.00000 0.207950
\(371\) 24.0000 1.24602
\(372\) 12.0000 + 8.48528i 0.622171 + 0.439941i
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 16.0000 + 11.3137i 0.826236 + 0.584237i
\(376\) 33.9411i 1.75038i
\(377\) 2.82843i 0.145671i
\(378\) 30.0000 + 8.48528i 1.54303 + 0.436436i
\(379\) 29.6985i 1.52551i −0.646688 0.762754i \(-0.723847\pi\)
0.646688 0.762754i \(-0.276153\pi\)
\(380\) 12.0000 0.615587
\(381\) −24.0000 16.9706i −1.22956 0.869428i
\(382\) 8.48528i 0.434145i
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 16.0000 + 11.3137i 0.816497 + 0.577350i
\(385\) 0 0
\(386\) 19.7990i 1.00774i
\(387\) 24.0000 8.48528i 1.21999 0.431331i
\(388\) 20.0000 1.01535
\(389\) 28.2843i 1.43407i −0.697037 0.717035i \(-0.745499\pi\)
0.697037 0.717035i \(-0.254501\pi\)
\(390\) 2.00000 2.82843i 0.101274 0.143223i
\(391\) 33.9411i 1.71648i
\(392\) 31.1127i 1.57143i
\(393\) 12.0000 16.9706i 0.605320 0.856052i
\(394\) −10.0000 −0.503793
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 24.0000 1.20301
\(399\) 18.0000 25.4558i 0.901127 1.27439i
\(400\) 12.0000 0.600000
\(401\) 1.41421i 0.0706225i 0.999376 + 0.0353112i \(0.0112422\pi\)
−0.999376 + 0.0353112i \(0.988758\pi\)
\(402\) 6.00000 8.48528i 0.299253 0.423207i
\(403\) 4.24264i 0.211341i
\(404\) 5.65685i 0.281439i
\(405\) −8.00000 9.89949i −0.397523 0.491910i
\(406\) 16.9706i 0.842235i
\(407\) 0 0
\(408\) −16.0000 + 22.6274i −0.792118 + 1.12022i
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 2.82843i 0.139686i
\(411\) −22.0000 15.5563i −1.08518 0.767338i
\(412\) 16.9706i 0.836080i
\(413\) 0 0
\(414\) −24.0000 + 8.48528i −1.17954 + 0.417029i
\(415\) 16.9706i 0.833052i
\(416\) 5.65685i 0.277350i
\(417\) 0 0
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) −12.0000 + 16.9706i −0.585540 + 0.828079i
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −12.0000 −0.584151
\(423\) 12.0000 + 33.9411i 0.583460 + 1.65027i
\(424\) −16.0000 −0.777029
\(425\) 16.9706i 0.823193i
\(426\) 24.0000 + 16.9706i 1.16280 + 0.822226i
\(427\) 33.9411i 1.64253i
\(428\) −24.0000 −1.16008
\(429\) 0 0
\(430\) 16.9706i 0.818393i
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) −20.0000 5.65685i −0.962250 0.272166i
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 25.4558i 1.22192i
\(435\) 4.00000 5.65685i 0.191785 0.271225i
\(436\) −4.00000 −0.191565
\(437\) 25.4558i 1.21772i
\(438\) −4.00000 2.82843i −0.191127 0.135147i
\(439\) 25.4558i 1.21494i −0.794342 0.607471i \(-0.792184\pi\)
0.794342 0.607471i \(-0.207816\pi\)
\(440\) 0 0
\(441\) 11.0000 + 31.1127i 0.523810 + 1.48156i
\(442\) 8.00000 0.380521
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) −4.00000 + 5.65685i −0.189832 + 0.268462i
\(445\) 10.0000 0.474045
\(446\) −18.0000 −0.852325
\(447\) 2.00000 + 1.41421i 0.0945968 + 0.0668900i
\(448\) 33.9411i 1.60357i
\(449\) 32.5269i 1.53504i −0.641025 0.767520i \(-0.721491\pi\)
0.641025 0.767520i \(-0.278509\pi\)
\(450\) −12.0000 + 4.24264i −0.565685 + 0.200000i
\(451\) 0 0
\(452\) 28.2843i 1.33038i
\(453\) 6.00000 + 4.24264i 0.281905 + 0.199337i
\(454\) 16.9706i 0.796468i
\(455\) 6.00000 0.281284
\(456\) −12.0000 + 16.9706i −0.561951 + 0.794719i
