Properties

Label 156.2.c.d.131.6
Level $156$
Weight $2$
Character 156.131
Analytic conductor $1.246$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [156,2,Mod(131,156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("156.131");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 156.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.24566627153\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.78003431400411136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{8} - 4x^{6} - 4x^{4} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 131.6
Root \(-0.373981 - 1.36387i\) of defining polynomial
Character \(\chi\) \(=\) 156.131
Dual form 156.2.c.d.131.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.373981 + 1.36387i) q^{2} +(-1.20432 + 1.24483i) q^{3} +(-1.72028 - 1.02012i) q^{4} +3.32859i q^{5} +(-1.24739 - 2.10808i) q^{6} -0.723623i q^{7} +(2.03467 - 1.96472i) q^{8} +(-0.0992110 - 2.99836i) q^{9} +(-4.53976 - 1.24483i) q^{10} -4.38250 q^{11} +(3.34165 - 0.912896i) q^{12} -1.00000 q^{13} +(0.986927 + 0.270622i) q^{14} +(-4.14354 - 4.00870i) q^{15} +(1.91870 + 3.50979i) q^{16} +0.660466i q^{17} +(4.12647 + 0.986020i) q^{18} +7.29378i q^{19} +(3.39557 - 5.72610i) q^{20} +(0.900789 + 0.871476i) q^{21} +(1.63897 - 5.97716i) q^{22} +5.87843 q^{23} +(-0.00464491 + 4.89898i) q^{24} -6.07953 q^{25} +(0.373981 - 1.36387i) q^{26} +(3.85193 + 3.48749i) q^{27} +(-0.738185 + 1.24483i) q^{28} +(7.01695 - 4.15206i) q^{30} +3.76170i q^{31} +(-5.50444 + 1.30426i) q^{32} +(5.27795 - 5.45547i) q^{33} +(-0.900789 - 0.247002i) q^{34} +2.40865 q^{35} +(-2.88802 + 5.25921i) q^{36} -0.198422 q^{37} +(-9.94776 - 2.72774i) q^{38} +(1.20432 - 1.24483i) q^{39} +(6.53976 + 6.77257i) q^{40} +6.92189i q^{41} +(-1.52546 + 0.902642i) q^{42} +1.04242i q^{43} +(7.53911 + 4.47069i) q^{44} +(9.98031 - 0.330233i) q^{45} +(-2.19842 + 8.01740i) q^{46} -5.73001 q^{47} +(-6.67982 - 1.83846i) q^{48} +6.47637 q^{49} +(2.27363 - 8.29167i) q^{50} +(-0.822169 - 0.795415i) q^{51} +(1.72028 + 1.02012i) q^{52} -1.32093i q^{53} +(-6.19703 + 3.94928i) q^{54} -14.5876i q^{55} +(-1.42172 - 1.47233i) q^{56} +(-9.07953 - 8.78407i) q^{57} +7.37435 q^{59} +(3.03866 + 11.1230i) q^{60} -10.8811 q^{61} +(-5.13046 - 1.40681i) q^{62} +(-2.16968 + 0.0717914i) q^{63} +(0.279724 - 7.99511i) q^{64} -3.32859i q^{65} +(5.46670 + 9.23867i) q^{66} -11.9227i q^{67} +(0.673757 - 1.13618i) q^{68} +(-7.07953 + 7.31765i) q^{69} +(-0.900789 + 3.28508i) q^{70} +0.912721 q^{71} +(-6.09281 - 5.90573i) q^{72} +16.1591 q^{73} +(0.0742062 - 0.270622i) q^{74} +(7.32171 - 7.56798i) q^{75} +(7.44055 - 12.5473i) q^{76} +3.17128i q^{77} +(1.24739 + 2.10808i) q^{78} +1.99566i q^{79} +(-11.6826 + 6.38656i) q^{80} +(-8.98031 + 0.594941i) q^{81} +(-9.44055 - 2.58866i) q^{82} +14.0171 q^{83} +(-0.660592 - 2.41810i) q^{84} -2.19842 q^{85} +(-1.42172 - 0.389844i) q^{86} +(-8.91692 + 8.61040i) q^{88} +6.39248i q^{89} +(-3.28206 + 13.7353i) q^{90} +0.723623i q^{91} +(-10.1125 - 5.99672i) q^{92} +(-4.68268 - 4.53030i) q^{93} +(2.14292 - 7.81499i) q^{94} -24.2780 q^{95} +(5.00555 - 8.42285i) q^{96} -12.1591 q^{97} +(-2.42204 + 8.83292i) q^{98} +(0.434792 + 13.1403i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 5 q^{6} - 2 q^{9} - 14 q^{10} - 5 q^{12} - 12 q^{13} + 4 q^{16} + 9 q^{18} + 10 q^{21} - 20 q^{22} - 29 q^{24} + 8 q^{25} + 30 q^{28} + 19 q^{30} - 16 q^{33} - 10 q^{34} - 19 q^{36} - 4 q^{37} + 38 q^{40}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.373981 + 1.36387i −0.264445 + 0.964401i
\(3\) −1.20432 + 1.24483i −0.695316 + 0.718704i
\(4\) −1.72028 1.02012i −0.860138 0.510062i
\(5\) 3.32859i 1.48859i 0.667850 + 0.744296i \(0.267215\pi\)
−0.667850 + 0.744296i \(0.732785\pi\)
\(6\) −1.24739 2.10808i −0.509246 0.860621i
\(7\) 0.723623i 0.273504i −0.990605 0.136752i \(-0.956334\pi\)
0.990605 0.136752i \(-0.0436663\pi\)
\(8\) 2.03467 1.96472i 0.719363 0.694635i
\(9\) −0.0992110 2.99836i −0.0330703 0.999453i
\(10\) −4.53976 1.24483i −1.43560 0.393650i
\(11\) −4.38250 −1.32137 −0.660687 0.750662i \(-0.729735\pi\)
−0.660687 + 0.750662i \(0.729735\pi\)
\(12\) 3.34165 0.912896i 0.964651 0.263530i
\(13\) −1.00000 −0.277350
\(14\) 0.986927 + 0.270622i 0.263767 + 0.0723267i
\(15\) −4.14354 4.00870i −1.06986 1.03504i
\(16\) 1.91870 + 3.50979i 0.479674 + 0.877447i
\(17\) 0.660466i 0.160187i 0.996787 + 0.0800933i \(0.0255218\pi\)
−0.996787 + 0.0800933i \(0.974478\pi\)
\(18\) 4.12647 + 0.986020i 0.972619 + 0.232407i
\(19\) 7.29378i 1.67331i 0.547732 + 0.836654i \(0.315491\pi\)
−0.547732 + 0.836654i \(0.684509\pi\)
\(20\) 3.39557 5.72610i 0.759273 1.28039i
