Properties

Label 156.2.c.d.131.10
Level $156$
Weight $2$
Character 156.131
Analytic conductor $1.246$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [156,2,Mod(131,156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("156.131");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 156.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.24566627153\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.78003431400411136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{8} - 4x^{6} - 4x^{4} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.10
Root \(0.960471 - 1.03802i\) of defining polynomial
Character \(\chi\) \(=\) 156.131
Dual form 156.2.c.d.131.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.960471 + 1.03802i) q^{2} +(1.58957 + 0.687941i) q^{3} +(-0.154992 + 1.99399i) q^{4} -0.716254i q^{5} +(0.812636 + 2.31076i) q^{6} -4.43857i q^{7} +(-2.21867 + 1.75428i) q^{8} +(2.05347 + 2.18706i) q^{9} +(0.743490 - 0.687941i) q^{10} -6.03554 q^{11} +(-1.61812 + 3.06296i) q^{12} -1.00000 q^{13} +(4.60734 - 4.26311i) q^{14} +(0.492741 - 1.13854i) q^{15} +(-3.95196 - 0.618103i) q^{16} +2.94162i q^{17} +(-0.297925 + 4.23217i) q^{18} -2.16149i q^{19} +(1.42820 + 0.111014i) q^{20} +(3.05347 - 7.05542i) q^{21} +(-5.79696 - 6.26505i) q^{22} +2.19366 q^{23} +(-4.73358 + 1.26224i) q^{24} +4.48698 q^{25} +(-0.960471 - 1.03802i) q^{26} +(1.75957 + 4.88916i) q^{27} +(8.85044 + 0.687941i) q^{28} +(1.65509 - 0.582054i) q^{30} +3.96388i q^{31} +(-3.15413 - 4.69590i) q^{32} +(-9.59393 - 4.15210i) q^{33} +(-3.05347 + 2.82534i) q^{34} -3.17914 q^{35} +(-4.67924 + 3.75562i) q^{36} +4.10695 q^{37} +(2.24368 - 2.07605i) q^{38} +(-1.58957 - 0.687941i) q^{39} +(1.25651 + 1.58913i) q^{40} +6.07884i q^{41} +(10.2565 - 3.60694i) q^{42} -7.50125i q^{43} +(0.935460 - 12.0348i) q^{44} +(1.56649 - 1.47081i) q^{45} +(2.10695 + 2.27707i) q^{46} +5.69554 q^{47} +(-5.85670 - 3.70123i) q^{48} -12.7009 q^{49} +(4.30961 + 4.65760i) q^{50} +(-2.02366 + 4.67591i) q^{51} +(0.154992 - 1.99399i) q^{52} -5.88324i q^{53} +(-3.38506 + 6.52238i) q^{54} +4.32298i q^{55} +(7.78649 + 9.84772i) q^{56} +(1.48698 - 3.43585i) q^{57} -1.64822 q^{59} +(2.19386 + 1.15898i) q^{60} -4.61997 q^{61} +(-4.11460 + 3.80719i) q^{62} +(9.70743 - 9.11448i) q^{63} +(1.84501 - 7.78434i) q^{64} +0.716254i q^{65} +(-4.90470 - 13.9467i) q^{66} +11.9880i q^{67} +(-5.86554 - 0.455927i) q^{68} +(3.48698 + 1.50911i) q^{69} +(-3.05347 - 3.30003i) q^{70} +0.662741 q^{71} +(-8.39270 - 1.25001i) q^{72} -4.97396 q^{73} +(3.94460 + 4.26311i) q^{74} +(7.13237 + 3.08678i) q^{75} +(4.30998 + 0.335014i) q^{76} +26.7892i q^{77} +(-0.812636 - 2.31076i) q^{78} +7.02656i q^{79} +(-0.442719 + 2.83060i) q^{80} +(-0.566494 + 8.98215i) q^{81} +(-6.30998 + 5.83854i) q^{82} -6.68103 q^{83} +(13.5951 + 7.18211i) q^{84} +2.10695 q^{85} +(7.78649 - 7.20473i) q^{86} +(13.3909 - 10.5880i) q^{88} -8.94385i q^{89} +(3.03131 + 0.213390i) q^{90} +4.43857i q^{91} +(-0.339999 + 4.37413i) q^{92} +(-2.72691 + 6.30086i) q^{93} +(5.47040 + 5.91212i) q^{94} -1.54818 q^{95} +(-1.78321 - 9.63432i) q^{96} +8.97396 q^{97} +(-12.1988 - 13.1838i) q^{98} +(-12.3938 - 13.2001i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 5 q^{6} - 2 q^{9} - 14 q^{10} - 5 q^{12} - 12 q^{13} + 4 q^{16} + 9 q^{18} + 10 q^{21} - 20 q^{22} - 29 q^{24} + 8 q^{25} + 30 q^{28} + 19 q^{30} - 16 q^{33} - 10 q^{34} - 19 q^{36} - 4 q^{37} + 38 q^{40}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.960471 + 1.03802i 0.679155 + 0.733995i
\(3\) 1.58957 + 0.687941i 0.917739 + 0.397183i
\(4\) −0.154992 + 1.99399i −0.0774959 + 0.996993i
\(5\) 0.716254i 0.320319i −0.987091 0.160159i \(-0.948799\pi\)
0.987091 0.160159i \(-0.0512008\pi\)
\(6\) 0.812636 + 2.31076i 0.331757 + 0.943365i
\(7\) 4.43857i 1.67762i −0.544424 0.838810i \(-0.683252\pi\)
0.544424 0.838810i \(-0.316748\pi\)
\(8\) −2.21867 + 1.75428i −0.784419 + 0.620231i
\(9\) 2.05347 + 2.18706i 0.684491 + 0.729021i
\(10\) 0.743490 0.687941i 0.235112 0.217546i
\(11\) −6.03554 −1.81978 −0.909892 0.414844i \(-0.863836\pi\)
−0.909892 + 0.414844i \(0.863836\pi\)
\(12\) −1.61812 + 3.06296i −0.467110 + 0.884199i
\(13\) −1.00000 −0.277350
\(14\) 4.60734 4.26311i 1.23136 1.13937i
\(15\) 0.492741 1.13854i 0.127225 0.293969i
\(16\) −3.95196 0.618103i −0.987989 0.154526i
\(17\) 2.94162i 0.713447i 0.934210 + 0.356724i \(0.116106\pi\)
−0.934210 + 0.356724i \(0.883894\pi\)
\(18\) −0.297925 + 4.23217i −0.0702217 + 0.997531i
\(19\) 2.16149i 0.495880i −0.968775 0.247940i \(-0.920246\pi\)
0.968775 0.247940i \(-0.0797536\pi\)
\(20\) 1.42820 + 0.111014i 0.319355 + 0.0248234i
\(21\) 3.05347 7.05542i 0.666323 1.53962i
\(22\) −5.79696 6.26505i −1.23592 1.33571i
\(23\) 2.19366 0.457410 0.228705 0.973496i \(-0.426551\pi\)
0.228705 + 0.973496i \(0.426551\pi\)
\(24\) −4.73358 + 1.26224i −0.966238 + 0.257653i
\(25\) 4.48698 0.897396
\(26\) −0.960471 1.03802i −0.188364 0.203573i
\(27\) 1.75957 + 4.88916i 0.338630 + 0.940920i
\(28\) 8.85044 + 0.687941i 1.67258 + 0.130009i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 1.65509 0.582054i 0.302177 0.106268i
\(31\) 3.96388i 0.711933i 0.934499 + 0.355967i \(0.115848\pi\)
−0.934499 + 0.355967i \(0.884152\pi\)
\(32\) −3.15413 4.69590i −0.557577 0.830125i
\(33\) −9.59393 4.15210i −1.67009 0.722788i
\(34\) −3.05347 + 2.82534i −0.523666 + 0.484542i
\(35\) −3.17914 −0.537373
\(36\) −4.67924 + 3.75562i −0.779874 + 0.625937i
\(37\) 4.10695 0.675178 0.337589 0.941294i \(-0.390389\pi\)
0.337589 + 0.941294i \(0.390389\pi\)
\(38\) 2.24368 2.07605i 0.363973 0.336780i
\(39\) −1.58957 0.687941i −0.254535 0.110159i
\(40\) 1.25651 + 1.58913i 0.198672 + 0.251264i
\(41\) 6.07884i 0.949355i 0.880160 + 0.474677i \(0.157435\pi\)
−0.880160 + 0.474677i \(0.842565\pi\)
\(42\) 10.2565 3.60694i 1.58261 0.556563i
\(43\) 7.50125i 1.14393i −0.820278 0.571965i \(-0.806181\pi\)
0.820278 0.571965i \(-0.193819\pi\)
\(44\) 0.935460 12.0348i 0.141026 1.81431i
\(45\) 1.56649 1.47081i 0.233519 0.219255i
\(46\) 2.10695 + 2.27707i 0.310652 + 0.335736i
\(47\) 5.69554 0.830781 0.415390 0.909643i \(-0.363645\pi\)
0.415390 + 0.909643i \(0.363645\pi\)
\(48\) −5.85670 3.70123i −0.845341 0.534227i
\(49\) −12.7009 −1.81441
\(50\) 4.30961 + 4.65760i 0.609471 + 0.658684i
\(51\) −2.02366 + 4.67591i −0.283369 + 0.654759i
\(52\) 0.154992 1.99399i 0.0214935 0.276516i
\(53\) 5.88324i 0.808125i −0.914731 0.404062i \(-0.867598\pi\)
0.914731 0.404062i \(-0.132402\pi\)
\(54\) −3.38506 + 6.52238i −0.460648 + 0.887583i
\(55\) 4.32298i 0.582911i
\(56\) 7.78649 + 9.84772i 1.04051 + 1.31596i
\(57\) 1.48698 3.43585i 0.196955 0.455089i
\(58\) 0 0
\(59\) −1.64822 −0.214580 −0.107290 0.994228i \(-0.534217\pi\)
−0.107290 + 0.994228i \(0.534217\pi\)
\(60\) 2.19386 + 1.15898i 0.283226 + 0.149624i
\(61\) −4.61997 −0.591526 −0.295763 0.955261i \(-0.595574\pi\)
−0.295763 + 0.955261i \(0.595574\pi\)
\(62\) −4.11460 + 3.80719i −0.522555 + 0.483513i
\(63\) 9.70743 9.11448i 1.22302 1.14832i
