gp: [N,k,chi] = [156,2,Mod(131,156)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(156, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("156.131");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − x 7 − 4 x 6 − 9 x 5 + 23 x 4 + 18 x 3 − 16 x 2 + 8 x + 16 x^{8} - x^{7} - 4x^{6} - 9x^{5} + 23x^{4} + 18x^{3} - 16x^{2} + 8x + 16 x 8 − x 7 − 4 x 6 − 9 x 5 + 2 3 x 4 + 1 8 x 3 − 1 6 x 2 + 8 x + 1 6
x^8 - x^7 - 4*x^6 - 9*x^5 + 23*x^4 + 18*x^3 - 16*x^2 + 8*x + 16
:
β 1 \beta_{1} β 1 = = =
( − 19 ν 7 + 73 ν 6 + 26 ν 5 − 89 ν 4 − 1043 ν 3 + 704 ν 2 + 1696 ν − 520 ) / 816 ( -19\nu^{7} + 73\nu^{6} + 26\nu^{5} - 89\nu^{4} - 1043\nu^{3} + 704\nu^{2} + 1696\nu - 520 ) / 816 ( − 1 9 ν 7 + 7 3 ν 6 + 2 6 ν 5 − 8 9 ν 4 − 1 0 4 3 ν 3 + 7 0 4 ν 2 + 1 6 9 6 ν − 5 2 0 ) / 8 1 6
(-19*v^7 + 73*v^6 + 26*v^5 - 89*v^4 - 1043*v^3 + 704*v^2 + 1696*v - 520) / 816
β 2 \beta_{2} β 2 = = =
( 71 ν 7 − 33 ν 6 − 566 ν 5 − 827 ν 4 + 1811 ν 3 + 5132 ν 2 − 1320 ν − 920 ) / 2448 ( 71\nu^{7} - 33\nu^{6} - 566\nu^{5} - 827\nu^{4} + 1811\nu^{3} + 5132\nu^{2} - 1320\nu - 920 ) / 2448 ( 7 1 ν 7 − 3 3 ν 6 − 5 6 6 ν 5 − 8 2 7 ν 4 + 1 8 1 1 ν 3 + 5 1 3 2 ν 2 − 1 3 2 0 ν − 9 2 0 ) / 2 4 4 8
(71*v^7 - 33*v^6 - 566*v^5 - 827*v^4 + 1811*v^3 + 5132*v^2 - 1320*v - 920) / 2448
β 3 \beta_{3} β 3 = = =
( − 49 ν 7 + 165 ν 6 + 76 ν 5 + 157 ν 4 − 2323 ν 3 + 1574 ν 2 + 2316 ν − 296 ) / 1224 ( -49\nu^{7} + 165\nu^{6} + 76\nu^{5} + 157\nu^{4} - 2323\nu^{3} + 1574\nu^{2} + 2316\nu - 296 ) / 1224 ( − 4 9 ν 7 + 1 6 5 ν 6 + 7 6 ν 5 + 1 5 7 ν 4 − 2 3 2 3 ν 3 + 1 5 7 4 ν 2 + 2 3 1 6 ν − 2 9 6 ) / 1 2 2 4
(-49*v^7 + 165*v^6 + 76*v^5 + 157*v^4 - 2323*v^3 + 1574*v^2 + 2316*v - 296) / 1224
β 4 \beta_{4} β 4 = = =
( 131 ν 7 − 81 ν 6 − 530 ν 5 − 1319 ν 4 + 2603 ν 3 + 2168 ν 2 + 432 ν + 808 ) / 2448 ( 131\nu^{7} - 81\nu^{6} - 530\nu^{5} - 1319\nu^{4} + 2603\nu^{3} + 2168\nu^{2} + 432\nu + 808 ) / 2448 ( 1 3 1 ν 7 − 8 1 ν 6 − 5 3 0 ν 5 − 1 3 1 9 ν 4 + 2 6 0 3 ν 3 + 2 1 6 8 ν 2 + 4 3 2 ν + 8 0 8 ) / 2 4 4 8