\(21\) 0.900789 + 0.871476i 0.196568 + 0.190172i
\(22\) 1.63897 5.97716i 0.349430 1.27433i
\(23\) 5.87843 1.22574 0.612868 0.790185i \(-0.290016\pi\)
0.612868 + 0.790185i \(0.290016\pi\)
\(24\) −0.00464491 + 4.89898i −0.000948139 + 1.00000i
\(25\) −6.07953 −1.21591
\(26\) 0.373981 1.36387i 0.0733438 0.267477i
\(27\) 3.85193 + 3.48749i 0.741305 + 0.671168i
\(28\) −0.738185 + 1.24483i −0.139504 + 0.235251i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 7.01695 4.15206i 1.28111 0.758059i
\(31\) 3.76170i 0.675621i 0.941214 + 0.337811i \(0.109686\pi\)
−0.941214 + 0.337811i \(0.890314\pi\)
\(32\) −5.50444 + 1.30426i −0.973058 + 0.230562i
\(33\) 5.27795 5.45547i 0.918773 0.949676i
\(34\) −0.900789 0.247002i −0.154484 0.0423605i
\(35\) 2.40865 0.407136
\(36\) −2.88802 + 5.25921i −0.481337 + 0.876535i
\(37\) −0.198422 −0.0326204 −0.0163102 0.999867i \(-0.505192\pi\)
−0.0163102 + 0.999867i \(0.505192\pi\)
\(38\) −9.94776 2.72774i −1.61374 0.442497i
\(39\) 1.20432 1.24483i 0.192846 0.199333i
\(40\) 6.53976 + 6.77257i 1.03403 + 1.07084i
\(41\) 6.92189i 1.08102i 0.841338 + 0.540509i \(0.181768\pi\)
−0.841338 + 0.540509i \(0.818232\pi\)
\(42\) −1.52546 + 0.902642i −0.235383 + 0.139281i
\(43\) 1.04242i 0.158967i 0.996836 + 0.0794835i \(0.0253271\pi\)
−0.996836 + 0.0794835i \(0.974673\pi\)
\(44\) 7.53911 + 4.47069i 1.13656 + 0.673982i
\(45\) 9.98031 0.330233i 1.48778 0.0492282i
\(46\) −2.19842 + 8.01740i −0.324140 + 1.18210i
\(47\) −5.73001 −0.835808 −0.417904 0.908491i \(-0.637235\pi\)
−0.417904 + 0.908491i \(0.637235\pi\)
\(48\) −6.67982 1.83846i −0.964150 0.265359i
\(49\) 6.47637 0.925196
\(50\) 2.27363 8.29167i 0.321540 1.17262i
\(51\) −0.822169 0.795415i −0.115127 0.111380i
\(52\) 1.72028 + 1.02012i 0.238559 + 0.141466i
\(53\) 1.32093i 0.181444i −0.995876 0.0907220i \(-0.971083\pi\)
0.995876 0.0907220i \(-0.0289175\pi\)
\(54\) −6.19703 + 3.94928i −0.843309 + 0.537428i
\(55\) 14.5876i 1.96699i
\(56\) −1.42172 1.47233i −0.189985 0.196748i
\(57\) −9.07953 8.78407i −1.20261 1.16348i
\(58\) 0 0
\(59\) 7.37435 0.960059 0.480029 0.877252i \(-0.340626\pi\)
0.480029 + 0.877252i \(0.340626\pi\)
\(60\) 3.03866 + 11.1230i 0.392289 + 1.43597i
\(61\) −10.8811 −1.39318 −0.696591 0.717468i \(-0.745301\pi\)
−0.696591 + 0.717468i \(0.745301\pi\)
\(62\) −5.13046 1.40681i −0.651570 0.178664i
\(63\) −2.16968 + 0.0717914i −0.273354 + 0.00904487i
\(64\) 0.279724 7.99511i 0.0349655 0.999389i
\(65\) 3.32859i 0.412861i
\(66\) 5.46670 + 9.23867i 0.672904 + 1.13720i
\(67\) 11.9227i 1.45659i −0.685265 0.728294i \(-0.740314\pi\)
0.685265 0.728294i \(-0.259686\pi\)
\(68\) 0.673757 1.13618i 0.0817050 0.137783i
\(69\) −7.07953 + 7.31765i −0.852275 + 0.880942i
\(70\) −0.900789 + 3.28508i −0.107665 + 0.392642i
\(71\) 0.912721 0.108320 0.0541600 0.998532i \(-0.482752\pi\)
0.0541600 + 0.998532i \(0.482752\pi\)
\(72\) −6.09281 5.90573i −0.718044 0.695997i
\(73\) 16.1591 1.89127 0.945637 0.325224i \(-0.105440\pi\)
0.945637 + 0.325224i \(0.105440\pi\)
\(74\) 0.0742062 0.270622i 0.00862629 0.0314591i
\(75\) 7.32171 7.56798i 0.845439 0.873876i
\(76\) 7.44055 12.5473i 0.853490 1.43928i
\(77\) 3.17128i 0.361401i
\(78\) 1.24739 + 2.10808i 0.141239 + 0.238693i
\(79\) 1.99566i 0.224529i 0.993678 + 0.112265i \(0.0358104\pi\)
−0.993678 + 0.112265i \(0.964190\pi\)
\(80\) −11.6826 + 6.38656i −1.30616 + 0.714039i
\(81\) −8.98031 + 0.594941i −0.997813 + 0.0661045i
\(82\) −9.44055 2.58866i −1.04253 0.285870i
\(83\) 14.0171 1.53858 0.769288 0.638903i \(-0.220611\pi\)
0.769288 + 0.638903i \(0.220611\pi\)
\(84\) −0.660592 2.41810i −0.0720765 0.263836i
\(85\) −2.19842 −0.238452
\(86\) −1.42172 0.389844i −0.153308 0.0420380i
\(87\) 0 0
\(88\) −8.91692 + 8.61040i −0.950547 + 0.917872i
\(89\) 6.39248i 0.677601i 0.940858 + 0.338801i \(0.110021\pi\)
−0.940858 + 0.338801i \(0.889979\pi\)
\(90\) −3.28206 + 13.7353i −0.345959 + 1.44783i
\(91\) 0.723623i 0.0758563i
\(92\) −10.1125 5.99672i −1.05430 0.625201i
\(93\) −4.68268 4.53030i −0.485571 0.469770i
\(94\) 2.14292 7.81499i 0.221025 0.806054i
\(95\) −24.2780 −2.49087
\(96\) 5.00555 8.42285i 0.510877 0.859654i
\(97\) −12.1591 −1.23456 −0.617282 0.786742i \(-0.711766\pi\)
−0.617282 + 0.786742i \(0.711766\pi\)
\(98\) −2.42204 + 8.83292i −0.244663 + 0.892259i
\(99\) 0.434792 + 13.1403i 0.0436983 + 1.32065i
\(100\) 10.4585 + 6.20186i 1.04585 + 0.620186i
\(101\) 7.97812i 0.793852i −0.917851 0.396926i \(-0.870077\pi\)
0.917851 0.396926i \(-0.129923\pi\)
\(102\) 1.39232 0.823860i 0.137860 0.0815743i
\(103\) 5.52774i 0.544664i −0.962203 0.272332i \(-0.912205\pi\)
0.962203 0.272332i \(-0.0877949\pi\)
\(104\) −2.03467 + 1.96472i −0.199515 + 0.192657i