\(64\) 1.84501 7.78434i 0.230626 0.973042i
\(65\) 0.716254i 0.0888404i
\(66\) −4.90470 13.9467i −0.603727 1.71672i
\(67\) 11.9880i 1.46457i 0.680999 + 0.732284i \(0.261546\pi\)
−0.680999 + 0.732284i \(0.738454\pi\)
\(68\) −5.86554 0.455927i −0.711302 0.0552892i
\(69\) 3.48698 + 1.50911i 0.419783 + 0.181675i
\(70\) −3.05347 3.30003i −0.364960 0.394429i
\(71\) 0.662741 0.0786528 0.0393264 0.999226i \(-0.487479\pi\)
0.0393264 + 0.999226i \(0.487479\pi\)
\(72\) −8.39270 1.25001i −0.989090 0.147315i
\(73\) −4.97396 −0.582158 −0.291079 0.956699i \(-0.594014\pi\)
−0.291079 + 0.956699i \(0.594014\pi\)
\(74\) 3.94460 + 4.26311i 0.458551 + 0.495577i
\(75\) 7.13237 + 3.08678i 0.823576 + 0.356431i
\(76\) 4.30998 + 0.335014i 0.494389 + 0.0384287i
\(77\) 26.7892i 3.05291i
\(78\) −0.812636 2.31076i −0.0920130 0.261642i
\(79\) 7.02656i 0.790550i 0.918563 + 0.395275i \(0.129351\pi\)
−0.918563 + 0.395275i \(0.870649\pi\)
\(80\) −0.442719 + 2.83060i −0.0494975 + 0.316471i
\(81\) −0.566494 + 8.98215i −0.0629437 + 0.998017i
\(82\) −6.30998 + 5.83854i −0.696821 + 0.644759i
\(83\) −6.68103 −0.733338 −0.366669 0.930351i \(-0.619502\pi\)
−0.366669 + 0.930351i \(0.619502\pi\)
\(84\) 13.5951 + 7.18211i 1.48335 + 0.783633i
\(85\) 2.10695 0.228530
\(86\) 7.78649 7.20473i 0.839638 0.776906i
\(87\) 0 0
\(88\) 13.3909 10.5880i 1.42747 1.12869i
\(89\) 8.94385i 0.948047i −0.880512 0.474023i \(-0.842801\pi\)
0.880512 0.474023i \(-0.157199\pi\)
\(90\) 3.03131 + 0.213390i 0.319528 + 0.0224933i
\(91\) 4.43857i 0.465288i
\(92\) −0.339999 + 4.37413i −0.0354474 + 0.456034i
\(93\) −2.72691 + 6.30086i −0.282768 + 0.653369i
\(94\) 5.47040 + 5.91212i 0.564229 + 0.609788i
\(95\) −1.54818 −0.158840
\(96\) −1.78321 9.63432i −0.181999 0.983299i
\(97\) 8.97396 0.911168 0.455584 0.890193i \(-0.349431\pi\)
0.455584 + 0.890193i \(0.349431\pi\)
\(98\) −12.1988 13.1838i −1.23227 1.33177i
\(99\) −12.3938 13.2001i −1.24563 1.32666i
\(100\) −0.695445 + 8.94697i −0.0695445 + 0.894697i
\(101\) 4.45073i 0.442864i −0.975176 0.221432i \(-0.928927\pi\)
0.975176 0.221432i \(-0.0710731\pi\)
\(102\) −6.79738 + 2.39047i −0.673041 + 0.236691i
\(103\) 0.901192i 0.0887971i −0.999014 0.0443985i \(-0.985863\pi\)
0.999014 0.0443985i \(-0.0141371\pi\)
\(104\) 2.21867 1.75428i 0.217559 0.172021i
\(105\) −5.05347 2.18706i −0.493169 0.213436i
\(106\) 6.10695 5.65068i 0.593159 0.548842i
\(107\) −5.03280 −0.486539 −0.243270 0.969959i \(-0.578220\pi\)
−0.243270 + 0.969959i \(0.578220\pi\)
\(108\) −10.0216 + 2.75078i −0.964333 + 0.264694i
\(109\) −2.86701 −0.274610 −0.137305 0.990529i \(-0.543844\pi\)
−0.137305 + 0.990529i \(0.543844\pi\)
\(110\) −4.48737 + 4.15210i −0.427854 + 0.395887i
\(111\) 6.52828 + 2.82534i 0.619637 + 0.268169i
\(112\) −2.74349 + 17.5410i −0.259235 + 1.65747i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 4.99469 1.75651i 0.467796 0.164512i
\(115\) 1.57122i 0.146517i
\(116\) 0 0
\(117\) −2.05347 2.18706i −0.189844 0.202194i
\(118\) −1.58307 1.71090i −0.145733 0.157501i
\(119\) 13.0566 1.19689
\(120\) 0.904082 + 3.39045i 0.0825310 + 0.309504i
\(121\) 25.4278 2.31162
\(122\) −4.43734 4.79564i −0.401738 0.434177i
\(123\) −4.18188 + 9.66274i −0.377068 + 0.871260i
\(124\) −7.90391 0.614368i −0.709792 0.0551719i
\(125\) 6.79509i 0.607771i
\(126\) 18.7848 + 1.32236i 1.67348 + 0.117805i
\(127\) 3.65296i 0.324148i −0.986779 0.162074i \(-0.948182\pi\)
0.986779 0.162074i \(-0.0518183\pi\)
\(128\) 9.85242 5.56147i 0.870839 0.491569i
\(129\) 5.16042 11.9238i 0.454350 1.04983i
\(130\) −0.743490 + 0.687941i −0.0652084 + 0.0603364i
\(131\) −0.985482 −0.0861020 −0.0430510 0.999073i \(-0.513708\pi\)
−0.0430510 + 0.999073i \(0.513708\pi\)
\(132\) 9.76621 18.4866i 0.850039 1.60905i
\(133\) −9.59393 −0.831899
\(134\) −12.4439 + 11.5141i −1.07498 + 0.994669i
\(135\) 3.50188 1.26030i 0.301394 0.108469i
\(136\) −5.16042 6.52649i −0.442502 0.559642i
\(137\) 5.09038i 0.434901i −0.976071 0.217450i \(-0.930226\pi\)
0.976071 0.217450i \(-0.0697740\pi\)
\(138\) 1.78265 + 5.06903i 0.151749 + 0.431504i
\(139\) 1.37588i 0.116701i −0.998296 0.0583504i \(-0.981416\pi\)
0.998296 0.0583504i \(-0.0185841\pi\)
\(140\) 0.492741 6.33916i 0.0416442 0.535757i
\(141\) 9.05347 + 3.91820i 0.762440 + 0.329972i
\(142\) 0.636543 + 0.687941i 0.0534175 + 0.0577308i
\(143\) 6.03554 0.504718
\(144\) −6.76341 9.91243i −0.563617 0.826036i
\(145\) 0 0
\(146\) −4.77734 5.16309i −0.395376 0.427301i
\(147\) −20.1889 8.73746i −1.66516 0.720653i
\(148\) −0.636543 + 8.18919i −0.0523235 + 0.673147i
\(149\) 18.6806i 1.53037i −0.643810 0.765186i \(-0.722647\pi\)
0.643810 0.765186i \(-0.277353\pi\)
\(150\) 3.64628 + 10.3683i 0.297718 + 0.846572i
\(151\) 11.5133i 0.936940i −0.883479 0.468470i \(-0.844805\pi\)
0.883479 0.468470i \(-0.155195\pi\)
\(152\) 3.79186 + 4.79564i 0.307561 + 0.388978i
\(153\) −6.43351 + 6.04054i −0.520118 + 0.488348i
\(154\) −27.8078 + 25.7302i −2.24082 + 2.07340i
\(155\) 2.83914 0.228045
\(156\) 1.61812 3.06296i 0.129553 0.245233i
\(157\) −15.5939 −1.24453 −0.622265 0.782806i \(-0.713788\pi\)
−0.622265 + 0.782806i \(0.713788\pi\)
\(158\) −7.29374 + 6.74881i −0.580259 + 0.536906i
\(159\) 4.04732 9.35182i 0.320973 0.741648i
\(160\) −3.36346 + 2.25916i −0.265905 + 0.178602i
\(161\) 9.73671i 0.767360i
\(162\) −9.86780 + 8.03906i −0.775288 + 0.631608i
\(163\) 15.5928i 1.22132i 0.791893 + 0.610660i \(0.209096\pi\)
−0.791893 + 0.610660i \(0.790904\pi\)
\(164\) −12.1211 0.942170i −0.946500 0.0735711i
\(165\) −2.97396 + 6.87169i −0.231522 + 0.534960i
\(166\) −6.41693 6.93507i −0.498050 0.538266i
\(167\) −13.7193 −1.06163 −0.530816 0.847487i \(-0.678114\pi\)
−0.530816 + 0.847487i \(0.678114\pi\)
\(168\) 5.60252 + 21.0103i 0.432244 + 1.62098i
\(169\) 1.00000 0.0769231
\(170\) 2.02366 + 2.18706i 0.155208 + 0.167740i
\(171\) 4.72732 4.43857i 0.361507 0.339426i
\(172\) 14.9574 + 1.16263i 1.14049 + 0.0886499i
\(173\) 12.1577i 0.924331i −0.886794 0.462165i \(-0.847073\pi\)
0.886794 0.462165i \(-0.152927\pi\)
\(174\) 0 0
\(175\) 19.9158i 1.50549i
\(176\) 23.8522 + 3.73059i 1.79793 + 0.281203i
\(177\) −2.61997 1.13388i −0.196929 0.0852277i
\(178\) 9.28394 8.59031i 0.695861 0.643871i
\(179\) 2.31096 0.172729 0.0863647 0.996264i \(-0.472475\pi\)
0.0863647 + 0.996264i \(0.472475\pi\)
\(180\) 2.68998 + 3.35153i 0.200499 + 0.249808i
\(181\) −12.8339 −0.953933 −0.476967 0.878921i \(-0.658264\pi\)
−0.476967 + 0.878921i \(0.658264\pi\)
\(182\) −4.60734 + 4.26311i −0.341519 + 0.316003i
\(183\) −7.34377 3.17827i −0.542867 0.234944i
\(184\) −4.86701 + 3.84829i −0.358801 + 0.283700i
\(185\) 2.94162i 0.216272i
\(186\) −9.15957 + 3.22119i −0.671613 + 0.236189i
\(187\) 17.7543i 1.29832i
\(188\) −0.882763 + 11.3568i −0.0643821 + 0.828282i
\(189\) 21.7009 7.80997i 1.57851 0.568092i
\(190\) −1.48698 1.60705i −0.107877 0.116587i
\(191\) 11.8484 0.857319 0.428660 0.903466i \(-0.358986\pi\)
0.428660 + 0.903466i \(0.358986\pi\)
\(192\) 8.28794 11.1045i 0.598131 0.801399i