(131*v^7 - 81*v^6 - 530*v^5 - 1319*v^4 + 2603*v^3 + 2168*v^2 + 432*v + 808) / 2448
β 5 \beta_{5} β 5 = = =
( 37 ν 7 − 84 ν 6 − 73 ν 5 − 181 ν 4 + 1114 ν 3 − 767 ν 2 − 606 ν + 1460 ) / 612 ( 37\nu^{7} - 84\nu^{6} - 73\nu^{5} - 181\nu^{4} + 1114\nu^{3} - 767\nu^{2} - 606\nu + 1460 ) / 612 ( 3 7 ν 7 − 8 4 ν 6 − 7 3 ν 5 − 1 8 1 ν 4 + 1 1 1 4 ν 3 − 7 6 7 ν 2 − 6 0 6 ν + 1 4 6 0 ) / 6 1 2
(37*v^7 - 84*v^6 - 73*v^5 - 181*v^4 + 1114*v^3 - 767*v^2 - 606*v + 1460) / 612
β 6 \beta_{6} β 6 = = =
( 20 ν 7 − 33 ν 6 − 56 ν 5 − 164 ν 4 + 536 ν 3 + 32 ν 2 − 96 ν + 355 ) / 153 ( 20\nu^{7} - 33\nu^{6} - 56\nu^{5} - 164\nu^{4} + 536\nu^{3} + 32\nu^{2} - 96\nu + 355 ) / 153 ( 2 0 ν 7 − 3 3 ν 6 − 5 6 ν 5 − 1 6 4 ν 4 + 5 3 6 ν 3 + 3 2 ν 2 − 9 6 ν + 3 5 5 ) / 1 5 3
(20*v^7 - 33*v^6 - 56*v^5 - 164*v^4 + 536*v^3 + 32*v^2 - 96*v + 355) / 153
β 7 \beta_{7} β 7 = = =
( − 205 ν 7 + 249 ν 6 + 676 ν 5 + 1681 ν 4 − 4831 ν 3 − 1858 ν 2 + 3228 ν − 2504 ) / 1224 ( -205\nu^{7} + 249\nu^{6} + 676\nu^{5} + 1681\nu^{4} - 4831\nu^{3} - 1858\nu^{2} + 3228\nu - 2504 ) / 1224 ( − 2 0 5 ν 7 + 2 4 9 ν 6 + 6 7 6 ν 5 + 1 6 8 1 ν 4 − 4 8 3 1 ν 3 − 1 8 5 8 ν 2 + 3 2 2 8 ν − 2 5 0 4 ) / 1 2 2 4
(-205*v^7 + 249*v^6 + 676*v^5 + 1681*v^4 - 4831*v^3 - 1858*v^2 + 3228*v - 2504) / 1224
ν \nu ν = = =
( β 7 + β 6 + β 4 + β 3 − β 1 − 1 ) / 2 ( \beta_{7} + \beta_{6} + \beta_{4} + \beta_{3} - \beta _1 - 1 ) / 2 ( β 7 + β 6 + β 4 + β 3 − β 1 − 1 ) / 2
(b7 + b6 + b4 + b3 - b1 - 1) / 2
ν 2 \nu^{2} ν 2 = = =
β 6 − β 5 − β 4 + β 3 − β 1 \beta_{6} - \beta_{5} - \beta_{4} + \beta_{3} - \beta_1 β 6 − β 5 − β 4 + β 3 − β 1
b6 - b5 - b4 + b3 - b1
ν 3 \nu^{3} ν 3 = = =
β 7 + β 6 − 3 β 5 + 3 β 4 − β 3 − β 2 − 2 β 1 + 4 \beta_{7} + \beta_{6} - 3\beta_{5} + 3\beta_{4} - \beta_{3} - \beta_{2} - 2\beta _1 + 4 β 7 + β 6 − 3 β 5 + 3 β 4 − β 3 − β 2 − 2 β 1 + 4
b7 + b6 - 3*b5 + 3*b4 - b3 - b2 - 2*b1 + 4
ν 4 \nu^{4} ν 4 = = =