\(105\) −2.90079 + 2.99836i −0.283088 + 0.292610i
\(106\) 1.80158 + 0.494004i 0.174985 + 0.0479819i
\(107\) 6.64273 0.642177 0.321089 0.947049i \(-0.395951\pi\)
0.321089 + 0.947049i \(0.395951\pi\)
\(108\) −3.06872 9.92890i −0.295287 0.955408i
\(109\) 13.9606 1.33719 0.668593 0.743629i \(-0.266897\pi\)
0.668593 + 0.743629i \(0.266897\pi\)
\(110\) 19.8955 + 5.45547i 1.89696 + 0.520159i
\(111\) 0.238964 0.247002i 0.0226815 0.0234444i
\(112\) 2.53976 1.38841i 0.239985 0.131193i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 15.3759 9.09820i 1.44008 0.852125i
\(115\) 19.5669i 1.82462i
\(116\) 0 0
\(117\) 0.0992110 + 2.99836i 0.00917206 + 0.277198i
\(118\) −2.75787 + 10.0576i −0.253883 + 0.925882i
\(119\) 0.477929 0.0438116
\(120\) −16.3067 0.0154610i −1.48859 0.00141139i
\(121\) 8.20631 0.746028
\(122\) 4.06933 14.8404i 0.368420 1.34359i
\(123\) −8.61659 8.33620i −0.776932 0.751649i
\(124\) 3.83740 6.47116i 0.344608 0.581127i
\(125\) 3.59330i 0.321394i
\(126\) 0.713507 2.98601i 0.0635642 0.266015i
\(127\) 10.5071i 0.932351i −0.884692 0.466176i \(-0.845631\pi\)
0.884692 0.466176i \(-0.154369\pi\)
\(128\) 10.7997 + 3.37153i 0.954565 + 0.298004i
\(129\) −1.29763 1.25541i −0.114250 0.110532i
\(130\) 4.53976 + 1.24483i 0.398164 + 0.109179i
\(131\) 8.28707 0.724045 0.362022 0.932169i \(-0.382086\pi\)
0.362022 + 0.932169i \(0.382086\pi\)
\(132\) −14.6448 + 4.00077i −1.27466 + 0.348222i
\(133\) 5.27795 0.457656
\(134\) 16.2610 + 4.45886i 1.40473 + 0.385187i
\(135\) −11.6084 + 12.8215i −0.999095 + 1.10350i
\(136\) 1.29763 + 1.34383i 0.111271 + 0.115232i
\(137\) 9.32531i 0.796715i 0.917230 + 0.398358i \(0.130420\pi\)
−0.917230 + 0.398358i \(0.869580\pi\)
\(138\) −7.33270 12.3922i −0.624201 1.05489i
\(139\) 2.48966i 0.211170i −0.994410 0.105585i \(-0.966328\pi\)
0.994410 0.105585i \(-0.0336716\pi\)
\(140\) −4.14354 2.45712i −0.350193 0.207664i
\(141\) 6.90079 7.13290i 0.581151 0.600699i
\(142\) −0.341341 + 1.24483i −0.0286447 + 0.104464i
\(143\) 4.38250 0.366483
\(144\) 10.3332 6.10115i 0.861104 0.508430i
\(145\) 0 0
\(146\) −6.04318 + 22.0388i −0.500137 + 1.82395i
\(147\) −7.79964 + 8.06199i −0.643304 + 0.664942i
\(148\) 0.341341 + 0.202415i 0.0280580 + 0.0166384i
\(149\) 2.13871i 0.175210i 0.996155 + 0.0876050i \(0.0279213\pi\)
−0.996155 + 0.0876050i \(0.972079\pi\)
\(150\) 7.58355 + 12.8161i 0.619195 + 1.04643i
\(151\) 8.88461i 0.723019i 0.932368 + 0.361510i \(0.117739\pi\)
−0.932368 + 0.361510i \(0.882261\pi\)
\(152\) 14.3303 + 14.8404i 1.16234 + 1.20372i
\(153\) 1.98031 0.0655255i 0.160099 0.00529742i
\(154\) −4.32521 1.18600i −0.348535 0.0955706i
\(155\) −12.5212 −1.00572
\(156\) −3.34165 + 0.912896i −0.267546 + 0.0730901i
\(157\) −0.722053 −0.0576261 −0.0288130 0.999585i \(-0.509173\pi\)
−0.0288130 + 0.999585i \(0.509173\pi\)
\(158\) −2.72182 0.746339i −0.216536 0.0593756i
\(159\) 1.64434 + 1.59083i 0.130404 + 0.126161i
\(160\) −4.34134 18.3221i −0.343213 1.44849i
\(161\) 4.25377i 0.335244i
\(162\) 2.54705 12.4705i 0.200115 0.979772i
\(163\) 10.1883i 0.798007i 0.916949 + 0.399003i \(0.130644\pi\)
−0.916949 + 0.399003i \(0.869356\pi\)
\(164\) 7.06118 11.9076i 0.551386 0.929824i
\(165\) 18.1591 + 17.5681i 1.41368 + 1.36768i
\(166\) −5.24213 + 19.1175i −0.406868 + 1.48380i
\(167\) −1.39065 −0.107612 −0.0538058 0.998551i \(-0.517135\pi\)
−0.0538058 + 0.998551i \(0.517135\pi\)
\(168\) 3.54501 + 0.00336117i 0.273504 + 0.000259320i
\(169\) 1.00000 0.0769231
\(170\) 0.822169 2.99836i 0.0630575 0.229964i
\(171\) 21.8694 0.723623i 1.67239 0.0553368i
\(172\) 1.06339 1.79324i 0.0810830 0.136734i
\(173\) 13.8438i 1.05252i −0.850323 0.526262i \(-0.823593\pi\)
0.850323 0.526262i \(-0.176407\pi\)
\(174\) 0 0
\(175\) 4.39929i 0.332555i
\(176\) −8.40869 15.3816i −0.633829 1.15943i
\(177\) −8.88110 + 9.17983i −0.667545 + 0.689998i
\(178\) −8.71850 2.39067i −0.653479 0.179188i
\(179\) −6.46163 −0.482965 −0.241482 0.970405i \(-0.577634\pi\)
−0.241482 + 0.970405i \(0.577634\pi\)
\(180\) −17.5058 9.61306i −1.30480 0.716515i
\(181\) −10.4843 −0.779289 −0.389644 0.920965i \(-0.627402\pi\)
−0.389644 + 0.920965i \(0.627402\pi\)
\(182\) −0.986927 0.270622i −0.0731559 0.0200598i
\(183\) 13.1044 13.5451i 0.968703 1.00129i
\(184\) 11.9606 11.5495i 0.881749 0.851439i
\(185\) 0.660466i 0.0485584i
\(186\) 7.92997 4.69231i 0.581454 0.344057i
\(187\) 2.89449i 0.211666i
\(188\) 9.85720 + 5.84532i 0.718911 + 0.426314i
\(189\) 2.52363 2.78735i 0.183567 0.202750i
\(190\) 9.07953 33.1120i 0.658698 2.40220i
\(191\) −13.6876 −0.990398 −0.495199 0.868780i \(-0.664905\pi\)
−0.495199 + 0.868780i \(0.664905\pi\)
\(192\) 9.61568 + 9.97690i 0.693952 + 0.720021i