\(193\) 14.2139 1.02314 0.511569 0.859242i \(-0.329064\pi\)
0.511569 + 0.859242i \(0.329064\pi\)
\(194\) 8.61923 + 9.31519i 0.618824 + 0.668792i
\(195\) −0.492741 + 1.13854i −0.0352859 + 0.0815323i
\(196\) 1.96853 25.3254i 0.140609 1.80895i
\(197\) 20.6337i 1.47009i 0.678017 + 0.735046i \(0.262839\pi\)
−0.678017 + 0.735046i \(0.737161\pi\)
\(198\) 1.79814 25.5434i 0.127788 1.81529i
\(199\) 12.2989i 0.871848i −0.899984 0.435924i \(-0.856422\pi\)
0.899984 0.435924i \(-0.143578\pi\)
\(200\) −9.95514 + 7.87142i −0.703934 + 0.556593i
\(201\) −8.24705 + 19.0558i −0.581702 + 1.34409i
\(202\) 4.61997 4.27479i 0.325060 0.300773i
\(203\) 0 0
\(204\) −9.01005 4.75988i −0.630830 0.333258i
\(205\) 4.35399 0.304096
\(206\) 0.935460 0.865568i 0.0651766 0.0603070i
\(207\) 4.50462 + 4.79768i 0.313093 + 0.333461i
\(208\) 3.95196 + 0.618103i 0.274019 + 0.0428577i
\(209\) 13.0458i 0.902395i
\(210\) −2.58349 7.34624i −0.178278 0.506939i
\(211\) 24.6337i 1.69585i 0.530114 + 0.847926i \(0.322149\pi\)
−0.530114 + 0.847926i \(0.677851\pi\)
\(212\) 11.7311 + 0.911853i 0.805694 + 0.0626263i
\(213\) 1.05347 + 0.455927i 0.0721828 + 0.0312396i
\(214\) −4.83386 5.22418i −0.330436 0.357117i
\(215\) −5.37280 −0.366422
\(216\) −12.4809 7.76067i −0.849215 0.528047i
\(217\) 17.5939 1.19435
\(218\) −2.75368 2.97603i −0.186503 0.201562i
\(219\) −7.90646 3.42179i −0.534269 0.231223i
\(220\) −8.61997 0.670027i −0.581158 0.0451732i
\(221\) 2.94162i 0.197875i
\(222\) 3.33745 + 9.49018i 0.223995 + 0.636939i
\(223\) 14.8869i 0.996902i 0.866918 + 0.498451i \(0.166098\pi\)
−0.866918 + 0.498451i \(0.833902\pi\)
\(224\) −20.8431 + 13.9998i −1.39264 + 0.935402i
\(225\) 9.21389 + 9.81331i 0.614260 + 0.654221i
\(226\) 0 0
\(227\) 8.00651 0.531411 0.265705 0.964054i \(-0.414395\pi\)
0.265705 + 0.964054i \(0.414395\pi\)
\(228\) 6.62056 + 3.49754i 0.438457 + 0.231630i
\(229\) 27.5087 1.81783 0.908913 0.416986i \(-0.136914\pi\)
0.908913 + 0.416986i \(0.136914\pi\)
\(230\) 1.63096 1.50911i 0.107543 0.0995078i
\(231\) −18.4294 + 42.5833i −1.21256 + 2.80177i
\(232\) 0 0
\(233\) 20.4381i 1.33895i −0.742836 0.669473i \(-0.766520\pi\)
0.742836 0.669473i \(-0.233480\pi\)
\(234\) 0.297925 4.23217i 0.0194760 0.276665i
\(235\) 4.07946i 0.266115i
\(236\) 0.255461 3.28653i 0.0166291 0.213935i
\(237\) −4.83386 + 11.1692i −0.313993 + 0.725519i
\(238\) 12.5405 + 13.5530i 0.812877 + 0.878513i
\(239\) −6.37554 −0.412400 −0.206200 0.978510i \(-0.566110\pi\)
−0.206200 + 0.978510i \(0.566110\pi\)
\(240\) −2.65102 + 4.19488i −0.171123 + 0.270779i
\(241\) −14.4278 −0.929375 −0.464688 0.885475i \(-0.653833\pi\)
−0.464688 + 0.885475i \(0.653833\pi\)
\(242\) 24.4226 + 26.3947i 1.56995 + 1.69671i
\(243\) −7.07968 + 13.8881i −0.454161 + 0.890919i
\(244\) 0.716057 9.21215i 0.0458408 0.589747i
\(245\) 9.09706i 0.581190i
\(246\) −14.0467 + 4.93988i −0.895588 + 0.314955i
\(247\) 2.16149i 0.137532i
\(248\) −6.95375 8.79454i −0.441563 0.558454i
\(249\) −10.6200 4.59615i −0.673013 0.291269i
\(250\) 7.05347 6.52649i 0.446101 0.412771i
\(251\) 23.9195 1.50978 0.754892 0.655849i \(-0.227689\pi\)
0.754892 + 0.655849i \(0.227689\pi\)
\(252\) 16.6696 + 20.7691i 1.05008 + 1.30833i
\(253\) −13.2399 −0.832388
\(254\) 3.79186 3.50856i 0.237923 0.220147i
\(255\) 3.34914 + 1.44946i 0.209731 + 0.0907684i
\(256\) 15.2359 + 4.88543i 0.952244 + 0.305339i
\(257\) 16.5318i 1.03123i 0.856822 + 0.515613i \(0.172436\pi\)
−0.856822 + 0.515613i \(0.827564\pi\)
\(258\) 17.3336 6.09579i 1.07914 0.379507i
\(259\) 18.2290i 1.13269i
\(260\) −1.42820 0.111014i −0.0885732 0.00688477i
\(261\) 0 0
\(262\) −0.946527 1.02295i −0.0584766 0.0631984i
\(263\) 25.4677 1.57040 0.785201 0.619240i \(-0.212559\pi\)
0.785201 + 0.619240i \(0.212559\pi\)
\(264\) 28.5697 7.61828i 1.75834 0.468873i
\(265\) −4.21389 −0.258857
\(266\) −9.21469 9.95874i −0.564989 0.610609i
\(267\) 6.15285 14.2169i 0.376548 0.870060i
\(268\) −23.9039 1.85804i −1.46016 0.113498i
\(269\) 22.4916i 1.37134i −0.727913 0.685670i \(-0.759509\pi\)
0.727913 0.685670i \(-0.240491\pi\)
\(270\) 4.67168 + 2.42456i 0.284309 + 0.147554i
\(271\) 20.6216i 1.25267i −0.779552 0.626337i \(-0.784553\pi\)
0.779552 0.626337i \(-0.215447\pi\)
\(272\) 1.81822 11.6251i 0.110246 0.704878i
\(273\) −3.05347 + 7.05542i −0.184805 + 0.427013i
\(274\) 5.28394 4.88916i 0.319215 0.295365i
\(275\) −27.0814 −1.63307
\(276\) −3.54960 + 6.71909i −0.213661 + 0.404442i
\(277\) −13.1879 −0.792381 −0.396191 0.918168i \(-0.629668\pi\)
−0.396191 + 0.918168i \(0.629668\pi\)
\(278\) 1.42820 1.32150i 0.0856578 0.0792580i
\(279\) −8.66925 + 8.13971i −0.519014 + 0.487312i
\(280\) 7.05347 5.57710i 0.421526 0.333296i
\(281\) 12.4061i 0.740087i 0.929014 + 0.370044i \(0.120657\pi\)
−0.929014 + 0.370044i \(0.879343\pi\)
\(282\) 4.62841 + 13.1610i 0.275618 + 0.783729i
\(283\) 10.4002i 0.618225i 0.951025 + 0.309113i \(0.100032\pi\)
−0.951025 + 0.309113i \(0.899968\pi\)
\(284\) −0.102719 + 1.32150i −0.00609527 + 0.0784163i
\(285\) −2.46094 1.06506i −0.145773 0.0630885i
\(286\) 5.79696 + 6.26505i 0.342782 + 0.370460i
\(287\) 26.9813 1.59266
\(288\) 3.79330 16.5412i 0.223522 0.974699i
\(289\) 8.34688 0.490993
\(290\) 0 0
\(291\) 14.2647 + 6.17356i 0.836214 + 0.361900i
\(292\) 0.770923 9.91800i 0.0451148 0.580407i
\(293\) 29.9264i 1.74832i 0.485640 + 0.874159i \(0.338587\pi\)
−0.485640 + 0.874159i \(0.661413\pi\)
\(294\) −10.3212 29.3487i −0.601944 1.71165i
\(295\) 1.18055i 0.0687341i
\(296\) −9.11197 + 7.20473i −0.529622 + 0.418767i
\(297\) −10.6200 29.5088i −0.616233 1.71227i
\(298\) 19.3909 17.9421i 1.12328 1.03936i
\(299\) −2.19366 −0.126863
\(300\) −7.26045 + 13.7434i −0.419182 + 0.793477i
\(301\) −33.2948 −1.91908
\(302\) 11.9511 11.0582i 0.687709 0.636328i
\(303\) 3.06184 7.07475i 0.175898 0.406434i
\(304\) −1.33602 + 8.54212i −0.0766262 + 0.489924i
\(305\) 3.30907i 0.189477i
\(306\) −12.4494 0.876383i −0.711686 0.0500995i
\(307\) 28.1711i 1.60781i 0.594760 + 0.803904i \(0.297247\pi\)
−0.594760 + 0.803904i \(0.702753\pi\)
\(308\) −53.4172 4.15210i −3.04373 0.236588i
\(309\) 0.619967 1.43251i 0.0352687 0.0814926i
\(310\) 2.72691 + 2.94710i 0.154878 + 0.167384i
\(311\) −21.5031 −1.21933 −0.609665 0.792659i \(-0.708696\pi\)
−0.609665 + 0.792659i \(0.708696\pi\)
\(312\) 4.73358 1.26224i 0.267986 0.0714600i
\(313\) −20.5347 −1.16069 −0.580346 0.814370i \(-0.697083\pi\)
−0.580346 + 0.814370i \(0.697083\pi\)
\(314\) −14.9775 16.1869i −0.845230 0.913479i
\(315\) −6.52828 6.95299i −0.367827 0.391756i
\(316\) −14.0109 1.08906i −0.788172 0.0612644i
\(317\) 1.78131i 0.100048i 0.998748 + 0.0500242i \(0.0159298\pi\)
−0.998748 + 0.0500242i \(0.984070\pi\)
\(318\) 13.5948 4.78093i 0.762356 0.268101i
\(319\) 0 0
\(320\) −5.57557 1.32150i −0.311684 0.0738738i
\(321\) −8.00000 3.46227i −0.446516 0.193245i
\(322\) 10.1069 9.35182i 0.563238 0.521157i
\(323\) 6.35828 0.353784
\(324\) −17.8225 2.52174i −0.990138 0.140097i
\(325\) −4.48698 −0.248893
\(326\) −16.1857 + 14.9764i −0.896442 + 0.829466i