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 19.7990i 0.925146i
\(459\) 8.00000 28.2843i 0.373408 1.32020i
\(460\) 16.9706i 0.791257i
\(461\) 35.3553i 1.64666i 0.567561 + 0.823331i \(0.307887\pi\)
−0.567561 + 0.823331i \(0.692113\pi\)
\(462\) 0 0
\(463\) 4.24264i 0.197172i −0.995129 0.0985861i \(-0.968568\pi\)
0.995129 0.0985861i \(-0.0314320\pi\)
\(464\) 11.3137i 0.525226i
\(465\) 6.00000 8.48528i 0.278243 0.393496i
\(466\) −28.0000 −1.29707
\(467\) 18.0000 0.832941 0.416470 0.909149i \(-0.363267\pi\)
0.416470 + 0.909149i \(0.363267\pi\)
\(468\) 2.00000 + 5.65685i 0.0924500 + 0.261488i
\(469\) 18.0000 0.831163
\(470\) −24.0000 −1.10704
\(471\) −4.00000 + 5.65685i −0.184310 + 0.260654i
\(472\) 0 0
\(473\) 0 0
\(474\) −12.0000 + 16.9706i −0.551178 + 0.779484i
\(475\) 12.7279i 0.583997i
\(476\) −48.0000 −2.20008
\(477\) 16.0000 5.65685i 0.732590 0.259010i
\(478\) 16.9706i 0.776215i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 8.00000 11.3137i 0.365148 0.516398i
\(481\) 2.00000 0.0911922
\(482\) 36.7696i 1.67481i
\(483\) −36.0000 25.4558i −1.63806 1.15828i
\(484\) 22.0000 1.00000
\(485\) 14.1421i 0.642161i
\(486\) 22.0000 1.41421i 0.997940 0.0641500i
\(487\) 4.24264i 0.192252i 0.995369 + 0.0961262i \(0.0306452\pi\)
−0.995369 + 0.0961262i \(0.969355\pi\)
\(488\) 22.6274i 1.02430i
\(489\) 6.00000 + 4.24264i 0.271329 + 0.191859i
\(490\) −22.0000 −0.993859
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) −4.00000 2.82843i −0.180334 0.127515i
\(493\) 16.0000 0.720604
\(494\) 6.00000 0.269953
\(495\) 0 0
\(496\) 16.9706i 0.762001i
\(497\) 50.9117i 2.28370i
\(498\) 24.0000 + 16.9706i 1.07547 + 0.760469i
\(499\) 4.24264i 0.189927i −0.995481 0.0949633i \(-0.969727\pi\)
0.995481 0.0949633i \(-0.0302734\pi\)
\(500\) 22.6274i 1.01193i
\(501\) −12.0000 + 16.9706i −0.536120 + 0.758189i
\(502\) 42.4264i 1.89358i
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) −12.0000 33.9411i −0.534522 1.51186i
\(505\) 4.00000 0.177998
\(506\) 0 0
\(507\) 1.00000 1.41421i 0.0444116 0.0628074i
\(508\) 33.9411i 1.50589i
\(509\) 24.0416i 1.06563i −0.846233 0.532813i \(-0.821135\pi\)
0.846233 0.532813i \(-0.178865\pi\)
\(510\) 16.0000 + 11.3137i 0.708492 + 0.500979i
\(511\) 8.48528i 0.375367i
\(512\) 22.6274i 1.00000i
\(513\) 6.00000 21.2132i 0.264906 0.936586i
\(514\) 20.0000 0.882162
\(515\) −12.0000 −0.528783
\(516\) −24.0000 16.9706i −1.05654 0.747087i
\(517\) 0 0
\(518\) −12.0000 −0.527250
\(519\) −4.00000 2.82843i −0.175581 0.124154i
\(520\) −4.00000 −0.175412
\(521\) 19.7990i 0.867409i −0.901055 0.433705i \(-0.857206\pi\)
0.901055 0.433705i \(-0.142794\pi\)
\(522\) 4.00000 + 11.3137i 0.175075 + 0.495188i
\(523\) 16.9706i 0.742071i −0.928619 0.371035i \(-0.879003\pi\)
0.928619 0.371035i \(-0.120997\pi\)
\(524\) −24.0000 −1.04844
\(525\) −18.0000 12.7279i −0.785584 0.555492i
\(526\) 0 0
\(527\) 24.0000 1.04546
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 11.3137i 0.491436i
\(531\) 0 0
\(532\) −36.0000 −1.56080
\(533\) 1.41421i 0.0612564i
\(534\) −10.0000 + 14.1421i −0.432742 + 0.611990i
\(535\) 16.9706i 0.733701i
\(536\) −12.0000 −0.518321
\(537\) 12.0000 16.9706i 0.517838 0.732334i