\(193\) 5.60316 0.403324 0.201662 0.979455i \(-0.435366\pi\)
0.201662 + 0.979455i \(0.435366\pi\)
\(194\) 4.54726 16.5833i 0.326474 1.19062i
\(195\) 4.14354 + 4.00870i 0.296725 + 0.287069i
\(196\) −11.1411 6.60669i −0.795796 0.471907i
\(197\) 17.7254i 1.26289i −0.775422 0.631443i \(-0.782463\pi\)
0.775422 0.631443i \(-0.217537\pi\)
\(198\) −18.0843 4.32123i −1.28519 0.307097i
\(199\) 18.6680i 1.32334i 0.749794 + 0.661671i \(0.230153\pi\)
−0.749794 + 0.661671i \(0.769847\pi\)
\(200\) −12.3698 + 11.9446i −0.874677 + 0.844610i
\(201\) 14.8417 + 14.3588i 1.04686 + 1.01279i
\(202\) 10.8811 + 2.98367i 0.765592 + 0.209930i
\(203\) 0 0
\(204\) 0.602937 + 2.20705i 0.0422140 + 0.154524i
\(205\) −23.0402 −1.60919
\(206\) 7.53911 + 2.06727i 0.525275 + 0.144034i
\(207\) −0.583205 17.6256i −0.0405355 1.22507i
\(208\) −1.91870 3.50979i −0.133038 0.243360i
\(209\) 31.9650i 2.21106i
\(210\) −3.00453 5.07763i −0.207332 0.350389i
\(211\) 15.3428i 1.05624i 0.849169 + 0.528121i \(0.177103\pi\)
−0.849169 + 0.528121i \(0.822897\pi\)
\(212\) −1.34751 + 2.27237i −0.0925476 + 0.156067i
\(213\) −1.09921 + 1.13618i −0.0753167 + 0.0778500i
\(214\) −2.48426 + 9.05982i −0.169820 + 0.619316i
\(215\) −3.46978 −0.236637
\(216\) 14.6894 0.472105i 0.999484 0.0321227i
\(217\) 2.72205 0.184785
\(218\) −5.22102 + 19.0405i −0.353612 + 1.28958i
\(219\) −19.4607 + 20.1153i −1.31503 + 1.35927i
\(220\) −14.8811 + 25.0946i −1.00328 + 1.69188i
\(221\) 0.660466i 0.0444278i
\(222\) 0.247510 + 0.418290i 0.0166118 + 0.0280738i
\(223\) 17.3960i 1.16492i −0.812858 0.582462i \(-0.802090\pi\)
0.812858 0.582462i \(-0.197910\pi\)
\(224\) 0.943791 + 3.98314i 0.0630597 + 0.266135i
\(225\) 0.603156 + 18.2286i 0.0402104 + 1.21524i
\(226\) 0 0
\(227\) −12.1916 −0.809188 −0.404594 0.914496i \(-0.632587\pi\)
−0.404594 + 0.914496i \(0.632587\pi\)
\(228\) 6.65846 + 24.3733i 0.440967 + 1.61416i
\(229\) −15.1512 −1.00122 −0.500608 0.865674i \(-0.666890\pi\)
−0.500608 + 0.865674i \(0.666890\pi\)
\(230\) −26.6867 7.31765i −1.75967 0.482512i
\(231\) −3.94771 3.81925i −0.259740 0.251288i
\(232\) 0 0
\(233\) 23.3264i 1.52816i 0.645119 + 0.764082i \(0.276808\pi\)
−0.645119 + 0.764082i \(0.723192\pi\)
\(234\) −4.12647 0.986020i −0.269756 0.0644581i
\(235\) 19.0729i 1.24418i
\(236\) −12.6859 7.52275i −0.825783 0.489689i
\(237\) −2.48426 2.40342i −0.161370 0.156119i
\(238\) −0.178736 + 0.651832i −0.0115858 + 0.0422520i
\(239\) −14.4950 −0.937605 −0.468802 0.883303i \(-0.655314\pi\)
−0.468802 + 0.883303i \(0.655314\pi\)
\(240\) 6.11949 22.2344i 0.395011 1.43523i
\(241\) 2.79369 0.179957 0.0899786 0.995944i \(-0.471320\pi\)
0.0899786 + 0.995944i \(0.471320\pi\)
\(242\) −3.06901 + 11.1923i −0.197283 + 0.719470i
\(243\) 10.0746 11.8955i 0.646286 0.763095i
\(244\) 18.7185 + 11.1001i 1.19833 + 0.710609i
\(245\) 21.5572i 1.37724i
\(246\) 14.5919 8.63431i 0.930347 0.550504i
\(247\) 7.29378i 0.464092i
\(248\) 7.39070 + 7.65380i 0.469310 + 0.486017i
\(249\) −16.8811 + 17.4489i −1.06980 + 1.10578i
\(250\) 4.90079 + 1.34383i 0.309953 + 0.0849911i
\(251\) −4.92257 −0.310710 −0.155355 0.987859i \(-0.549652\pi\)
−0.155355 + 0.987859i \(0.549652\pi\)
\(252\) 3.80569 + 2.08984i 0.239736 + 0.131648i
\(253\) −25.7622 −1.61966
\(254\) 14.3303 + 3.92945i 0.899160 + 0.246555i
\(255\) 2.64761 2.73667i 0.165800 0.171377i
\(256\) −8.63720 + 13.4684i −0.539825 + 0.841777i
\(257\) 7.84707i 0.489486i 0.969588 + 0.244743i \(0.0787037\pi\)
−0.969588 + 0.244743i \(0.921296\pi\)
\(258\) 2.19750 1.30030i 0.136810 0.0809533i
\(259\) 0.143583i 0.00892180i
\(260\) −3.39557 + 5.72610i −0.210585 + 0.355117i
\(261\) 0 0
\(262\) −3.09921 + 11.3025i −0.191470 + 0.698270i
\(263\) 19.3554 1.19351 0.596754 0.802424i \(-0.296457\pi\)
0.596754 + 0.802424i \(0.296457\pi\)
\(264\) 0.0203563 21.4698i 0.00125285 1.32137i
\(265\) 4.39684 0.270096
\(266\) −1.97385 + 7.19843i −0.121025 + 0.441364i
\(267\) −7.95756 7.69861i −0.486995 0.471147i
\(268\) −12.1626 + 20.5103i −0.742949 + 1.25287i
\(269\) 23.1428i 1.41104i −0.708688 0.705522i \(-0.750713\pi\)
0.708688 0.705522i \(-0.249287\pi\)
\(270\) −13.1455 20.6274i −0.800011 1.25534i
\(271\) 23.1850i 1.40839i −0.710007 0.704194i \(-0.751308\pi\)
0.710007 0.704194i \(-0.248692\pi\)
\(272\) −2.31809 + 1.26723i −0.140555 + 0.0768374i
\(273\) −0.900789 0.871476i −0.0545182 0.0527441i
\(274\) −12.7185 3.48749i −0.768353 0.210687i
\(275\) 26.6435 1.60666
\(276\) 19.6436 5.36639i 1.18241 0.323019i
\(277\) 16.5559 0.994747 0.497374 0.867536i \(-0.334298\pi\)
0.497374 + 0.867536i \(0.334298\pi\)
\(278\) 3.39557 + 0.931088i 0.203653 + 0.0558429i
\(279\) 11.2789 0.373202i 0.675252 0.0223430i