\(327\) −4.55732 1.97234i −0.252020 0.109070i
\(328\) −10.6640 13.4869i −0.588820 0.744692i
\(329\) 25.2801i 1.39373i
\(330\) −9.98939 + 3.51301i −0.549898 + 0.193385i
\(331\) 26.3687i 1.44935i −0.689089 0.724677i \(-0.741989\pi\)
0.689089 0.724677i \(-0.258011\pi\)
\(332\) 1.03550 13.3219i 0.0568307 0.731133i
\(333\) 8.43351 + 8.98215i 0.462153 + 0.492219i
\(334\) −13.1770 14.2410i −0.721013 0.779232i
\(335\) 8.58646 0.469129
\(336\) −16.4282 + 25.9953i −0.896230 + 1.41816i
\(337\) 1.13299 0.0617178 0.0308589 0.999524i \(-0.490176\pi\)
0.0308589 + 0.999524i \(0.490176\pi\)
\(338\) 0.960471 + 1.03802i 0.0522427 + 0.0564611i
\(339\) 0 0
\(340\) −0.326559 + 4.20122i −0.0177102 + 0.227843i
\(341\) 23.9241i 1.29557i
\(342\) 9.14780 + 0.643963i 0.494656 + 0.0348215i
\(343\) 25.3037i 1.36627i
\(344\) 13.1593 + 16.6428i 0.709501 + 0.897320i
\(345\) 1.08091 2.49756i 0.0581940 0.134464i
\(346\) 12.6200 11.6771i 0.678454 0.627764i
\(347\) 20.2830 1.08885 0.544425 0.838809i \(-0.316748\pi\)
0.544425 + 0.838809i \(0.316748\pi\)
\(348\) 0 0
\(349\) 1.34688 0.0720969 0.0360484 0.999350i \(-0.488523\pi\)
0.0360484 + 0.999350i \(0.488523\pi\)
\(350\) 20.6731 19.1285i 1.10502 1.02246i
\(351\) −1.75957 4.88916i −0.0939189 0.260964i
\(352\) 19.0369 + 28.3423i 1.01467 + 1.51065i
\(353\) 34.8978i 1.85742i −0.370806 0.928710i \(-0.620919\pi\)
0.370806 0.928710i \(-0.379081\pi\)
\(354\) −1.33941 3.80865i −0.0711886 0.202427i
\(355\) 0.474691i 0.0251940i
\(356\) 17.8339 + 1.38622i 0.945195 + 0.0734697i
\(357\) 20.7543 + 8.98215i 1.09844 + 0.475386i
\(358\) 2.21961 + 2.39884i 0.117310 + 0.126783i
\(359\) −26.8813 −1.41874 −0.709370 0.704837i \(-0.751020\pi\)
−0.709370 + 0.704837i \(0.751020\pi\)
\(360\) −0.895325 + 6.01131i −0.0471878 + 0.316824i
\(361\) 14.3280 0.754103
\(362\) −12.3265 13.3219i −0.647869 0.700182i
\(363\) 40.4193 + 17.4928i 2.12146 + 0.918135i
\(364\) −8.85044 0.687941i −0.463889 0.0360579i
\(365\) 3.56262i 0.186476i
\(366\) −3.75435 10.6756i −0.196243 0.558025i
\(367\) 12.9208i 0.674458i 0.941423 + 0.337229i \(0.109490\pi\)
−0.941423 + 0.337229i \(0.890510\pi\)
\(368\) −8.66925 1.35591i −0.451916 0.0706816i
\(369\) −13.2948 + 12.4827i −0.692100 + 0.649825i
\(370\) 3.05347 2.82534i 0.158743 0.146882i
\(371\) −26.1131 −1.35573
\(372\) −12.1412 6.41401i −0.629491 0.332551i
\(373\) −12.9740 −0.671766 −0.335883 0.941904i \(-0.609035\pi\)
−0.335883 + 0.941904i \(0.609035\pi\)
\(374\) 18.4294 17.0525i 0.952960 0.881761i
\(375\) 4.67462 10.8013i 0.241397 0.557776i
\(376\) −12.6365 + 9.99158i −0.651680 + 0.515276i
\(377\) 0 0
\(378\) 28.9500 + 15.0248i 1.48903 + 0.772792i
\(379\) 10.0892i 0.518250i 0.965844 + 0.259125i \(0.0834341\pi\)
−0.965844 + 0.259125i \(0.916566\pi\)
\(380\) 0.239955 3.08704i 0.0123094 0.158362i
\(381\) 2.51302 5.80664i 0.128746 0.297483i
\(382\) 11.3800 + 12.2989i 0.582253 + 0.629268i
\(383\) −29.1577 −1.48989 −0.744945 0.667126i \(-0.767524\pi\)
−0.744945 + 0.667126i \(0.767524\pi\)
\(384\) 19.4871 2.06246i 0.994446 0.105250i
\(385\) 19.1879 0.977904
\(386\) 13.6520 + 14.7544i 0.694870 + 0.750978i
\(387\) 16.4057 15.4036i 0.833949 0.783010i
\(388\) −1.39089 + 17.8939i −0.0706117 + 0.908427i
\(389\) 7.31575i 0.370923i 0.982652 + 0.185462i \(0.0593780\pi\)
−0.982652 + 0.185462i \(0.940622\pi\)
\(390\) −1.65509 + 0.582054i −0.0838089 + 0.0294735i
\(391\) 6.45291i 0.326338i
\(392\) 28.1791 22.2809i 1.42326 1.12535i
\(393\) −1.56649 0.677954i −0.0790192 0.0341982i
\(394\) −21.4183 + 19.8181i −1.07904 + 0.998421i
\(395\) 5.03280 0.253228
\(396\) 28.2418 22.6672i 1.41920 1.13907i
\(397\) 10.4278 0.523356 0.261678 0.965155i \(-0.415724\pi\)
0.261678 + 0.965155i \(0.415724\pi\)
\(398\) 12.7666 11.8128i 0.639931 0.592120i
\(399\) −15.2502 6.60006i −0.763466 0.330416i
\(400\) −17.7323 2.77341i −0.886617 0.138671i
\(401\) 29.0145i 1.44892i 0.689319 + 0.724458i \(0.257910\pi\)
−0.689319 + 0.724458i \(0.742090\pi\)
\(402\) −27.7014 + 9.74189i −1.38162 + 0.485881i
\(403\) 3.96388i 0.197455i
\(404\) 8.87469 + 0.689826i 0.441532 + 0.0343201i
\(405\) 6.43351 + 0.405754i 0.319683 + 0.0201621i
\(406\) 0 0
\(407\) −24.7877 −1.22868
\(408\) −3.71302 13.9244i −0.183822 0.689360i
\(409\) 6.81215 0.336839 0.168419 0.985715i \(-0.446134\pi\)
0.168419 + 0.985715i \(0.446134\pi\)
\(410\) 4.18188 + 4.51955i 0.206528 + 0.223205i
\(411\) 3.50188 8.09152i 0.172735 0.399125i
\(412\) 1.79696 + 0.139677i 0.0885300 + 0.00688141i
\(413\) 7.31575i 0.359984i
\(414\) −0.653547 + 9.28394i −0.0321201 + 0.456281i
\(415\) 4.78531i 0.234902i
\(416\) 3.15413 + 4.69590i 0.154644 + 0.230235i
\(417\) 0.946527 2.18706i 0.0463516 0.107101i
\(418\) −13.5418 + 12.5301i −0.662353 + 0.612867i
\(419\) −12.4111 −0.606321 −0.303161 0.952939i \(-0.598042\pi\)
−0.303161 + 0.952939i \(0.598042\pi\)
\(420\) 5.14422 9.73758i 0.251012 0.475145i
\(421\) 30.2688 1.47521 0.737605 0.675233i \(-0.235957\pi\)
0.737605 + 0.675233i \(0.235957\pi\)
\(422\) −25.5704 + 23.6599i −1.24475 + 1.15175i
\(423\) 11.6956 + 12.4565i 0.568662 + 0.605657i
\(424\) 10.3208 + 13.0530i 0.501224 + 0.633908i
\(425\) 13.1990i 0.640245i
\(426\) 0.538567 + 1.53144i 0.0260937 + 0.0741983i
\(427\) 20.5060i 0.992356i
\(428\) 0.780043 10.0353i 0.0377048 0.485076i
\(429\) 9.59393 + 4.15210i 0.463199 + 0.200465i
\(430\) −5.16042 5.57710i −0.248858 0.268952i
\(431\) 30.4832 1.46832 0.734162 0.678974i \(-0.237575\pi\)
0.734162 + 0.678974i \(0.237575\pi\)
\(432\) −3.93174 20.4093i −0.189166 0.981945i
\(433\) −18.7269 −0.899958 −0.449979 0.893039i \(-0.648569\pi\)
−0.449979 + 0.893039i \(0.648569\pi\)
\(434\) 16.8985 + 18.2629i 0.811152 + 0.876649i
\(435\) 0 0
\(436\) 0.444363 5.71678i 0.0212811 0.273784i
\(437\) 4.74158i 0.226821i
\(438\) −4.04202 11.4936i −0.193135 0.549187i
\(439\) 16.2944i 0.777688i −0.921304 0.388844i \(-0.872875\pi\)
0.921304 0.388844i \(-0.127125\pi\)
\(440\) −7.58372 9.59128i −0.361540 0.457246i
\(441\) −26.0809 27.7776i −1.24195 1.32274i
\(442\) 3.05347 2.82534i 0.145239 0.134388i
\(443\) 2.95645 0.140465 0.0702325 0.997531i \(-0.477626\pi\)
0.0702325 + 0.997531i \(0.477626\pi\)
\(444\) −6.64551 + 12.5794i −0.315382 + 0.596992i
\(445\) −6.40607 −0.303677
\(446\) −15.4530 + 14.2985i −0.731720 + 0.677051i
\(447\) 12.8511 29.6941i 0.607838 1.40448i
\(448\) −34.5513 8.18919i −1.63240 0.386903i
\(449\) 32.0327i 1.51172i 0.654734 + 0.755859i \(0.272781\pi\)
−0.654734 + 0.755859i \(0.727219\pi\)
\(450\) −1.33679 + 18.9896i −0.0630167 + 0.895181i
\(451\) 36.6891i 1.72762i
\(452\) 0 0
\(453\) 7.92049 18.3012i 0.372137 0.859867i
\(454\) 7.69002 + 8.31095i 0.360910 + 0.390052i
\(455\) 3.17914 0.149040
\(456\) 2.72831 + 10.2316i 0.127765 + 0.479138i
\(457\) 28.9077 1.35224 0.676122 0.736790i \(-0.263659\pi\)
0.676122 + 0.736790i \(0.263659\pi\)
\(458\) 26.4213 + 28.5547i 1.23459 + 1.33427i
\(459\) −14.3821 + 5.17599i −0.671297 + 0.241594i
\(460\) 3.13299 + 0.243526i 0.146076 + 0.0113545i
\(461\) 15.3477i 0.714816i −0.933948 0.357408i \(-0.883661\pi\)