2 β 7 + 2 β 6 + β 5 + 2 β 4 + 7 β 3 − 8 β 1 − 7 2\beta_{7} + 2\beta_{6} + \beta_{5} + 2\beta_{4} + 7\beta_{3} - 8\beta _1 - 7 2 β 7 + 2 β 6 + β 5 + 2 β 4 + 7 β 3 − 8 β 1 − 7
2*b7 + 2*b6 + b5 + 2*b4 + 7*b3 - 8*b1 - 7
ν 5 \nu^{5} ν 5 = = =
− 2 β 7 + 12 β 6 − 20 β 5 − 7 β 4 + 7 β 3 − 11 β 2 − 12 β 1 + 8 -2\beta_{7} + 12\beta_{6} - 20\beta_{5} - 7\beta_{4} + 7\beta_{3} - 11\beta_{2} - 12\beta _1 + 8 − 2 β 7 + 1 2 β 6 − 2 0 β 5 − 7 β 4 + 7 β 3 − 1 1 β 2 − 1 2 β 1 + 8
-2*b7 + 12*b6 - 20*b5 - 7*b4 + 7*b3 - 11*b2 - 12*b1 + 8
ν 6 \nu^{6} ν 6 = = =
4 β 7 − β 6 − 28 β 5 + 44 β 4 − 4 β 3 − 20 β 2 − 24 β 1 + 39 4\beta_{7} - \beta_{6} - 28\beta_{5} + 44\beta_{4} - 4\beta_{3} - 20\beta_{2} - 24\beta _1 + 39 4 β 7 − β 6 − 2 8 β 5 + 4 4 β 4 − 4 β 3 − 2 0 β 2 − 2 4 β 1 + 3 9
4*b7 - b6 - 28*b5 + 44*b4 - 4*b3 - 20*b2 - 24*b1 + 39
ν 7 \nu^{7} ν 7 = = =
− 7 β 7 + 30 β 6 − 12 β 5 − 7 β 4 + 98 β 3 − 37 β 2 − 86 β 1 − 98 -7\beta_{7} + 30\beta_{6} - 12\beta_{5} - 7\beta_{4} + 98\beta_{3} - 37\beta_{2} - 86\beta _1 - 98 − 7 β 7 + 3 0 β 6 − 1 2 β 5 − 7 β 4 + 9 8 β 3 − 3 7 β 2 − 8 6 β 1 − 9 8
-7*b7 + 30*b6 - 12*b5 - 7*b4 + 98*b3 - 37*b2 - 86*b1 - 98
Character values
We give the values of χ \chi χ on generators for ( Z / 156 Z ) × \left(\mathbb{Z}/156\mathbb{Z}\right)^\times ( Z / 1 5 6 Z ) × .
n n n
53 53 5 3
79 79 7 9
145 145 1 4 5
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 156 , [ χ ] ) S_{2}^{\mathrm{new}}(156, [\chi]) S 2 n e w ( 1 5 6 , [ χ ] ) :
T 5 4 + 19 T 5 2 + 64 T_{5}^{4} + 19T_{5}^{2} + 64 T 5 4 + 1 9 T 5 2 + 6 4
T5^4 + 19*T5^2 + 64
T 23 4 − 52 T 23 2 + 256 T_{23}^{4} - 52T_{23}^{2} + 256 T 2 3 4 − 5 2 T 2 3 2 + 2 5 6
T23^4 - 52*T23^2 + 256
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 4 − T 2 + 4 ) 2 (T^{4} - T^{2} + 4)^{2} ( T 4 − T 2 + 4 ) 2
(T^4 - T^2 + 4)^2
3 3 3
T 8 − T 6 + ⋯ + 81 T^{8} - T^{6} + \cdots + 81 T 8 − T 6 + ⋯ + 8 1
T^8 - T^6 - 8*T^4 - 9*T^2 + 81
5 5 5
( T 4 + 19 T 2 + 64 ) 2 (T^{4} + 19 T^{2} + 64)^{2} ( T 4 + 1 9 T 2 + 6 4 ) 2
(T^4 + 19*T^2 + 64)^2
7 7 7
( T 4 + 11 T 2 + 4 ) 2 (T^{4} + 11 T^{2} + 4)^{2} ( T 4 + 1 1 T 2 + 4 ) 2