\(280\) 4.90079 4.73232i 0.292878 0.282810i
\(281\) 14.6616i 0.874635i −0.899307 0.437318i \(-0.855929\pi\)
0.899307 0.437318i \(-0.144071\pi\)
\(282\) 7.14758 + 12.0793i 0.425632 + 0.719314i
\(283\) 6.51575i 0.387321i −0.981069 0.193660i \(-0.937964\pi\)
0.981069 0.193660i \(-0.0620360\pi\)
\(284\) −1.57013 0.931088i −0.0931702 0.0552499i
\(285\) 29.2386 30.2220i 1.73194 1.79020i
\(286\) −1.63897 + 5.97716i −0.0969145 + 0.353437i
\(287\) 5.00884 0.295663
\(288\) 4.45673 + 16.3749i 0.262616 + 0.964901i
\(289\) 16.5638 0.974340
\(290\) 0 0
\(291\) 14.6434 15.1360i 0.858413 0.887286i
\(292\) −27.7980 16.4842i −1.62676 0.964666i
\(293\) 9.43270i 0.551065i 0.961292 + 0.275532i \(0.0888541\pi\)
−0.961292 + 0.275532i \(0.911146\pi\)
\(294\) −8.07857 13.6527i −0.471152 0.796243i
\(295\) 24.5462i 1.42914i
\(296\) −0.403722 + 0.389844i −0.0234659 + 0.0226592i
\(297\) −16.8811 15.2839i −0.979541 0.886864i
\(298\) −2.91692 0.799838i −0.168973 0.0463334i
\(299\) −5.87843 −0.339958
\(300\) −20.3156 + 5.54997i −1.17292 + 0.320428i
\(301\) 0.754317 0.0434781
\(302\) −12.1174 3.32268i −0.697280 0.191199i
\(303\) 9.93141 + 9.60823i 0.570545 + 0.551978i
\(304\) −25.5996 + 13.9946i −1.46824 + 0.802643i
\(305\) 36.2188i 2.07388i
\(306\) −0.651233 + 2.72539i −0.0372285 + 0.155800i
\(307\) 10.5387i 0.601475i 0.953707 + 0.300737i \(0.0972328\pi\)
−0.953707 + 0.300737i \(0.902767\pi\)
\(308\) 3.23510 5.45547i 0.184337 0.310855i
\(309\) 6.88110 + 6.65718i 0.391452 + 0.378714i
\(310\) 4.68268 17.0772i 0.265958 0.969921i
\(311\) 33.2536 1.88564 0.942818 0.333307i \(-0.108165\pi\)
0.942818 + 0.333307i \(0.108165\pi\)
\(312\) 0.00464491 4.89898i 0.000262966 0.277350i
\(313\) 0.992110 0.0560774 0.0280387 0.999607i \(-0.491074\pi\)
0.0280387 + 0.999607i \(0.491074\pi\)
\(314\) 0.270034 0.984785i 0.0152389 0.0555746i
\(315\) −0.238964 7.22199i −0.0134641 0.406913i
\(316\) 2.03582 3.43308i 0.114524 0.193126i
\(317\) 26.8934i 1.51049i 0.655445 + 0.755243i \(0.272481\pi\)
−0.655445 + 0.755243i \(0.727519\pi\)
\(318\) −2.78463 + 1.64772i −0.156155 + 0.0923996i
\(319\) 0 0
\(320\) 26.6125 + 0.931088i 1.48768 + 0.0520494i
\(321\) −8.00000 + 8.26909i −0.446516 + 0.461535i
\(322\) 5.80158 + 1.59083i 0.323309 + 0.0886534i
\(323\) −4.81729 −0.268041
\(324\) 16.0555 + 8.13756i 0.891974 + 0.452087i
\(325\) 6.07953 0.337231
\(326\) −13.8955 3.81022i −0.769599 0.211029i
\(327\) −16.8131 + 17.3786i −0.929767 + 0.961040i
\(328\) 13.5996 + 14.0837i 0.750912 + 0.777644i
\(329\) 4.14637i 0.228597i
\(330\) −30.7518 + 18.1964i −1.69283 + 1.00168i
\(331\) 0.516785i 0.0284051i 0.999899 + 0.0142025i \(0.00452096\pi\)
−0.999899 + 0.0142025i \(0.995479\pi\)
\(332\) −24.1133 14.2992i −1.32339 0.784768i
\(333\) 0.0196857 + 0.594941i 0.00107877 + 0.0326025i
\(334\) 0.520077 1.89666i 0.0284573 0.103781i
\(335\) 39.6857 2.16826
\(336\) −1.33035 + 4.83368i −0.0725767 + 0.263699i
\(337\) 17.9606 0.978378 0.489189 0.872178i \(-0.337293\pi\)
0.489189 + 0.872178i \(0.337293\pi\)
\(338\) −0.373981 + 1.36387i −0.0203419 + 0.0741847i
\(339\) 0 0
\(340\) 3.78189 + 2.24266i 0.205102 + 0.121625i
\(341\) 16.4856i 0.892748i
\(342\) −7.19181 + 30.0976i −0.388889 + 1.62749i
\(343\) 9.75181i 0.526548i
\(344\) 2.04806 + 2.12097i 0.110424 + 0.114355i
\(345\) −24.3575 23.5649i −1.31136 1.26869i
\(346\) 18.8811 + 5.17732i 1.01505 + 0.278334i
\(347\) −0.286380 −0.0153737 −0.00768684 0.999970i \(-0.502447\pi\)
−0.00768684 + 0.999970i \(0.502447\pi\)
\(348\) 0 0
\(349\) 9.56378 0.511938 0.255969 0.966685i \(-0.417606\pi\)
0.255969 + 0.966685i \(0.417606\pi\)
\(350\) −6.00005 1.64525i −0.320716 0.0879424i
\(351\) −3.85193 3.48749i −0.205601 0.186149i
\(352\) 24.1232 5.71591i 1.28577 0.304659i
\(353\) 8.48127i 0.451412i −0.974195 0.225706i \(-0.927531\pi\)
0.974195 0.225706i \(-0.0724689\pi\)
\(354\) −9.19871 15.5457i −0.488906 0.826247i
\(355\) 3.03808i 0.161244i
\(356\) 6.52111 10.9968i 0.345618 0.582830i
\(357\) −0.575580 + 0.594941i −0.0304629 + 0.0314876i
\(358\) 2.41653 8.81282i 0.127718 0.465772i
\(359\) −36.6612 −1.93490 −0.967452 0.253054i \(-0.918565\pi\)
−0.967452 + 0.253054i \(0.918565\pi\)
\(360\) 19.6578 20.2805i 1.03606 1.06887i
\(361\) −34.1992 −1.79996
\(362\) 3.92092 14.2992i 0.206079 0.751547i
\(363\) −9.88305 + 10.2155i −0.518726 + 0.536173i
\(364\) 0.738185 1.24483i 0.0386914 0.0652469i
\(365\) 53.7869i 2.81533i
\(366\) 13.5730 + 22.9383i 0.709472 + 1.19900i
\(367\) 32.1588i 1.67867i −0.543611 0.839337i \(-0.682943\pi\)
0.543611 0.839337i \(-0.317057\pi\)
\(368\) 11.2789 + 20.6320i 0.587955 + 1.07552i
\(369\) 20.7543 0.686728i 1.08043 0.0357496i