0.933948 0.357408i \(-0.116339\pi\)
\(462\) −61.9034 + 21.7698i −2.88001 + 1.01283i
\(463\) 17.3952i 0.808422i −0.914666 0.404211i \(-0.867546\pi\)
0.914666 0.404211i \(-0.132454\pi\)
\(464\) 0 0
\(465\) 4.51302 + 1.95316i 0.209286 + 0.0905758i
\(466\) 21.2153 19.6302i 0.982779 0.909353i
\(467\) −19.5322 −0.903840 −0.451920 0.892058i \(-0.649261\pi\)
−0.451920 + 0.892058i \(0.649261\pi\)
\(468\) 4.67924 3.75562i 0.216298 0.173604i
\(469\) 53.2096 2.45699
\(470\) 4.23458 3.91820i 0.195327 0.180733i
\(471\) −24.7877 10.7277i −1.14215 0.494307i
\(472\) 3.65686 2.89144i 0.168321 0.133089i
\(473\) 45.2741i 2.08171i
\(474\) −16.2367 + 5.71004i −0.745777 + 0.262271i
\(475\) 9.69857i 0.445001i
\(476\) −2.02366 + 26.0346i −0.0927543 + 1.19329i
\(477\) 12.8670 12.0811i 0.589140 0.553154i
\(478\) −6.12352 6.61797i −0.280083 0.302699i
\(479\) −3.31370 −0.151407 −0.0757035 0.997130i \(-0.524120\pi\)
−0.0757035 + 0.997130i \(0.524120\pi\)
\(480\) −6.90062 + 1.27723i −0.314969 + 0.0582975i
\(481\) −4.10695 −0.187261
\(482\) −13.8575 14.9764i −0.631190 0.682157i
\(483\) 6.69828 15.4772i 0.304782 0.704237i
\(484\) −3.94110 + 50.7026i −0.179141 + 2.30467i
\(485\) 6.42764i 0.291864i
\(486\) −21.2160 + 5.99019i −0.962376 + 0.271721i
\(487\) 26.5998i 1.20535i 0.797985 + 0.602677i \(0.205899\pi\)
−0.797985 + 0.602677i \(0.794101\pi\)
\(488\) 10.2502 8.10471i 0.464004 0.366883i
\(489\) −10.7269 + 24.7858i −0.485088 + 1.12085i
\(490\) −9.44297 + 8.73746i −0.426590 + 0.394718i
\(491\) 7.53195 0.339912 0.169956 0.985452i \(-0.445637\pi\)
0.169956 + 0.985452i \(0.445637\pi\)
\(492\) −18.6192 9.83626i −0.839419 0.443453i
\(493\) 0 0
\(494\) −2.24368 + 2.07605i −0.100948 + 0.0934059i
\(495\) −9.45464 + 8.87713i −0.424955 + 0.398997i
\(496\) 2.45008 15.6651i 0.110012 0.703382i
\(497\) 2.94162i 0.131950i
\(498\) −5.42925 15.4383i −0.243290 0.691805i
\(499\) 11.8916i 0.532342i −0.963926 0.266171i \(-0.914241\pi\)
0.963926 0.266171i \(-0.0857586\pi\)
\(500\) 13.5493 + 1.05318i 0.605944 + 0.0470998i
\(501\) −21.8078 9.43808i −0.974302 0.421662i
\(502\) 22.9740 + 24.8290i 1.02538 + 1.10817i
\(503\) −24.1077 −1.07491 −0.537454 0.843293i \(-0.680614\pi\)
−0.537454 + 0.843293i \(0.680614\pi\)
\(504\) −5.54825 + 37.2516i −0.247139 + 1.65932i
\(505\) −3.18785 −0.141858
\(506\) −12.7166 13.7434i −0.565320 0.610968i
\(507\) 1.58957 + 0.687941i 0.0705953 + 0.0305525i
\(508\) 7.28394 + 0.566178i 0.323173 + 0.0251201i
\(509\) 20.5571i 0.911179i −0.890190 0.455589i \(-0.849429\pi\)
0.890190 0.455589i \(-0.150571\pi\)
\(510\) 1.71218 + 4.86865i 0.0758167 + 0.215588i
\(511\) 22.0773i 0.976640i
\(512\) 9.56244 + 20.5076i 0.422604 + 0.906314i
\(513\) 10.5679 3.80330i 0.466584 0.167920i
\(514\) −17.1604 + 15.8783i −0.756914 + 0.700362i
\(515\) −0.645483 −0.0284434
\(516\) 22.9760 + 12.1379i 1.01146 + 0.534341i
\(517\) −34.3757 −1.51184
\(518\) 18.9221 17.5084i 0.831390 0.769274i
\(519\) 8.36376 19.3255i 0.367129 0.848295i
\(520\) −1.25651 1.58913i −0.0551016 0.0696881i
\(521\) 32.5958i 1.42805i 0.700121 + 0.714024i \(0.253129\pi\)
−0.700121 + 0.714024i \(0.746871\pi\)
\(522\) 0 0
\(523\) 18.4243i 0.805638i −0.915280 0.402819i \(-0.868030\pi\)
0.915280 0.402819i \(-0.131970\pi\)
\(524\) 0.152742 1.96504i 0.00667255 0.0858430i
\(525\) 13.7009 31.6575i 0.597955 1.38165i
\(526\) 24.4609 + 26.4361i 1.06655 + 1.15267i
\(527\) −11.6602 −0.507927
\(528\) 35.3483 + 22.3389i 1.53834 + 0.972178i
\(529\) −18.1879 −0.790776
\(530\) −4.04732 4.37413i −0.175804 0.190000i
\(531\) −3.38458 3.60477i −0.146878 0.156434i
\(532\) 1.48698 19.1301i 0.0644687 0.829397i
\(533\) 6.07884i 0.263304i
\(534\) 20.6671 7.26810i 0.894354 0.314521i
\(535\) 3.60477i 0.155848i
\(536\) −21.0303 26.5975i −0.908371 1.14883i
\(537\) 3.67344 + 1.58981i 0.158521 + 0.0686052i
\(538\) 23.3469 21.6026i 1.00656 0.931352i
\(539\) 76.6567 3.30184
\(540\) 1.97026 + 7.17804i 0.0847864 + 0.308894i
\(541\) −41.2427 −1.77316 −0.886581 0.462572i \(-0.846927\pi\)
−0.886581 + 0.462572i \(0.846927\pi\)
\(542\) 21.4058 19.8065i 0.919456 0.850760i
\(543\) −20.4003 8.82894i −0.875462 0.378886i
\(544\) 13.8135 9.27825i 0.592251 0.397802i
\(545\) 2.05351i 0.0879627i
\(546\) −10.2565 + 3.60694i −0.438936 + 0.154363i
\(547\) 2.32526i 0.0994211i −0.998764 0.0497106i \(-0.984170\pi\)
0.998764 0.0497106i \(-0.0158299\pi\)
\(548\) 10.1501 + 0.788967i 0.433593 + 0.0337030i
\(549\) −9.48698 10.1042i −0.404894 0.431235i
\(550\) −26.0109 28.1111i −1.10911 1.19866i
\(551\) 0 0
\(552\) −10.3839 + 2.76892i −0.441967 + 0.117853i
\(553\) 31.1879 1.32624
\(554\) −12.6665 13.6893i −0.538150 0.581604i
\(555\) 2.02366 4.67591i 0.0858996 0.198481i
\(556\) 2.74349 + 0.213251i 0.116350 + 0.00904384i
\(557\) 17.1715i 0.727578i 0.931481 + 0.363789i \(0.118517\pi\)
−0.931481 + 0.363789i \(0.881483\pi\)
\(558\) −16.7758 1.18094i −0.710176 0.0499931i
\(559\) 7.50125i 0.317269i
\(560\) 12.5638 + 1.96504i 0.530919 + 0.0830379i
\(561\) 12.2139 28.2217i 0.515671 1.19152i
\(562\) −12.8779 + 11.9157i −0.543220 + 0.502634i
\(563\) 24.4822 1.03180 0.515900 0.856649i \(-0.327457\pi\)
0.515900 + 0.856649i \(0.327457\pi\)
\(564\) −9.21605 + 17.4452i −0.388066 + 0.734576i
\(565\) 0 0
\(566\) −10.7956 + 9.98905i −0.453774 + 0.419871i
\(567\) 39.8679 + 2.51442i 1.67429 + 0.105596i
\(568\) −1.47040 + 1.16263i −0.0616968 + 0.0487830i
\(569\) 30.1220i 1.26278i −0.775466 0.631390i \(-0.782485\pi\)
0.775466 0.631390i \(-0.217515\pi\)
\(570\) −1.25811 3.57747i −0.0526963 0.149844i
\(571\) 22.2095i 0.929437i −0.885458 0.464718i \(-0.846156\pi\)
0.885458 0.464718i \(-0.153844\pi\)
\(572\) −0.935460 + 12.0348i −0.0391135 + 0.503200i
\(573\) 18.8339 + 8.15100i 0.786796 + 0.340513i
\(574\) 25.9148 + 28.0073i 1.08166 + 1.16900i
\(575\) 9.84291 0.410478
\(576\) 20.8135 11.9498i 0.867230 0.497908i
\(577\) −26.2139 −1.09130 −0.545649 0.838014i \(-0.683717\pi\)
−0.545649 + 0.838014i \(0.683717\pi\)
\(578\) 8.01694 + 8.66427i 0.333461 + 0.360386i
\(579\) 22.5940 + 9.77833i 0.938974 + 0.406373i
\(580\) 0 0
\(581\) 29.6542i 1.23026i
\(582\) 7.29257 + 20.7367i 0.302287 + 0.859563i
\(583\) 35.5085i 1.47061i
\(584\) 11.0356 8.72571i 0.456656 0.361073i
\(585\) −1.56649 + 1.47081i −0.0647665 + 0.0608105i
\(586\) −31.0643 + 28.7434i −1.28326 + 1.18738i
\(587\) −24.4649 −1.00978 −0.504888 0.863185i \(-0.668466\pi\)
−0.504888 + 0.863185i \(0.668466\pi\)
\(588\) 20.5515 38.9022i 0.847529 1.60430i
\(589\) 8.56789 0.353034
\(590\) −1.22544 + 1.13388i −0.0504504 + 0.0466811i
\(591\) −14.1948 + 32.7988i −0.583896 + 1.34916i
\(592\) −16.2305 2.53851i −0.667068 0.104332i
\(593\) 23.7285i 0.974415i −0.873286 0.487207i \(-0.838016\pi\)
0.873286 0.487207i \(-0.161984\pi\)
\(594\) 20.4307 39.3661i 0.838280 1.61521i
\(595\) 9.35182i 0.383387i
\(596\) 37.2488 + 2.89533i 1.52577 + 0.118597i
\(597\) 8.46094 19.5500i 0.346283 0.800129i
\(598\) −2.10695 2.27707i −0.0861595 0.0931165i
\(599\) −47.5698 −1.94365 −0.971825 0.235702i \(-0.924261\pi\)