\(538\) −28.0000 −1.20717
\(539\) 0 0
\(540\) −4.00000 + 14.1421i −0.172133 + 0.608581i
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 30.0000 1.28861
\(543\) −16.0000 + 22.6274i −0.686626 + 0.971035i
\(544\) 32.0000 1.37199
\(545\) 2.82843i 0.121157i
\(546\) −6.00000 + 8.48528i −0.256776 + 0.363137i
\(547\) 16.9706i 0.725609i 0.931865 + 0.362804i \(0.118181\pi\)
−0.931865 + 0.362804i \(0.881819\pi\)
\(548\) 31.1127i 1.32907i
\(549\) −8.00000 22.6274i −0.341432 0.965715i
\(550\) 0 0
\(551\) 12.0000 0.511217
\(552\) 24.0000 + 16.9706i 1.02151 + 0.722315i
\(553\) −36.0000 −1.53088
\(554\) 36.7696i 1.56219i
\(555\) 4.00000 + 2.82843i 0.169791 + 0.120060i
\(556\) 0 0
\(557\) 7.07107i 0.299611i −0.988716 0.149805i \(-0.952135\pi\)
0.988716 0.149805i \(-0.0478647\pi\)
\(558\) 6.00000 + 16.9706i 0.254000 + 0.718421i
\(559\) 8.48528i 0.358889i
\(560\) 24.0000 1.01419
\(561\) 0 0
\(562\) −22.0000 −0.928014
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 24.0000 33.9411i 1.01058 1.42918i
\(565\) −20.0000 −0.841406
\(566\) 24.0000 1.00880
\(567\) 24.0000 + 29.6985i 1.00791 + 1.24722i
\(568\) 33.9411i 1.42414i
\(569\) 2.82843i 0.118574i −0.998241 0.0592869i \(-0.981117\pi\)
0.998241 0.0592869i \(-0.0188827\pi\)
\(570\) 12.0000 + 8.48528i 0.502625 + 0.355409i
\(571\) 16.9706i 0.710196i −0.934829 0.355098i \(-0.884448\pi\)
0.934829 0.355098i \(-0.115552\pi\)
\(572\) 0 0
\(573\) −6.00000 + 8.48528i −0.250654 + 0.354478i
\(574\) 8.48528i 0.354169i
\(575\) 18.0000 0.750652
\(576\) 8.00000 + 22.6274i 0.333333 + 0.942809i
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 21.2132i 0.882353i
\(579\) 14.0000 19.7990i 0.581820 0.822818i
\(580\) −8.00000 −0.332182
\(581\) 50.9117i 2.11217i
\(582\) 20.0000 + 14.1421i 0.829027 + 0.586210i
\(583\) 0 0
\(584\) 5.65685i 0.234082i
\(585\) 4.00000 1.41421i 0.165380 0.0584705i
\(586\) 2.00000 0.0826192
\(587\) −36.0000 −1.48588 −0.742940 0.669359i \(-0.766569\pi\)
−0.742940 + 0.669359i \(0.766569\pi\)
\(588\) 22.0000 31.1127i 0.907265 1.28307i
\(589\) 18.0000 0.741677
\(590\) 0 0
\(591\) −10.0000 7.07107i −0.411345 0.290865i
\(592\) 8.00000 0.328798
\(593\) 7.07107i 0.290374i −0.989404 0.145187i \(-0.953622\pi\)
0.989404 0.145187i \(-0.0463784\pi\)
\(594\) 0 0
\(595\) 33.9411i 1.39145i
\(596\) 2.82843i 0.115857i
\(597\) 24.0000 + 16.9706i 0.982255 + 0.694559i
\(598\) 8.48528i 0.346989i
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 12.0000 + 8.48528i 0.489898 + 0.346410i
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 50.9117i 2.07501i
\(603\) 12.0000 4.24264i 0.488678 0.172774i
\(604\) 8.48528i 0.345261i
\(605\) 15.5563i 0.632456i
\(606\) −4.00000 + 5.65685i −0.162489 + 0.229794i
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 24.0000 0.973329
\(609\) −12.0000 + 16.9706i −0.486265 + 0.687682i
\(610\) 16.0000 0.647821
\(611\) −12.0000 −0.485468
\(612\) −32.0000 + 11.3137i −1.29352 + 0.457330i
\(613\) −34.0000 −1.37325 −0.686624 0.727013i \(-0.740908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) 18.0000 0.726421
\(615\) −2.00000 + 2.82843i −0.0806478 + 0.114053i
\(616\) 0 0
\(617\) 1.41421i 0.0569341i 0.999595 + 0.0284670i \(0.00906257\pi\)