\(370\) 0.900789 + 0.247002i 0.0468298 + 0.0128410i
\(371\) −0.955857 −0.0496256
\(372\) 3.43404 + 12.5703i 0.178047 + 0.651739i
\(373\) 8.15905 0.422460 0.211230 0.977436i \(-0.432253\pi\)
0.211230 + 0.977436i \(0.432253\pi\)
\(374\) 3.94771 + 1.08249i 0.204131 + 0.0559740i
\(375\) 4.47305 + 4.32749i 0.230987 + 0.223471i
\(376\) −11.6587 + 11.2579i −0.601249 + 0.580581i
\(377\) 0 0
\(378\) 2.85779 + 4.48432i 0.146989 + 0.230648i
\(379\) 0.229619i 0.0117947i 0.999983 + 0.00589737i \(0.00187720\pi\)
−0.999983 + 0.00589737i \(0.998123\pi\)
\(380\) 41.7649 + 24.7666i 2.14249 + 1.27050i
\(381\) 13.0795 + 12.6539i 0.670084 + 0.648279i
\(382\) 5.11890 18.6680i 0.261906 0.955140i
\(383\) 8.42504 0.430499 0.215250 0.976559i \(-0.430943\pi\)
0.215250 + 0.976559i \(0.430943\pi\)
\(384\) −17.2033 + 9.38335i −0.877901 + 0.478842i
\(385\) −10.5559 −0.537978
\(386\) −2.09548 + 7.64197i −0.106657 + 0.388966i
\(387\) 3.12554 0.103419i 0.158880 0.00525709i
\(388\) 20.9169 + 12.4037i 1.06190 + 0.629704i
\(389\) 5.33625i 0.270559i −0.990807 0.135279i \(-0.956807\pi\)
0.990807 0.135279i \(-0.0431932\pi\)
\(390\) −7.01695 + 4.15206i −0.355317 + 0.210248i
\(391\) 3.88250i 0.196347i
\(392\) 13.1772 12.7243i 0.665551 0.642673i
\(393\) −9.98031 + 10.3160i −0.503440 + 0.520374i
\(394\) 24.1752 + 6.62899i 1.21793 + 0.333964i
\(395\) −6.64273 −0.334232
\(396\) 12.6568 23.0485i 0.636027 1.15823i
\(397\) −6.79369 −0.340965 −0.170483 0.985361i \(-0.554533\pi\)
−0.170483 + 0.985361i \(0.554533\pi\)
\(398\) −25.4608 6.98150i −1.27623 0.349951i
\(399\) −6.35635 + 6.57016i −0.318216 + 0.328919i
\(400\) −11.6648 21.3378i −0.583239 1.06689i
\(401\) 7.16034i 0.357570i 0.983888 + 0.178785i \(0.0572167\pi\)
−0.983888 + 0.178785i \(0.942783\pi\)
\(402\) −25.1340 + 14.8723i −1.25357 + 0.741761i
\(403\) 3.76170i 0.187384i
\(404\) −8.13866 + 13.7246i −0.404913 + 0.682822i
\(405\) −1.98031 29.8918i −0.0984026 1.48534i
\(406\) 0 0
\(407\) 0.869585 0.0431037
\(408\) −3.23561 0.00306781i −0.160186 0.000151879i
\(409\) 36.5559 1.80757 0.903786 0.427984i \(-0.140776\pi\)
0.903786 + 0.427984i \(0.140776\pi\)
\(410\) 8.61659 31.4237i 0.425543 1.55191i
\(411\) −11.6084 11.2307i −0.572602 0.553969i
\(412\) −5.63897 + 9.50924i −0.277812 + 0.468486i
\(413\) 5.33625i 0.262580i
\(414\) 24.2572 + 5.79624i 1.19217 + 0.284870i
\(415\) 46.6572i 2.29031i
\(416\) 5.50444 1.30426i 0.269878 0.0639465i
\(417\) 3.09921 + 2.99836i 0.151769 + 0.146830i
\(418\) 43.5960 + 11.9543i 2.13235 + 0.584704i
\(419\) −18.8775 −0.922227 −0.461113 0.887341i \(-0.652550\pi\)
−0.461113 + 0.887341i \(0.652550\pi\)
\(420\) 8.04885 2.19884i 0.392744 0.107293i
\(421\) −24.9134 −1.21420 −0.607102 0.794624i \(-0.707668\pi\)
−0.607102 + 0.794624i \(0.707668\pi\)
\(422\) −20.9256 5.73792i −1.01864 0.279318i
\(423\) 0.568481 + 17.1806i 0.0276405 + 0.835351i
\(424\) −2.59527 2.68765i −0.126037 0.130524i
\(425\) 4.01532i 0.194772i
\(426\) −1.13852 1.92409i −0.0551615 0.0932225i
\(427\) 7.87382i 0.381041i
\(428\) −11.4273 6.77641i −0.552361 0.327550i
\(429\) −5.27795 + 5.45547i −0.254822 + 0.263393i
\(430\) 1.29763 4.73232i 0.0625774 0.228213i
\(431\) −6.59960 −0.317891 −0.158946 0.987287i \(-0.550809\pi\)
−0.158946 + 0.987287i \(0.550809\pi\)
\(432\) −4.84966 + 20.2109i −0.233329 + 0.972398i
\(433\) −20.6827 −0.993946 −0.496973 0.867766i \(-0.665555\pi\)
−0.496973 + 0.867766i \(0.665555\pi\)
\(434\) −1.01800 + 3.71252i −0.0488654 + 0.178207i
\(435\) 0 0
\(436\) −24.0161 14.2416i −1.15016 0.682047i
\(437\) 42.8759i 2.05103i
\(438\) −20.1567 34.0646i −0.963123 1.62767i
\(439\) 40.6702i 1.94108i 0.240936 + 0.970541i \(0.422546\pi\)
−0.240936 + 0.970541i \(0.577454\pi\)
\(440\) −28.6605 29.6808i −1.36634 1.41498i
\(441\) −0.642527 19.4185i −0.0305965 0.924690i
\(442\) 0.900789 + 0.247002i 0.0428462 + 0.0117487i
\(443\) −24.8612 −1.18119 −0.590596 0.806967i \(-0.701107\pi\)
−0.590596 + 0.806967i \(0.701107\pi\)
\(444\) −0.663057 + 0.181139i −0.0314673 + 0.00859646i
\(445\) −21.2779 −1.00867
\(446\) 23.7259 + 6.50579i 1.12345 + 0.308058i
\(447\) −2.66233 2.57570i −0.125924 0.121826i
\(448\) −5.78545 0.202415i −0.273337 0.00956321i
\(449\) 21.7956i 1.02860i 0.857610 + 0.514300i \(0.171948\pi\)
−0.857610 + 0.514300i \(0.828052\pi\)
\(450\) −25.0870 5.99453i −1.18261 0.282585i
\(451\) 30.3352i 1.42843i
\(452\) 0 0
\(453\) −11.0598 10.6999i −0.519637 0.502727i
\(454\) 4.55945 16.6278i 0.213986 0.780381i
\(455\) −2.40865 −0.112919
\(456\) −35.7321 0.0338790i −1.67331 0.00158653i
\(457\) 36.7307 1.71819 0.859095 0.511815i \(-0.171027\pi\)
0.859095 + 0.511815i \(0.171027\pi\)
\(458\) 5.66625 20.6642i 0.264767 0.965574i