−0.971825 + 0.235702i \(0.924261\pi\)
\(600\) −21.2395 + 5.66363i −0.867098 + 0.231217i
\(601\) −3.08091 −0.125673 −0.0628364 0.998024i \(-0.520015\pi\)
−0.0628364 + 0.998024i \(0.520015\pi\)
\(602\) −31.9787 34.5608i −1.30335 1.40859i
\(603\) −26.2185 + 24.6171i −1.06770 + 1.00248i
\(604\) 22.9574 + 1.78447i 0.934123 + 0.0726090i
\(605\) 18.2128i 0.740454i
\(606\) 10.2846 3.61682i 0.417782 0.146923i
\(607\) 26.5832i 1.07898i 0.841992 + 0.539490i \(0.181383\pi\)
−0.841992 + 0.539490i \(0.818617\pi\)
\(608\) −10.1501 + 6.81763i −0.411643 + 0.276491i
\(609\) 0 0
\(610\) −3.43490 + 3.17827i −0.139075 + 0.128684i
\(611\) −5.69554 −0.230417
\(612\) −11.0476 13.7646i −0.446573 0.556399i
\(613\) −6.42779 −0.259616 −0.129808 0.991539i \(-0.541436\pi\)
−0.129808 + 0.991539i \(0.541436\pi\)
\(614\) −29.2423 + 27.0575i −1.18012 + 1.09195i
\(615\) 6.92098 + 2.99529i 0.279081 + 0.120782i
\(616\) −46.9957 59.4364i −1.89351 2.39476i
\(617\) 16.4128i 0.660754i −0.943849 0.330377i \(-0.892824\pi\)
0.943849 0.330377i \(-0.107176\pi\)
\(618\) 2.08244 0.732341i 0.0837680 0.0294591i
\(619\) 6.48448i 0.260633i 0.991472 + 0.130317i \(0.0415994\pi\)
−0.991472 + 0.130317i \(0.958401\pi\)
\(620\) −0.440044 + 5.66121i −0.0176726 + 0.227360i
\(621\) 3.85990 + 10.7252i 0.154893 + 0.430386i
\(622\) −20.6531 22.3208i −0.828115 0.894982i
\(623\) −39.6979 −1.59046
\(624\) 5.85670 + 3.70123i 0.234455 + 0.148168i
\(625\) 17.5679 0.702715
\(626\) −19.7230 21.3156i −0.788290 0.851941i
\(627\) −8.97473 + 20.7372i −0.358416 + 0.828164i
\(628\) 2.41693 31.0941i 0.0964460 1.24079i
\(629\) 12.0811i 0.481704i
\(630\) 0.947147 13.4547i 0.0377352 0.536047i
\(631\) 21.2435i 0.845688i −0.906202 0.422844i \(-0.861032\pi\)
0.906202 0.422844i \(-0.138968\pi\)
\(632\) −12.3265 15.5896i −0.490324 0.620122i
\(633\) −16.9465 + 39.1570i −0.673564 + 1.55635i
\(634\) −1.84904 + 1.71090i −0.0734349 + 0.0679484i
\(635\) −2.61645 −0.103831
\(636\) 18.0201 + 9.51976i 0.714543 + 0.377483i
\(637\) 12.7009 0.503227
\(638\) 0 0
\(639\) 1.36092 + 1.44946i 0.0538372 + 0.0573396i
\(640\) −3.98342 7.05684i −0.157459 0.278946i
\(641\) 19.0822i 0.753702i −0.926274 0.376851i \(-0.877007\pi\)
0.926274 0.376851i \(-0.122993\pi\)
\(642\) −4.08984 11.6296i −0.161413 0.458984i
\(643\) 1.60278i 0.0632076i 0.999500 + 0.0316038i \(0.0100615\pi\)
−0.999500 + 0.0316038i \(0.989939\pi\)
\(644\) 19.4149 + 1.50911i 0.765052 + 0.0594673i
\(645\) −8.54045 3.69617i −0.336280 0.145537i
\(646\) 6.10695 + 6.60006i 0.240275 + 0.259676i
\(647\) −36.8587 −1.44907 −0.724533 0.689240i \(-0.757945\pi\)
−0.724533 + 0.689240i \(0.757945\pi\)
\(648\) −14.5003 20.9222i −0.569627 0.821903i
\(649\) 9.94792 0.390490
\(650\) −4.30961 4.65760i −0.169037 0.182686i
\(651\) 27.9668 + 12.1036i 1.09611 + 0.474377i
\(652\) −31.0918 2.41675i −1.21765 0.0946473i
\(653\) 34.9930i 1.36938i 0.728833 + 0.684691i \(0.240063\pi\)
−0.728833 + 0.684691i \(0.759937\pi\)
\(654\) −2.32984 6.62498i −0.0911039 0.259057i
\(655\) 0.705856i 0.0275801i
\(656\) 3.75734 24.0233i 0.146700 0.937952i
\(657\) −10.2139 10.8784i −0.398482 0.424405i
\(658\) 26.2413 24.2808i 1.02299 0.946562i
\(659\) 23.2740 0.906626 0.453313 0.891351i \(-0.350242\pi\)
0.453313 + 0.891351i \(0.350242\pi\)
\(660\) −13.2411 6.99509i −0.515410 0.272283i
\(661\) −35.6677 −1.38731 −0.693657 0.720306i \(-0.744002\pi\)
−0.693657 + 0.720306i \(0.744002\pi\)
\(662\) 27.3713 25.3263i 1.06382 0.984336i
\(663\) 2.02366 4.67591i 0.0785925 0.181597i
\(664\) 14.8230 11.7204i 0.575244 0.454839i
\(665\) 6.87169i 0.266473i
\(666\) −1.22356 + 17.3813i −0.0474121 + 0.673511i
\(667\) 0 0
\(668\) 2.12638 27.3561i 0.0822721 1.05844i
\(669\) −10.2413 + 23.6638i −0.395953 + 0.914896i
\(670\) 8.24705 + 8.91296i 0.318611 + 0.344338i
\(671\) 27.8840 1.07645
\(672\) −42.7626 + 7.91492i −1.64960 + 0.305324i
\(673\) 11.1547 0.429982 0.214991 0.976616i \(-0.431028\pi\)
0.214991 + 0.976616i \(0.431028\pi\)
\(674\) 1.08820 + 1.17607i 0.0419159 + 0.0453005i
\(675\) 7.89516 + 21.9376i 0.303885 + 0.844378i
\(676\) −0.154992 + 1.99399i −0.00596122 + 0.0766917i
\(677\) 41.8119i 1.60696i −0.595332 0.803480i \(-0.702979\pi\)
0.595332 0.803480i \(-0.297021\pi\)
\(678\) 0 0
\(679\) 39.8315i 1.52859i
\(680\) −4.67462 + 3.69617i −0.179264 + 0.141742i
\(681\) 12.7269 + 5.50801i 0.487696 + 0.211067i
\(682\) 24.8339 22.9784i 0.950938 0.879890i
\(683\) 22.4940 0.860707 0.430354 0.902660i \(-0.358389\pi\)
0.430354 + 0.902660i \(0.358389\pi\)
\(684\) 8.11774 + 10.1141i 0.310390 + 0.386724i
\(685\) −3.64601 −0.139307
\(686\) −26.2659 + 24.3035i −1.00284 + 0.927911i
\(687\) 43.7270 + 18.9244i 1.66829 + 0.722010i
\(688\) −4.63654 + 29.6446i −0.176767 + 1.13019i
\(689\) 5.88324i 0.224133i
\(690\) 3.63071 1.27683i 0.138219 0.0486081i
\(691\) 7.27435i 0.276729i 0.990381 + 0.138365i \(0.0441846\pi\)
−0.990381 + 0.138365i \(0.955815\pi\)
\(692\) 24.2422 + 1.88434i 0.921551 + 0.0716318i
\(693\) −58.5896 + 55.0108i −2.22563 + 2.08969i
\(694\) 19.4813 + 21.0543i 0.739499 + 0.799210i
\(695\) −0.985482 −0.0373815
\(696\) 0 0
\(697\) −17.8816 −0.677314
\(698\) 1.29364 + 1.39810i 0.0489650 + 0.0529187i
\(699\) 14.0602 32.4879i 0.531807 1.22880i
\(700\) 39.7117 + 3.08678i 1.50096 + 0.116669i
\(701\) 13.1990i 0.498519i 0.968437 + 0.249259i \(0.0801872\pi\)
−0.968437 + 0.249259i \(0.919813\pi\)
\(702\) 3.38506 6.52238i 0.127761 0.246171i
\(703\) 8.87713i 0.334807i
\(704\) −11.1356 + 46.9827i −0.419690 + 1.77073i
\(705\) 2.80643 6.48459i 0.105696 0.244224i
\(706\) 36.2248 33.5183i 1.36334 1.26148i
\(707\) −19.7549 −0.742958
\(708\) 2.66701 5.04843i 0.100233 0.189732i
\(709\) −33.6156 −1.26246 −0.631231 0.775595i \(-0.717450\pi\)
−0.631231 + 0.775595i \(0.717450\pi\)
\(710\) 0.492741 0.455927i 0.0184922 0.0171106i
\(711\) −15.3675 + 14.4289i −0.576327 + 0.541124i
\(712\) 15.6900 + 19.8435i 0.588008 + 0.743666i
\(713\) 8.69540i 0.325645i
\(714\) 10.6102 + 30.1706i 0.397078 + 1.12911i
\(715\) 4.32298i 0.161670i
\(716\) −0.358180 + 4.60803i −0.0133858 + 0.172210i
\(717\) −10.1344 4.38600i −0.378475 0.163798i
\(718\) −25.8187 27.9034i −0.963544 1.04135i
\(719\) 31.6378 1.17989 0.589945 0.807444i \(-0.299150\pi\)
0.589945 + 0.807444i \(0.299150\pi\)
\(720\) −7.09982 + 4.84432i −0.264595 + 0.180537i
\(721\) −4.00000 −0.148968
\(722\) 13.7616 + 14.8728i 0.512153 + 0.553507i
\(723\) −22.9340 9.92547i −0.852924 0.369132i
\(724\) 1.98914 25.5905i 0.0739259 0.951065i
\(725\) 0 0
\(726\) 20.6635 + 58.7576i 0.766896 + 2.18070i
\(727\) 46.9545i 1.74144i 0.491775 + 0.870722i \(0.336348\pi\)
−0.491775 + 0.870722i \(0.663652\pi\)
\(728\) −7.78649 9.84772i −0.288586 0.364981i
\(729\) −20.8078 + 17.2057i −0.770660 + 0.637247i
\(730\) −3.69809 + 3.42179i −0.136872 + 0.126646i
\(731\) 22.0658 0.816134
\(732\) 7.47564 14.1508i 0.276308 0.523027i
\(733\) 18.0549 0.666872 0.333436 0.942773i \(-0.391792\pi\)
0.333436 + 0.942773i \(0.391792\pi\)
\(734\) −13.4121 + 12.4100i −0.495049 + 0.458062i
\(735\) −6.25824 + 14.4604i −0.230839 + 0.533381i