−0.999595 + 0.0284670i \(0.990937\pi\)
\(618\) 12.0000 16.9706i 0.482711 0.682656i
\(619\) 4.24264i 0.170526i 0.996358 + 0.0852631i \(0.0271731\pi\)
−0.996358 + 0.0852631i \(0.972827\pi\)
\(620\) −12.0000 −0.481932
\(621\) −30.0000 8.48528i −1.20386 0.340503i
\(622\) 8.48528i 0.340229i
\(623\) −30.0000 −1.20192
\(624\) 4.00000 5.65685i 0.160128 0.226455i
\(625\) −1.00000 −0.0400000
\(626\) 14.1421i 0.565233i
\(627\) 0 0
\(628\) 8.00000 0.319235
\(629\) 11.3137i 0.451107i
\(630\) −24.0000 + 8.48528i −0.956183 + 0.338062i
\(631\) 21.2132i 0.844484i −0.906483 0.422242i \(-0.861243\pi\)
0.906483 0.422242i \(-0.138757\pi\)
\(632\) 24.0000 0.954669
\(633\) −12.0000 8.48528i −0.476957 0.337260i
\(634\) 14.0000 0.556011
\(635\) 24.0000 0.952411
\(636\) −16.0000 11.3137i −0.634441 0.448618i
\(637\) −11.0000 −0.435836
\(638\) 0 0
\(639\) 12.0000 + 33.9411i 0.474713 + 1.34269i
\(640\) −16.0000 −0.632456
\(641\) 28.2843i 1.11716i −0.829450 0.558581i \(-0.811346\pi\)
0.829450 0.558581i \(-0.188654\pi\)
\(642\) −24.0000 16.9706i −0.947204 0.669775i
\(643\) 12.7279i 0.501940i 0.967995 + 0.250970i \(0.0807496\pi\)
−0.967995 + 0.250970i \(0.919250\pi\)
\(644\) 50.9117i 2.00620i
\(645\) −12.0000 + 16.9706i −0.472500 + 0.668215i
\(646\) 33.9411i 1.33540i
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) −16.0000 19.7990i −0.628539 0.777778i
\(649\) 0 0
\(650\) 4.24264i 0.166410i
\(651\) −18.0000 + 25.4558i −0.705476 + 0.997693i
\(652\) 8.48528i 0.332309i
\(653\) 14.1421i 0.553425i 0.960953 + 0.276712i \(0.0892449\pi\)
−0.960953 + 0.276712i \(0.910755\pi\)
\(654\) −4.00000 2.82843i −0.156412 0.110600i
\(655\) 16.9706i 0.663095i
\(656\) 5.65685i 0.220863i
\(657\) −2.00000 5.65685i −0.0780274 0.220695i
\(658\) 72.0000 2.80685
\(659\) −6.00000 −0.233727 −0.116863 0.993148i \(-0.537284\pi\)
−0.116863 + 0.993148i \(0.537284\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 30.0000 1.16598
\(663\) 8.00000 + 5.65685i 0.310694 + 0.219694i
\(664\) 33.9411i 1.31717i
\(665\) 25.4558i 0.987135i
\(666\) −8.00000 + 2.82843i −0.309994 + 0.109599i
\(667\) 16.9706i 0.657103i
\(668\) 24.0000 0.928588
\(669\) −18.0000 12.7279i −0.695920 0.492090i
\(670\) 8.48528i 0.327815i
\(671\) 0 0
\(672\) −24.0000 + 33.9411i −0.925820 + 1.30931i
\(673\) −28.0000 −1.07932 −0.539660 0.841883i \(-0.681447\pi\)
−0.539660 + 0.841883i \(0.681447\pi\)
\(674\) 31.1127i 1.19842i
\(675\) −15.0000 4.24264i −0.577350 0.163299i
\(676\) −2.00000 −0.0769231
\(677\) 22.6274i 0.869642i 0.900517 + 0.434821i \(0.143188\pi\)
−0.900517 + 0.434821i \(0.856812\pi\)
\(678\) 20.0000 28.2843i 0.768095 1.08625i
\(679\) 42.4264i 1.62818i
\(680\) 22.6274i 0.867722i
\(681\) 12.0000 16.9706i 0.459841 0.650313i
\(682\) 0 0
\(683\) −48.0000 −1.83667 −0.918334 0.395805i \(-0.870466\pi\)
−0.918334 + 0.395805i \(0.870466\pi\)
\(684\) −24.0000 + 8.48528i −0.917663 + 0.324443i
\(685\) 22.0000 0.840577
\(686\) 24.0000 0.916324
\(687\) 14.0000 19.7990i 0.534133 0.755379i
\(688\) 33.9411i 1.29399i
\(689\) 5.65685i 0.215509i
\(690\) 12.0000 16.9706i 0.456832 0.646058i
\(691\) 12.7279i 0.484193i 0.970252 + 0.242096i \(0.0778351\pi\)
−0.970252 + 0.242096i \(0.922165\pi\)