\(459\) −2.30337 + 2.54407i −0.107512 + 0.118747i
\(460\) 19.9606 33.6604i 0.930669 1.56943i
\(461\) 14.0011i 0.652096i 0.945353 + 0.326048i \(0.105717\pi\)
−0.945353 + 0.326048i \(0.894283\pi\)
\(462\) 6.68532 3.95583i 0.311029 0.184042i
\(463\) 21.2437i 0.987281i −0.869666 0.493640i \(-0.835666\pi\)
0.869666 0.493640i \(-0.164334\pi\)
\(464\) 0 0
\(465\) 15.0795 15.5867i 0.699296 0.722818i
\(466\) −31.8142 8.72364i −1.47376 0.404115i
\(467\) 16.6794 0.771832 0.385916 0.922534i \(-0.373886\pi\)
0.385916 + 0.922534i \(0.373886\pi\)
\(468\) 2.88802 5.25921i 0.133499 0.243107i
\(469\) −8.62753 −0.398382
\(470\) 26.0129 + 7.13290i 1.19989 + 0.329016i
\(471\) 0.869585 0.898834i 0.0400683 0.0414161i
\(472\) 15.0043 14.4886i 0.690631 0.666890i
\(473\) 4.56839i 0.210055i
\(474\) 4.20701 2.48937i 0.193235 0.114341i
\(475\) 44.3427i 2.03458i
\(476\) −0.822169 0.487546i −0.0376841 0.0223466i
\(477\) −3.96063 + 0.131051i −0.181345 + 0.00600041i
\(478\) 5.42087 19.7693i 0.247945 0.904227i
\(479\) −4.56360 −0.208516 −0.104258 0.994550i \(-0.533247\pi\)
−0.104258 + 0.994550i \(0.533247\pi\)
\(480\) 28.0362 + 16.6614i 1.27967 + 0.760487i
\(481\) 0.198422 0.00904727
\(482\) −1.04479 + 3.81022i −0.0475888 + 0.173551i
\(483\) 5.29522 + 5.12291i 0.240941 + 0.233100i
\(484\) −14.1171 8.37145i −0.641687 0.380520i
\(485\) 40.4725i 1.83776i
\(486\) 12.4562 + 18.1891i 0.565023 + 0.825075i
\(487\) 30.1056i 1.36421i 0.731252 + 0.682107i \(0.238936\pi\)
−0.731252 + 0.682107i \(0.761064\pi\)
\(488\) −22.1394 + 21.3784i −1.00220 + 0.967753i
\(489\) −12.6827 12.2700i −0.573531 0.554867i
\(490\) −29.4012 8.06199i −1.32821 0.364204i
\(491\) −29.2764 −1.32123 −0.660613 0.750727i \(-0.729704\pi\)
−0.660613 + 0.750727i \(0.729704\pi\)
\(492\) 6.31896 + 23.1305i 0.284881 + 1.04281i
\(493\) 0 0
\(494\) 9.94776 + 2.72774i 0.447571 + 0.122727i
\(495\) −43.7387 + 1.44725i −1.96591 + 0.0650489i
\(496\) −13.2028 + 7.21756i −0.592821 + 0.324078i
\(497\) 0.660466i 0.0296260i
\(498\) −17.4848 29.5492i −0.783513 1.32413i
\(499\) 11.2851i 0.505190i −0.967572 0.252595i \(-0.918716\pi\)
0.967572 0.252595i \(-0.0812841\pi\)
\(500\) −3.66561 + 6.18147i −0.163931 + 0.276444i
\(501\) 1.67479 1.73112i 0.0748242 0.0773409i
\(502\) 1.84095 6.71374i 0.0821656 0.299649i
\(503\) 21.0946 0.940562 0.470281 0.882517i \(-0.344153\pi\)
0.470281 + 0.882517i \(0.344153\pi\)
\(504\) −4.27353 + 4.40890i −0.190358 + 0.196388i
\(505\) 26.5559 1.18172
\(506\) 9.63459 35.1363i 0.428310 1.56200i
\(507\) −1.20432 + 1.24483i −0.0534859 + 0.0552849i
\(508\) −10.7185 + 18.0750i −0.475556 + 0.801951i
\(509\) 31.7003i 1.40509i 0.711639 + 0.702545i \(0.247953\pi\)
−0.711639 + 0.702545i \(0.752047\pi\)
\(510\) 2.74229 + 4.63446i 0.121431 + 0.205217i
\(511\) 11.6931i 0.517271i
\(512\) −15.1390 16.8169i −0.669057 0.743211i
\(513\) −25.4370 + 28.0952i −1.12307 + 1.24043i
\(514\) −10.7024 2.93466i −0.472061 0.129442i
\(515\) 18.3996 0.810783
\(516\) 0.951618 + 3.48339i 0.0418926 + 0.153348i
\(517\) 25.1118 1.10442
\(518\) −0.195828 0.0536973i −0.00860419 0.00235932i
\(519\) 17.2332 + 16.6724i 0.756453 + 0.731837i
\(520\) −6.53976 6.77257i −0.286788 0.296997i
\(521\) 9.48262i 0.415441i −0.978188 0.207721i \(-0.933396\pi\)
0.978188 0.207721i \(-0.0666045\pi\)
\(522\) 0 0
\(523\) 22.2001i 0.970744i 0.874308 + 0.485372i \(0.161316\pi\)
−0.874308 + 0.485372i \(0.838684\pi\)
\(524\) −14.2561 8.45383i −0.622778 0.369307i
\(525\) −5.47637 5.29816i −0.239008 0.231231i
\(526\) −7.23858 + 26.3983i −0.315617 + 1.15102i
\(527\) −2.48447 −0.108225
\(528\) 29.2743 + 8.05706i 1.27400 + 0.350638i
\(529\) 11.5559 0.502430
\(530\) −1.64434 + 5.99672i −0.0714255 + 0.260481i
\(531\) −0.731617 22.1110i −0.0317495 0.959534i
\(532\) −9.07953 5.38416i −0.393647 0.233433i
\(533\) 6.92189i 0.299820i
\(534\) 13.4759 7.97393i 0.583158 0.345066i
\(535\) 22.1110i 0.955940i
\(536\) −23.4248 24.2587i −1.01180 1.04781i
\(537\) 7.78189 8.04364i 0.335813 0.347109i
\(538\) 31.5638 + 8.65499i 1.36081 + 0.373143i
\(539\) −28.3827 −1.22253
\(540\) 33.0492 10.2145i 1.42221 0.439562i
\(541\) 35.0724 1.50788 0.753941 0.656943i \(-0.228151\pi\)
0.753941 + 0.656943i \(0.228151\pi\)
\(542\) 31.6213 + 8.67076i 1.35825 + 0.372441i
\(543\) 12.6264 13.0511i 0.541852 0.560078i
\(544\) −0.861418 3.63550i −0.0369330 0.155871i
\(545\) 46.4692i 1.99052i
\(546\) 1.52546 0.902642i 0.0652836 0.0386295i
\(547\) 3.58649i 0.153347i 0.997056 + 0.0766736i \(0.0244299\pi\)
−0.997056 + 0.0766736i \(0.975570\pi\)
\(548\) 9.51296 16.0421i 0.406374 0.685285i
\(549\) 1.07953 + 32.6255i 0.0460730 + 1.39242i
\(550\) −9.96418 + 36.3383i −0.424874 + 1.54947i