\(736\) −6.91909 10.3012i −0.255041 0.379707i
\(737\) 72.3541i 2.66520i
\(738\) −25.7267 1.81104i −0.947011 0.0666653i
\(739\) 5.14442i 0.189241i −0.995513 0.0946203i \(-0.969836\pi\)
0.995513 0.0946203i \(-0.0301637\pi\)
\(740\) 5.86554 + 0.455927i 0.215622 + 0.0167602i
\(741\) −1.48698 + 3.43585i −0.0546256 + 0.126219i
\(742\) −25.0809 27.1061i −0.920749 0.995096i
\(743\) −6.37554 −0.233896 −0.116948 0.993138i \(-0.537311\pi\)
−0.116948 + 0.993138i \(0.537311\pi\)
\(744\) −5.00335 18.7633i −0.183432 0.687897i
\(745\) −13.3800 −0.490206
\(746\) −12.4611 13.4673i −0.456234 0.493073i
\(747\) −13.7193 14.6118i −0.501963 0.534619i
\(748\) 35.4017 + 2.75177i 1.29442 + 0.100615i
\(749\) 22.3384i 0.816229i
\(750\) 15.7018 5.52194i 0.573350 0.201633i
\(751\) 35.4603i 1.29397i −0.762504 0.646983i \(-0.776030\pi\)
0.762504 0.646983i \(-0.223970\pi\)
\(752\) −22.5085 3.52043i −0.820802 0.128377i
\(753\) 38.0217 + 16.4552i 1.38559 + 0.599661i
\(754\) 0 0
\(755\) −8.24646 −0.300119
\(756\) 12.2095 + 44.4817i 0.444056 + 1.61778i
\(757\) 19.3800 0.704379 0.352190 0.935929i \(-0.385437\pi\)
0.352190 + 0.935929i \(0.385437\pi\)
\(758\) −10.4729 + 9.69042i −0.380392 + 0.351972i
\(759\) −21.0458 9.10830i −0.763915 0.330610i
\(760\) 3.43490 2.71594i 0.124597 0.0985174i
\(761\) 7.51134i 0.272286i 0.990689 + 0.136143i \(0.0434707\pi\)
−0.990689 + 0.136143i \(0.956529\pi\)
\(762\) 8.44112 2.96853i 0.305789 0.107538i
\(763\) 12.7254i 0.460691i
\(764\) −1.83640 + 23.6255i −0.0664387 + 0.854741i
\(765\) 4.32656 + 4.60803i 0.156427 + 0.166604i
\(766\) −28.0051 30.2664i −1.01187 1.09357i
\(767\) 1.64822 0.0595139
\(768\) 20.8577 + 18.2471i 0.752636 + 0.658437i
\(769\) 20.1618 0.727054 0.363527 0.931584i \(-0.381573\pi\)
0.363527 + 0.931584i \(0.381573\pi\)
\(770\) 18.4294 + 19.9175i 0.664148 + 0.717776i
\(771\) −11.3729 + 26.2785i −0.409585 + 0.946396i
\(772\) −2.20304 + 28.3423i −0.0792890 + 1.02006i
\(773\) 29.3820i 1.05680i 0.848997 + 0.528398i \(0.177207\pi\)
−0.848997 + 0.528398i \(0.822793\pi\)
\(774\) 31.7465 + 2.23481i 1.14111 + 0.0803287i
\(775\) 17.7858i 0.638886i
\(776\) −19.9103 + 15.7428i −0.714737 + 0.565135i
\(777\) 12.5405 28.9762i 0.449886 1.03952i
\(778\) −7.59393 + 7.02656i −0.272255 + 0.251914i
\(779\) 13.1394 0.470766
\(780\) −2.19386 1.15898i −0.0785526 0.0414982i
\(781\) −4.00000 −0.143131
\(782\) −6.69828 + 6.19783i −0.239530 + 0.221634i
\(783\) 0 0
\(784\) 50.1933 + 7.85044i 1.79262 + 0.280373i
\(785\) 11.1692i 0.398646i
\(786\) −0.800838 2.27721i −0.0285650 0.0812255i
\(787\) 11.4293i 0.407410i −0.979032 0.203705i \(-0.934702\pi\)
0.979032 0.203705i \(-0.0652984\pi\)
\(788\) −41.1433 3.19806i −1.46567 0.113926i
\(789\) 40.4827 + 17.5203i 1.44122 + 0.623738i
\(790\) 4.83386 + 5.22418i 0.171981 + 0.185868i
\(791\) 0 0
\(792\) 50.6545 + 7.54449i 1.79993 + 0.268082i
\(793\) 4.61997 0.164060
\(794\) 10.0156 + 10.8243i 0.355440 + 0.384140i
\(795\) −6.69828 2.89891i −0.237564 0.102814i
\(796\) 24.5239 + 1.90623i 0.869226 + 0.0675646i
\(797\) 17.7345i 0.628188i 0.949392 + 0.314094i \(0.101701\pi\)
−0.949392 + 0.314094i \(0.898299\pi\)
\(798\) −7.79637 22.1693i −0.275989 0.784784i
\(799\) 16.7541i 0.592718i
\(800\) −14.1525 21.0704i −0.500367 0.744951i
\(801\) 19.5608 18.3660i 0.691146 0.648929i
\(802\) −30.1178 + 27.8676i −1.06350 + 0.984039i
\(803\) 30.0205 1.05940
\(804\) −36.7187 19.3980i −1.29497 0.684114i
\(805\) −6.97396 −0.245800
\(806\) 4.11460 3.80719i 0.144931 0.134102i
\(807\) 15.4729 35.7521i 0.544673 1.25853i
\(808\) 7.80782 + 9.87470i 0.274678 + 0.347391i
\(809\) 34.5727i 1.21551i −0.794124 0.607756i \(-0.792070\pi\)
0.794124 0.607756i \(-0.207930\pi\)
\(810\) 5.75801 + 7.06785i 0.202316 + 0.248339i
\(811\) 38.5230i 1.35273i 0.736568 + 0.676363i \(0.236445\pi\)
−0.736568 + 0.676363i \(0.763555\pi\)
\(812\) 0 0
\(813\) 14.1865 32.7795i 0.497541 1.14963i
\(814\) −23.8078 25.7302i −0.834464 0.901843i
\(815\) 11.1684 0.391212
\(816\) 10.8876 17.2282i 0.381143 0.603106i
\(817\) −16.2139 −0.567252
\(818\) 6.54287 + 7.07118i 0.228766 + 0.247238i
\(819\) −9.70743 + 9.11448i −0.339205 + 0.318486i
\(820\) −0.674833 + 8.68180i −0.0235662 + 0.303182i
\(821\) 27.5583i 0.961790i 0.876778 + 0.480895i \(0.159688\pi\)
−0.876778 + 0.480895i \(0.840312\pi\)
\(822\) 11.7627 4.13663i 0.410270 0.144282i
\(823\) 13.2483i 0.461807i 0.972977 + 0.230903i \(0.0741682\pi\)
−0.972977 + 0.230903i \(0.925832\pi\)
\(824\) 1.58094 + 1.99945i 0.0550747 + 0.0696541i
\(825\) −43.0478 18.6304i −1.49873 0.648627i
\(826\) −7.59393 + 7.02656i −0.264227 + 0.244485i
\(827\) 3.41910 0.118894 0.0594468 0.998231i \(-0.481066\pi\)
0.0594468 + 0.998231i \(0.481066\pi\)
\(828\) −10.2647 + 8.23855i −0.356722 + 0.286310i
\(829\) 33.0478 1.14780 0.573898 0.818927i \(-0.305431\pi\)
0.573898 + 0.818927i \(0.305431\pi\)
\(830\) −4.96728 + 4.59615i −0.172417 + 0.159535i
\(831\) −20.9630 9.07247i −0.727200 0.314720i
\(832\) −1.84501 + 7.78434i −0.0639642 + 0.269873i
\(833\) 37.3611i 1.29449i
\(834\) 3.17934 1.11809i 0.110091 0.0387164i
\(835\) 9.82651i 0.340061i
\(836\) −26.0131 2.02199i −0.899682 0.0699319i
\(837\) −19.3800 + 6.97472i −0.669872 + 0.241082i
\(838\) −11.9205 12.8830i −0.411786 0.445036i
\(839\) −6.68103 −0.230655 −0.115327 0.993328i \(-0.536792\pi\)
−0.115327 + 0.993328i \(0.536792\pi\)
\(840\) 15.0487 4.01283i 0.519230 0.138456i
\(841\) 29.0000 1.00000
\(842\) 29.0723 + 31.4197i 1.00190 + 1.08280i
\(843\) −8.53469 + 19.7204i −0.293950 + 0.679207i
\(844\) −49.1192 3.81802i −1.69075 0.131422i
\(845\) 0.716254i 0.0246399i
\(846\) −1.69685 + 24.1045i −0.0583388 + 0.828730i
\(847\) 112.863i 3.87802i
\(848\) −3.63644 + 23.2503i −0.124876 + 0.798418i
\(849\) −7.15470 + 16.5318i −0.245549 + 0.567370i
\(850\) −13.7009 + 12.6772i −0.469936 + 0.434826i
\(851\) 9.00925 0.308833
\(852\) −1.07239 + 2.02995i −0.0367395 + 0.0695448i
\(853\) −19.2948 −0.660641 −0.330321 0.943869i \(-0.607157\pi\)
−0.330321 + 0.943869i \(0.607157\pi\)
\(854\) −21.2858 + 19.6954i −0.728384 + 0.673964i
\(855\) −3.17914 3.38596i −0.108724 0.115798i
\(856\) 11.1661 8.82894i 0.381651 0.301767i
\(857\) 58.0291i 1.98223i 0.132990 + 0.991117i \(0.457542\pi\)
−0.132990 + 0.991117i \(0.542458\pi\)
\(858\) 4.90470 + 13.9467i 0.167444 + 0.476133i
\(859\) 30.7714i 1.04991i −0.851131 0.524953i \(-0.824083\pi\)
0.851131 0.524953i \(-0.175917\pi\)
\(860\) 0.832740 10.7133i 0.0283962 0.365320i
\(861\) 42.8887 + 18.5616i 1.46164 + 0.632576i
\(862\) 29.2782 + 31.6423i 0.997220 + 1.07774i
\(863\) 14.0593 0.478584 0.239292 0.970948i \(-0.423085\pi\)
0.239292 + 0.970948i \(0.423085\pi\)
\(864\) 17.4091 23.6838i 0.592269 0.805740i
\(865\) −8.70798 −0.296080
\(866\) −17.9867 19.4390i −0.611211 0.660564i
\(867\) 13.2680 + 5.74216i 0.450604 + 0.195014i
\(868\) −2.72691 + 35.0820i −0.0925575 + 1.19076i
\(869\) 42.4091i 1.43863i
\(870\) 0 0
\(871\) 11.9880i 0.406198i
\(872\) 6.36096 5.02954i 0.215409 0.170322i