\(692\) 5.65685i 0.215041i
\(693\) 0 0
\(694\) 25.4558i 0.966291i
\(695\) 0 0
\(696\) 8.00000 11.3137i 0.303239 0.428845i
\(697\) −8.00000 −0.303022
\(698\) 14.1421i 0.535288i
\(699\) −28.0000 19.7990i −1.05906 0.748867i
\(700\) 25.4558i 0.962140i
\(701\) 45.2548i 1.70925i −0.519244 0.854626i \(-0.673787\pi\)
0.519244 0.854626i \(-0.326213\pi\)
\(702\) −2.00000 + 7.07107i −0.0754851 + 0.266880i
\(703\) 8.48528i 0.320028i
\(704\) 0 0
\(705\) −24.0000 16.9706i −0.903892 0.639148i
\(706\) 14.0000 0.526897
\(707\) −12.0000 −0.451306
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) −24.0000 −0.900704
\(711\) −24.0000 + 8.48528i −0.900070 + 0.318223i
\(712\) 20.0000 0.749532
\(713\) 25.4558i 0.953329i
\(714\) −48.0000 33.9411i −1.79635 1.27021i
\(715\) 0 0
\(716\) −24.0000 −0.896922
\(717\) 12.0000 16.9706i 0.448148 0.633777i
\(718\) 50.9117i 1.90001i
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 16.0000 5.65685i 0.596285 0.210819i
\(721\) 36.0000 1.34071
\(722\) 1.41421i 0.0526316i
\(723\) 26.0000 36.7696i 0.966950 1.36747i
\(724\) 32.0000 1.18927
\(725\) 8.48528i 0.315135i
\(726\) 22.0000 + 15.5563i 0.816497 + 0.577350i
\(727\) 16.9706i 0.629403i 0.949191 + 0.314702i \(0.101904\pi\)
−0.949191 + 0.314702i \(0.898096\pi\)
\(728\) 12.0000 0.444750
\(729\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(730\) 4.00000 0.148047
\(731\) −48.0000 −1.77534
\(732\) −16.0000 + 22.6274i −0.591377 + 0.836333i
\(733\) 50.0000 1.84679 0.923396 0.383849i \(-0.125402\pi\)
0.923396 + 0.383849i \(0.125402\pi\)
\(734\) 0 0
\(735\) −22.0000 15.5563i −0.811482 0.573805i
\(736\) 33.9411i 1.25109i
\(737\) 0 0
\(738\) −2.00000 5.65685i −0.0736210 0.208232i
\(739\) 4.24264i 0.156068i −0.996951 0.0780340i \(-0.975136\pi\)
0.996951 0.0780340i \(-0.0248643\pi\)
\(740\) 5.65685i 0.207950i
\(741\) 6.00000 + 4.24264i 0.220416 + 0.155857i
\(742\) 33.9411i 1.24602i
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 12.0000 16.9706i 0.439941 0.622171i
\(745\) −2.00000 −0.0732743
\(746\) 31.1127i 1.13912i
\(747\) 12.0000 + 33.9411i 0.439057 + 1.24184i
\(748\) 0 0
\(749\) 50.9117i 1.86027i
\(750\) 16.0000 22.6274i 0.584237 0.826236i
\(751\) 8.48528i 0.309632i −0.987943 0.154816i \(-0.950521\pi\)
0.987943 0.154816i \(-0.0494785\pi\)
\(752\) −48.0000 −1.75038
\(753\) −30.0000 + 42.4264i −1.09326 + 1.54610i
\(754\) −4.00000 −0.145671
\(755\) −6.00000 −0.218362
\(756\) 12.0000 42.4264i 0.436436 1.54303i
\(757\) −16.0000 −0.581530 −0.290765 0.956795i \(-0.593910\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(758\) −42.0000 −1.52551
\(759\) 0 0
\(760\) 16.9706i 0.615587i
\(761\) 26.8701i 0.974039i 0.873391 + 0.487019i \(0.161916\pi\)
−0.873391 + 0.487019i \(0.838084\pi\)
\(762\) −24.0000 + 33.9411i −0.869428 + 1.22956i
\(763\) 8.48528i 0.307188i
\(764\) 12.0000 0.434145
\(765\) 8.00000 + 22.6274i 0.289241 + 0.818096i
\(766\) 0 0
\(767\) 0 0
\(768\) 16.0000 22.6274i 0.577350 0.816497i
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 20.0000 + 14.1421i 0.720282 + 0.509317i
\(772\) −28.0000 −1.00774
\(773\) 43.8406i 1.57684i 0.615139 + 0.788419i \(0.289100\pi\)
−0.615139 + 0.788419i \(0.710900\pi\)