(T^4 + 11*T^2 + 4)^2
11 11 1 1
T 8 T^{8} T 8
T^8
13 13 1 3
( T − 1 ) 8 (T - 1)^{8} ( T − 1 ) 8
(T - 1)^8
17 17 1 7
( T 4 + 19 T 2 + 64 ) 2 (T^{4} + 19 T^{2} + 64)^{2} ( T 4 + 1 9 T 2 + 6 4 ) 2
(T^4 + 19*T^2 + 64)^2
19 19 1 9
( T 2 + 28 ) 4 (T^{2} + 28)^{4} ( T 2 + 2 8 ) 4
(T^2 + 28)^4
23 23 2 3
( T 4 − 52 T 2 + 256 ) 2 (T^{4} - 52 T^{2} + 256)^{2} ( T 4 − 5 2 T 2 + 2 5 6 ) 2
(T^4 - 52*T^2 + 256)^2
29 29 2 9
( T 2 + 48 ) 4 (T^{2} + 48)^{4} ( T 2 + 4 8 ) 4
(T^2 + 48)^4
31 31 3 1
( T 2 + 28 ) 4 (T^{2} + 28)^{4} ( T 2 + 2 8 ) 4
(T^2 + 28)^4
37 37 3 7
( T 2 + T − 26 ) 4 (T^{2} + T - 26)^{4} ( T 2 + T − 2 6 ) 4
(T^2 + T - 26)^4
41 41 4 1
( T 4 + 124 T 2 + 64 ) 2 (T^{4} + 124 T^{2} + 64)^{2} ( T 4 + 1 2 4 T 2 + 6 4 ) 2
(T^4 + 124*T^2 + 64)^2
43 43 4 3
( T 4 + 179 T 2 + 6724 ) 2 (T^{4} + 179 T^{2} + 6724)^{2} ( T 4 + 1 7 9 T 2 + 6 7 2 4 ) 2
(T^4 + 179*T^2 + 6724)^2
47 47 4 7
( T 4 − 13 T 2 + 16 ) 2 (T^{4} - 13 T^{2} + 16)^{2} ( T 4 − 1 3 T 2 + 1 6 ) 2
(T^4 - 13*T^2 + 16)^2
53 53 5 3
( T 4 + 124 T 2 + 64 ) 2 (T^{4} + 124 T^{2} + 64)^{2} ( T 4 + 1 2 4 T 2 + 6 4 ) 2
(T^4 + 124*T^2 + 64)^2
59 59 5 9
T 8 T^{8} T 8
T^8
61 61 6 1
( T + 2 ) 8 (T + 2)^{8} ( T + 2 ) 8
(T + 2)^8
67 67 6 7
( T 2 + 28 ) 4 (T^{2} + 28)^{4} ( T 2 + 2 8 ) 4
(T^2 + 28)^4
71 71 7 1
( T 4 − 13 T 2 + 16 ) 2 (T^{4} - 13 T^{2} + 16)^{2} ( T 4 − 1 3 T 2 + 1 6 ) 2
(T^4 - 13*T^2 + 16)^2
73 73 7 3
( T 2 + 6 T − 96 ) 4 (T^{2} + 6 T - 96)^{4} ( T 2 + 6 T − 9 6 ) 4
(T^2 + 6*T - 96)^4
79 79 7 9
( T 4 + 44 T 2 + 64 ) 2 (T^{4} + 44 T^{2} + 64)^{2} ( T 4 + 4 4 T 2 + 6 4 ) 2
(T^4 + 44*T^2 + 64)^2
83 83 8 3
( T 4 − 208 T 2 + 4096 ) 2 (T^{4} - 208 T^{2} + 4096)^{2} ( T 4 − 2 0 8 T 2 + 4 0 9 6 ) 2
(T^4 - 208*T^2 + 4096)^2
89 89 8 9
( T 4 + 220 T 2 + 1600 ) 2 (T^{4} + 220 T^{2} + 1600)^{2} ( T 4 + 2 2 0 T 2 + 1 6 0 0 ) 2
(T^4 + 220*T^2 + 1600)^2
97 97 9 7
( T 2 − 10 T − 80 ) 4 (T^{2} - 10 T - 80)^{4} ( T 2 − 1 0 T − 8 0 ) 4
(T^2 - 10*T - 80)^4
show more
show less