\(873\) 18.4278 + 19.6266i 0.623686 + 0.664260i
\(874\) 4.92188 4.55415i 0.166485 0.154046i
\(875\) −30.1605 −1.01961
\(876\) 8.04844 15.2350i 0.271932 0.514744i
\(877\) −9.41318 −0.317861 −0.158930 0.987290i \(-0.550805\pi\)
−0.158930 + 0.987290i \(0.550805\pi\)
\(878\) 16.9140 15.6503i 0.570818 0.528171i
\(879\) −20.5876 + 47.5701i −0.694402 + 1.60450i
\(880\) 2.67205 17.0842i 0.0900747 0.575910i
\(881\) 31.0101i 1.04476i −0.852714 0.522378i \(-0.825045\pi\)
0.852714 0.522378i \(-0.174955\pi\)
\(882\) 3.78391 53.7522i 0.127411 1.80993i
\(883\) 22.5038i 0.757312i −0.925538 0.378656i \(-0.876386\pi\)
0.925538 0.378656i \(-0.123614\pi\)
\(884\) 5.86554 + 0.455927i 0.197280 + 0.0153345i
\(885\) −0.812147 + 1.87656i −0.0273000 + 0.0630800i
\(886\) 2.83958 + 3.06886i 0.0953975 + 0.103101i
\(887\) 52.4145 1.75991 0.879953 0.475061i \(-0.157574\pi\)
0.879953 + 0.475061i \(0.157574\pi\)
\(888\) −19.4406 + 5.18394i −0.652382 + 0.173962i
\(889\) −16.2139 −0.543797
\(890\) −6.15285 6.64966i −0.206244 0.222897i
\(891\) 3.41910 54.2122i 0.114544 1.81618i
\(892\) −29.6843 2.30735i −0.993904 0.0772558i
\(893\) 12.3109i 0.411968i
\(894\) 43.1663 15.1805i 1.44370 0.507712i
\(895\) 1.65524i 0.0553285i
\(896\) −24.6849 43.7306i −0.824666 1.46094i
\(897\) −3.48698 1.50911i −0.116427 0.0503877i
\(898\) −33.2508 + 30.7665i −1.10959 + 1.02669i
\(899\) 0 0
\(900\) −20.9957 + 16.8514i −0.699856 + 0.561713i
\(901\) 17.3062 0.576554
\(902\) 38.0842 35.2388i 1.26806 1.17332i
\(903\) −52.9245 22.9049i −1.76122 0.762226i
\(904\) 0 0
\(905\) 9.19231i 0.305563i
\(906\) 26.6045 9.35614i 0.883877 0.310837i
\(907\) 19.7520i 0.655854i 0.944703 + 0.327927i \(0.106350\pi\)
−0.944703 + 0.327927i \(0.893650\pi\)
\(908\) −1.24094 + 15.9649i −0.0411821 + 0.529812i
\(909\) 9.73403 9.13945i 0.322857 0.303136i
\(910\) 3.05347 + 3.30003i 0.101222 + 0.109395i
\(911\) 9.19743 0.304724 0.152362 0.988325i \(-0.451312\pi\)
0.152362 + 0.988325i \(0.451312\pi\)
\(912\) −8.00018 + 12.6592i −0.264913 + 0.419188i
\(913\) 40.3236 1.33452
\(914\) 27.7650 + 30.0069i 0.918383 + 0.992539i
\(915\) −2.27645 + 5.26000i −0.0752570 + 0.173890i
\(916\) −4.26362 + 54.8519i −0.140874 + 1.81236i
\(917\) 4.37413i 0.144446i
\(918\) −19.1863 9.95754i −0.633244 0.328648i
\(919\) 26.6796i 0.880078i 0.897979 + 0.440039i \(0.145035\pi\)
−0.897979 + 0.440039i \(0.854965\pi\)
\(920\) 2.75636 + 3.48602i 0.0908744 + 0.114931i
\(921\) −19.3800 + 44.7799i −0.638594 + 1.47555i
\(922\) 15.9313 14.7411i 0.524671 0.485471i
\(923\) −0.662741 −0.0218144
\(924\) −82.0540 43.3480i −2.69938 1.42604i
\(925\) 18.4278 0.605902
\(926\) 18.0566 16.7075i 0.593377 0.549044i
\(927\) 1.97096 1.85057i 0.0647349 0.0607808i
\(928\) 0 0
\(929\) 1.08371i 0.0355553i 0.999842 + 0.0177776i \(0.00565910\pi\)
−0.999842 + 0.0177776i \(0.994341\pi\)
\(930\) 2.30719 + 6.56058i 0.0756558 + 0.215130i
\(931\) 27.4528i 0.899730i
\(932\) 40.7533 + 3.16774i 1.33492 + 0.103763i
\(933\) −34.1807 14.7929i −1.11903 0.484297i
\(934\) −18.7601 20.2749i −0.613848 0.663414i
\(935\) −12.7166 −0.415876
\(936\) 8.39270 + 1.25001i 0.274324 + 0.0408579i
\(937\) −28.0880 −0.917596 −0.458798 0.888541i \(-0.651720\pi\)
−0.458798 + 0.888541i \(0.651720\pi\)
\(938\) 51.1062 + 55.2329i 1.66868 + 1.80342i
\(939\) −32.6414 14.1267i −1.06521 0.461007i
\(940\) 8.13438 + 0.632282i 0.265314 + 0.0206228i
\(941\) 45.5463i 1.48477i −0.669975 0.742384i \(-0.733695\pi\)
0.669975 0.742384i \(-0.266305\pi\)
\(942\) −12.6722 36.0339i −0.412882 1.17405i
\(943\) 13.3349i 0.434244i
\(944\) 6.51370 + 1.01877i 0.212003 + 0.0331582i
\(945\) −5.59393 15.5433i −0.181970 0.505625i
\(946\) −46.9957 + 43.4845i −1.52796 + 1.41380i
\(947\) −31.0233 −1.00812 −0.504061 0.863668i \(-0.668161\pi\)
−0.504061 + 0.863668i \(0.668161\pi\)
\(948\) −21.5220 11.3698i −0.699004 0.369273i
\(949\) 4.97396 0.161462
\(950\) 10.0674 9.31519i 0.326628 0.302225i
\(951\) −1.22544 + 2.83152i −0.0397375 + 0.0918183i
\(952\) −28.9682 + 22.9049i −0.938866 + 0.742351i
\(953\) 17.4199i 0.564286i −0.959372 0.282143i \(-0.908955\pi\)
0.959372 0.282143i \(-0.0910453\pi\)
\(954\) 24.8988 + 1.75277i 0.806130 + 0.0567479i
\(955\) 8.48646i 0.274615i
\(956\) 0.988157 12.7127i 0.0319593 0.411159i
\(957\) 0 0
\(958\) −3.18272 3.43971i −0.102829 0.111132i
\(959\) −22.5940 −0.729598
\(960\) −7.95365 5.93627i −0.256703 0.191592i
\(961\) 15.2877 0.493151
\(962\) −3.94460 4.26311i −0.127179 0.137448i
\(963\) −10.3347 11.0071i −0.333032 0.354698i
\(964\) 2.23619 28.7688i 0.0720228 0.926581i
\(965\) 10.1808i 0.327730i
\(966\) 22.4992 7.91240i 0.723900 0.254577i
\(967\) 28.0239i 0.901188i −0.892729 0.450594i \(-0.851212\pi\)
0.892729 0.450594i \(-0.148788\pi\)
\(968\) −56.4159 + 44.6074i −1.81328 + 1.43374i
\(969\) 10.1069 + 4.37413i 0.324682 + 0.140517i
\(970\) 6.67205 6.17356i 0.214227 0.198221i
\(971\) −37.8323 −1.21410 −0.607048 0.794665i \(-0.707647\pi\)
−0.607048 + 0.794665i \(0.707647\pi\)
\(972\) −26.5953 16.2693i −0.853044 0.521838i
\(973\) −6.10695 −0.195780
\(974\) −27.6113 + 25.5484i −0.884723 + 0.818622i
\(975\) −7.13237 3.08678i −0.228419 0.0988560i
\(976\) 18.2579 + 2.85561i 0.584421 + 0.0914060i
\(977\) 7.27335i 0.232695i 0.993209 + 0.116348i \(0.0371186\pi\)
−0.993209 + 0.116348i \(0.962881\pi\)
\(978\) −36.0312 + 12.6713i −1.15215 + 0.405182i
\(979\) 53.9810i 1.72524i
\(980\) −18.1394 1.40997i −0.579442 0.0450398i
\(981\) −5.88733 6.27034i −0.187968 0.200197i
\(982\) 7.23422 + 7.81835i 0.230853 + 0.249494i
\(983\) 48.2326 1.53838 0.769190 0.639020i \(-0.220660\pi\)
0.769190 + 0.639020i \(0.220660\pi\)
\(984\) −7.67293 28.7746i −0.244604 0.917302i
\(985\) 14.7790 0.470898
\(986\) 0 0
\(987\) 17.3912 40.1844i 0.553568 1.27908i
\(988\) −4.30998 0.335014i −0.137119 0.0106582i
\(989\) 16.4552i 0.523245i
\(990\) −18.2956 1.28793i −0.581472 0.0409330i
\(991\) 6.26994i 0.199171i −0.995029 0.0995856i \(-0.968248\pi\)
0.995029 0.0995856i \(-0.0317517\pi\)
\(992\) 18.6140 12.5026i 0.590994 0.396957i
\(993\) 18.1401 41.9149i 0.575659 1.33013i
\(994\) 3.05347 2.82534i 0.0968503 0.0896143i
\(995\) −8.80916 −0.279269
\(996\) 10.8107 20.4637i 0.342549 0.648417i
\(997\) 31.8816 1.00970 0.504850 0.863207i \(-0.331548\pi\)
0.504850 + 0.863207i \(0.331548\pi\)
\(998\) 12.3438 11.4216i 0.390736 0.361543i
\(999\) 7.22646 + 20.0795i 0.228635 + 0.635288i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.2.c.d.131.10 yes 12
3.2 odd 2 inner 156.2.c.d.131.3 12
4.3 odd 2 inner 156.2.c.d.131.4 yes 12
8.3 odd 2 2496.2.d.o.1535.12 12
8.5 even 2 2496.2.d.o.1535.1 12
12.11 even 2 inner 156.2.c.d.131.9 yes 12
24.5 odd 2 2496.2.d.o.1535.11 12
24.11 even 2 2496.2.d.o.1535.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.c.d.131.3 12 3.2 odd 2 inner
156.2.c.d.131.4 yes 12 4.3 odd 2 inner
156.2.c.d.131.9 yes 12 12.11 even 2 inner
156.2.c.d.131.10 yes 12 1.1 even 1 trivial
2496.2.d.o.1535.1 12 8.5 even 2
2496.2.d.o.1535.2 12 24.11 even 2
2496.2.d.o.1535.11 12 24.5 odd 2
2496.2.d.o.1535.12 12 8.3 odd 2