\(774\) −12.0000 33.9411i −0.431331 1.21999i
\(775\) 12.7279i 0.457200i
\(776\) 28.2843i 1.01535i
\(777\) −12.0000 8.48528i −0.430498 0.304408i
\(778\) −40.0000 −1.43407
\(779\) −6.00000 −0.214972
\(780\) −4.00000 2.82843i −0.143223 0.101274i
\(781\) 0 0
\(782\) 48.0000 1.71648
\(783\) −4.00000 + 14.1421i −0.142948 + 0.505399i
\(784\) −44.0000 −1.57143
\(785\) 5.65685i 0.201902i
\(786\) −24.0000 16.9706i −0.856052 0.605320i
\(787\) 12.7279i 0.453701i 0.973930 + 0.226851i \(0.0728429\pi\)
−0.973930 + 0.226851i \(0.927157\pi\)
\(788\) 14.1421i 0.503793i
\(789\) 0 0
\(790\) 16.9706i 0.603786i
\(791\) 60.0000 2.13335
\(792\) 0 0
\(793\) 8.00000 0.284088
\(794\) 2.82843i 0.100377i
\(795\) −8.00000 + 11.3137i −0.283731 + 0.401256i
\(796\) 33.9411i 1.20301i
\(797\) 39.5980i 1.40263i 0.712850 + 0.701316i \(0.247404\pi\)
−0.712850 + 0.701316i \(0.752596\pi\)
\(798\) −36.0000 25.4558i −1.27439 0.901127i
\(799\) 67.8823i 2.40150i
\(800\) 16.9706i 0.600000i
\(801\) −20.0000 + 7.07107i −0.706665 + 0.249844i
\(802\) 2.00000 0.0706225
\(803\) 0 0
\(804\) −12.0000 8.48528i −0.423207 0.299253i
\(805\) 36.0000 1.26883
\(806\) −6.00000 −0.211341
\(807\) −28.0000 19.7990i −0.985647 0.696957i
\(808\) 8.00000 0.281439
\(809\) 19.7990i 0.696095i −0.937477 0.348048i \(-0.886845\pi\)
0.937477 0.348048i \(-0.113155\pi\)
\(810\) −14.0000 + 11.3137i −0.491910 + 0.397523i
\(811\) 38.1838i 1.34081i −0.741994 0.670407i \(-0.766120\pi\)
0.741994 0.670407i \(-0.233880\pi\)
\(812\) 24.0000 0.842235
\(813\) 30.0000 + 21.2132i 1.05215 + 0.743980i
\(814\) 0 0
\(815\) −6.00000 −0.210171
\(816\) 32.0000 + 22.6274i 1.12022 + 0.792118i
\(817\) −36.0000 −1.25948
\(818\) 31.1127i 1.08783i
\(819\) −12.0000 + 4.24264i −0.419314 + 0.148250i
\(820\) 4.00000 0.139686
\(821\) 9.89949i 0.345495i 0.984966 + 0.172747i \(0.0552644\pi\)
−0.984966 + 0.172747i \(0.944736\pi\)
\(822\) −22.0000 + 31.1127i −0.767338 + 1.08518i
\(823\) 25.4558i 0.887335i −0.896191 0.443667i \(-0.853677\pi\)
0.896191 0.443667i \(-0.146323\pi\)
\(824\) −24.0000 −0.836080
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 12.0000 + 33.9411i 0.417029 + 1.17954i
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) −24.0000 −0.833052
\(831\) 26.0000 36.7696i 0.901930 1.27552i
\(832\) −8.00000 −0.277350
\(833\) 62.2254i 2.15598i
\(834\) 0 0
\(835\) 16.9706i 0.587291i
\(836\) 0 0
\(837\) −6.00000 + 21.2132i −0.207390 + 0.733236i
\(838\) 16.9706i 0.586238i
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 24.0000 + 16.9706i 0.828079 + 0.585540i
\(841\) 21.0000 0.724138
\(842\) 14.1421i 0.487370i
\(843\) −22.0000 15.5563i −0.757720 0.535789i
\(844\) 16.9706i 0.584151i
\(845\) 1.41421i 0.0486504i
\(846\) 48.0000 16.9706i 1.65027 0.583460i
\(847\) 46.6690i 1.60357i
\(848\) 22.6274i 0.777029i
\(849\) 24.0000 + 16.9706i 0.823678 + 0.582428i
\(850\) 24.0000 0.823193
\(851\) 12.0000 0.411355
\(852\) 24.0000 33.9411i 0.822226 1.16280i
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) −48.0000 −1.64253
\(855\) 6.00000 + 16.9706i 0.205196 + 0.580381i
\(856\) 33.9411i 1.16008i
\(857\) 2.82843i 0.0966172i −0.998832 0.0483086i \(-0.984617\pi\)
0.998832 0.0483086i \(-0.0153831\pi\)
\(858\) 0 0
\(859\) 42.4264i 1.44757i −0.690025 0.723785i \(-0.742401\pi\)
0.690025 0.723785i \(-0.257599\pi\)
\(860\) 24.0000 0.818393
\(861\) 6.00000 8.48528i 0.204479 0.289178i
\(862\) 33.9411i 1.15604i
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) −8.00000 + 28.2843i −0.272166 + 0.962250i
\(865\) 4.00000 0.136004
\(866\) 22.6274i 0.768911i
\(867\) −15.0000 + 21.2132i −0.509427 + 0.720438i
\(868\) 36.0000 1.22192
\(869\) 0 0
\(870\) −8.00000 5.65685i −0.271225 0.191785i
\(871\) 4.24264i 0.143756i
\(872\) 5.65685i 0.191565i
\(873\) 10.0000 + 28.2843i 0.338449 + 0.957278i
\(874\) 36.0000 1.21772
\(875\) 48.0000 1.62270
\(876\) −4.00000 + 5.65685i −0.135147 + 0.191127i
\(877\) −22.0000 −0.742887 −0.371444 0.928456i \(-0.621137\pi\)
−0.371444 + 0.928456i \(0.621137\pi\)
\(878\) −36.0000 −1.21494
\(879\) 2.00000 + 1.41421i 0.0674583 + 0.0477002i
\(880\) 0 0
\(881\) 19.7990i 0.667045i −0.942742 0.333522i \(-0.891763\pi\)
0.942742 0.333522i \(-0.108237\pi\)
\(882\) 44.0000 15.5563i 1.48156 0.523810i
\(883\) 50.9117i 1.71331i 0.515886 + 0.856657i \(0.327463\pi\)
−0.515886 + 0.856657i \(0.672537\pi\)
\(884\) 11.3137i 0.380521i
\(885\) 0 0
\(886\) 16.9706i 0.570137i
\(887\) 6.00000 0.201460 0.100730 0.994914i \(-0.467882\pi\)
0.100730 + 0.994914i \(0.467882\pi\)
\(888\) 8.00000 + 5.65685i 0.268462 + 0.189832i
\(889\) −72.0000 −2.41480
\(890\) 14.1421i 0.474045i
\(891\) 0 0
\(892\) 25.4558i 0.852325i
\(893\) 50.9117i 1.70369i
\(894\) 2.00000 2.82843i 0.0668900 0.0945968i
\(895\) 16.9706i 0.567263i
\(896\) 48.0000 1.60357
\(897\) 6.00000 8.48528i 0.200334 0.283315i
\(898\) −46.0000 −1.53504
\(899\) −12.0000 −0.400222
\(900\) 6.00000 + 16.9706i 0.200000 + 0.565685i
\(901\) −32.0000 −1.06607
\(902\) 0 0
\(903\) 36.0000 50.9117i 1.19800 1.69423i
\(904\) −40.0000 −1.33038
\(905\) 22.6274i 0.752161i
\(906\) 6.00000 8.48528i 0.199337 0.281905i
\(907\) 50.9117i 1.69049i 0.534375 + 0.845247i \(0.320547\pi\)
−0.534375 + 0.845247i \(0.679453\pi\)
\(908\) −24.0000 −0.796468
\(909\) −8.00000 + 2.82843i −0.265343 + 0.0938130i
\(910\) 8.48528i 0.281284i
\(911\) 42.0000 1.39152 0.695761 0.718273i \(-0.255067\pi\)
0.695761 + 0.718273i \(0.255067\pi\)
\(912\) 24.0000 + 16.9706i 0.794719 + 0.561951i
\(913\) 0 0
\(914\) 14.1421i 0.467780i
\(915\) 16.0000 + 11.3137i 0.528944 + 0.374020i
\(916\) −28.0000 −0.925146
\(917\) 50.9117i 1.68125i
\(918\) −40.0000 11.3137i −1.32020 0.373408i
\(919\) 8.48528i 0.279904i −0.990158 0.139952i \(-0.955305\pi\)
0.990158 0.139952i \(-0.0446948\pi\)
\(920\) −24.0000 −0.791257
\(921\) 18.0000 + 12.7279i 0.593120 + 0.419399i
\(922\) 50.0000 1.64666
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) −6.00000 −0.197172
\(927\) 24.0000 8.48528i 0.788263 0.278693i
\(928\) −16.0000 −0.525226
\(929\) 15.5563i 0.510387i −0.966890 0.255194i \(-0.917861\pi\)
0.966890 0.255194i \(-0.0821392\pi\)
\(930\) −12.0000 8.48528i −0.393496 0.278243i
\(931\) 46.6690i 1.52952i
\(932\) 39.5980i 1.29707i
\(933\) −6.00000 + 8.48528i −0.196431 + 0.277796i
\(934\) 25.4558i 0.832941i
\(935\) 0 0
\(936\) 8.00000 2.82843i 0.261488 0.0924500i
\(937\) 20.0000 0.653372 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(938\) 25.4558i 0.831163i
\(939\) −10.0000 + 14.1421i −0.326338 + 0.461511i
\(940\) 33.9411i 1.10704i
\(941\) 1.41421i 0.0461020i 0.999734 + 0.0230510i \(0.00733802\pi\)
−0.999734 + 0.0230510i \(0.992662\pi\)
\(942\) 8.00000 + 5.65685i 0.260654 + 0.184310i
\(943\) 8.48528i 0.276319i
\(944\) 0 0
\(945\) −30.0000 8.48528i −0.975900 0.276026i
\(946\) 0 0
\(947\) 36.0000 1.16984 0.584921 0.811090i \(-0.301125\pi\)
0.584921 + 0.811090i \(0.301125\pi\)
\(948\) 24.0000 + 16.9706i 0.779484 + 0.551178i
\(949\) 2.00000 0.0649227
\(950\) 18.0000 0.583997
\(951\) 14.0000 + 9.89949i 0.453981 + 0.321013i
\(952\) 67.8823i 2.20008i
\(953\) 31.1127i 1.00784i 0.863751 + 0.503920i \(0.168109\pi\)
−0.863751 + 0.503920i \(0.831891\pi\)
\(954\) −8.00000 22.6274i −0.259010 0.732590i
\(955\) 8.48528i 0.274577i
\(956\) −24.0000 −0.776215
\(957\) 0 0
\(958\) 0 0
\(959\) −66.0000 −2.13125
\(960\) −16.0000 11.3137i −0.516398 0.365148i
\(961\) 13.0000 0.419355
\(962\) 2.82843i 0.0911922i
\(963\) −12.0000 33.9411i −0.386695 1.09374i
\(964\) −52.0000 −1.67481
\(965\) 19.7990i 0.637352i
\(966\) −36.0000 + 50.9117i −1.15828 + 1.63806i
\(967\) 21.2132i 0.682171i 0.940032 + 0.341085i \(0.110795\pi\)
−0.940032 + 0.341085i \(0.889205\pi\)
\(968\) 31.1127i 1.00000i
\(969\) −24.0000 + 33.9411i −0.770991 + 1.09035i
\(970\) −20.0000 −0.642161
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) −2.00000 31.1127i −0.0641500 0.997940i
\(973\) 0 0
\(974\) 6.00000 0.192252
\(975\) 3.00000 4.24264i 0.0960769 0.135873i
\(976\) 32.0000 1.02430
\(977\) 49.4975i 1.58356i −0.610803 0.791782i \(-0.709153\pi\)
0.610803 0.791782i \(-0.290847\pi\)
\(978\) 6.00000 8.48528i 0.191859 0.271329i
\(979\) 0 0
\(980\) 31.1127i 0.993859i
\(981\) −2.00000 5.65685i −0.0638551 0.180609i
\(982\) 8.48528i 0.270776i
\(983\) −12.0000 −0.382741 −0.191370 0.981518i \(-0.561293\pi\)
−0.191370 + 0.981518i \(0.561293\pi\)
\(984\) −4.00000 + 5.65685i −0.127515 + 0.180334i
\(985\) 10.0000 0.318626
\(986\) 22.6274i 0.720604i
\(987\) 72.0000 + 50.9117i 2.29179 + 1.62054i
\(988\) 8.48528i 0.269953i
\(989\) 50.9117i 1.61890i
\(990\) 0 0
\(991\) 33.9411i 1.07818i 0.842250 + 0.539088i \(0.181231\pi\)
−0.842250 + 0.539088i \(0.818769\pi\)
\(992\) −24.0000 −0.762001
\(993\) 30.0000 + 21.2132i 0.952021 + 0.673181i
\(994\) 72.0000 2.28370
\(995\) −24.0000 −0.760851
\(996\) 24.0000 33.9411i 0.760469 1.07547i
\(997\) −46.0000 −1.45683 −0.728417 0.685134i \(-0.759744\pi\)
−0.728417 + 0.685134i \(0.759744\pi\)
\(998\) −6.00000 −0.189927
\(999\) −10.0000 2.82843i −0.316386 0.0894875i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.2.c.b.131.1 yes 2
3.2 odd 2 156.2.c.a.131.2 yes 2
4.3 odd 2 156.2.c.a.131.1 2
8.3 odd 2 2496.2.d.g.1535.1 2
8.5 even 2 2496.2.d.b.1535.2 2
12.11 even 2 inner 156.2.c.b.131.2 yes 2
24.5 odd 2 2496.2.d.g.1535.2 2
24.11 even 2 2496.2.d.b.1535.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.c.a.131.1 2 4.3 odd 2
156.2.c.a.131.2 yes 2 3.2 odd 2
156.2.c.b.131.1 yes 2 1.1 even 1 trivial
156.2.c.b.131.2 yes 2 12.11 even 2 inner
2496.2.d.b.1535.1 2 24.11 even 2
2496.2.d.b.1535.2 2 8.5 even 2
2496.2.d.g.1535.1 2 8.3 odd 2
2496.2.d.g.1535.2 2 24.5 odd 2