\(551\) 0 0
\(552\) −0.0273048 + 28.7983i −0.00116217 + 1.22574i
\(553\) 1.44411 0.0614096
\(554\) −6.19160 + 22.5801i −0.263056 + 0.959335i
\(555\) 0.822169 + 0.795415i 0.0348991 + 0.0337635i
\(556\) −2.53976 + 4.28291i −0.107710 + 0.181636i
\(557\) 9.45636i 0.400679i −0.979727 0.200339i \(-0.935796\pi\)
0.979727 0.200339i \(-0.0642045\pi\)
\(558\) −3.70911 + 15.5225i −0.157019 + 0.657122i
\(559\) 1.04242i 0.0440895i
\(560\) 4.62146 + 8.45383i 0.195293 + 0.357240i
\(561\) 3.60316 + 3.48591i 0.152125 + 0.147175i
\(562\) 19.9964 + 5.48315i 0.843499 + 0.231293i
\(563\) 27.6425 1.16499 0.582497 0.812833i \(-0.302076\pi\)
0.582497 + 0.812833i \(0.302076\pi\)
\(564\) −19.1477 + 5.23090i −0.806264 + 0.220261i
\(565\) 0 0
\(566\) 8.88662 + 2.43677i 0.373533 + 0.102425i
\(567\) 0.430513 + 6.49836i 0.0180798 + 0.272906i
\(568\) 1.85708 1.79324i 0.0779214 0.0752429i
\(569\) 15.0337i 0.630244i −0.949051 0.315122i \(-0.897955\pi\)
0.949051 0.315122i \(-0.102045\pi\)
\(570\) 30.2842 + 51.1801i 1.26847 + 2.14370i
\(571\) 17.7781i 0.743989i −0.928235 0.371994i \(-0.878674\pi\)
0.928235 0.371994i \(-0.121326\pi\)
\(572\) −7.53911 4.47069i −0.315226 0.186929i
\(573\) 16.4843 17.0387i 0.688640 0.711803i
\(574\) −1.87321 + 6.83140i −0.0781864 + 0.285137i
\(575\) −35.7380 −1.49038
\(576\) −24.0000 0.0455107i −0.999998 0.00189628i
\(577\) −17.6032 −0.732829 −0.366414 0.930452i \(-0.619415\pi\)
−0.366414 + 0.930452i \(0.619415\pi\)
\(578\) −6.19455 + 22.5908i −0.257659 + 0.939655i
\(579\) −6.74801 + 6.97499i −0.280438 + 0.289870i
\(580\) 0 0
\(581\) 10.1431i 0.420806i
\(582\) 15.1671 + 25.6323i 0.628697 + 1.06249i
\(583\) 5.78899i 0.239755i
\(584\) 32.8783 31.7481i 1.36051 1.31374i
\(585\) −9.98031 + 0.330233i −0.412635 + 0.0136535i
\(586\) −12.8650 3.52766i −0.531447 0.145726i
\(587\) −8.33021 −0.343825 −0.171912 0.985112i \(-0.554995\pi\)
−0.171912 + 0.985112i \(0.554995\pi\)
\(588\) 21.6418 5.91225i 0.892491 0.243817i
\(589\) −27.4370 −1.13052
\(590\) −33.4778 9.17983i −1.37826 0.377927i
\(591\) 22.0652 + 21.3472i 0.907641 + 0.878105i
\(592\) −0.380712 0.696419i −0.0156472 0.0286226i
\(593\) 10.8847i 0.446981i −0.974706 0.223490i \(-0.928255\pi\)
0.974706 0.223490i \(-0.0717451\pi\)
\(594\) 27.1585 17.3077i 1.11433 0.710144i
\(595\) 1.59083i 0.0652176i
\(596\) 2.18175 3.67917i 0.0893679 0.150705i
\(597\) −23.2386 22.4824i −0.951092 0.920142i
\(598\) 2.19842 8.01740i 0.0899002 0.327856i
\(599\) 23.7896 0.972018 0.486009 0.873954i \(-0.338452\pi\)
0.486009 + 0.873954i \(0.338452\pi\)
\(600\) 0.0282389 29.7835i 0.00115285 1.21590i
\(601\) 22.3575 0.911980 0.455990 0.889985i \(-0.349285\pi\)
0.455990 + 0.889985i \(0.349285\pi\)
\(602\) −0.282100 + 1.02879i −0.0114976 + 0.0419303i
\(603\) −35.7485 + 1.18286i −1.45579 + 0.0481698i
\(604\) 9.06339 15.2840i 0.368784 0.621896i
\(605\) 27.3155i 1.11053i
\(606\) −16.8185 + 9.95184i −0.683206 + 0.404266i
\(607\) 15.9456i 0.647213i 0.946192 + 0.323607i \(0.104895\pi\)
−0.946192 + 0.323607i \(0.895105\pi\)
\(608\) −9.51296 40.1482i −0.385802 1.62822i
\(609\) 0 0
\(610\) 49.3976 + 13.5451i 2.00005 + 0.548427i
\(611\) 5.73001 0.231812
\(612\) −3.47353 1.90744i −0.140409 0.0771038i
\(613\) 10.7937 0.435953 0.217976 0.975954i \(-0.430054\pi\)
0.217976 + 0.975954i \(0.430054\pi\)
\(614\) −14.3734 3.94127i −0.580063 0.159057i
\(615\) 27.7478 28.6811i 1.11890 1.15653i
\(616\) 6.23069 + 6.45249i 0.251042 + 0.259978i
\(617\) 16.2209i 0.653030i −0.945192 0.326515i \(-0.894126\pi\)
0.945192 0.326515i \(-0.105874\pi\)
\(618\) −11.6529 + 6.89526i −0.468750 + 0.277368i
\(619\) 21.8813i 0.879485i −0.898124 0.439743i \(-0.855070\pi\)
0.898124 0.439743i \(-0.144930\pi\)
\(620\) 21.5399 + 12.7731i 0.865061 + 0.512981i
\(621\) 22.6433 + 20.5010i 0.908645 + 0.822675i
\(622\) −12.4362 + 45.3535i −0.498647 + 1.81851i
\(623\) 4.62574 0.185327
\(624\) 6.67982 + 1.83846i 0.267407 + 0.0735974i
\(625\) −18.4370 −0.737480
\(626\) −0.371031 + 1.35311i −0.0148294 + 0.0540811i
\(627\) 39.7910 + 38.4962i 1.58910 + 1.53739i
\(628\) 1.24213 + 0.736583i 0.0495664 + 0.0293928i
\(629\) 0.131051i 0.00522535i
\(630\) 9.93921 + 2.37497i 0.395988 + 0.0946212i
\(631\) 9.69427i 0.385923i −0.981206 0.192961i \(-0.938191\pi\)
0.981206 0.192961i \(-0.0618092\pi\)
\(632\) 3.92092 + 4.06050i 0.155966 + 0.161518i
\(633\) −19.0992 18.4777i −0.759125 0.734423i
\(634\) −36.6791 10.0576i −1.45671 0.399440i
\(635\) 34.9737 1.38789
\(636\) −1.20587 4.41409i −0.0478160 0.175030i
\(637\) −6.47637 −0.256603
\(638\) 0 0
\(639\) −0.0905520 2.73667i −0.00358218 0.108261i
\(640\) −11.2224 + 35.9477i −0.443606 + 1.42096i
\(641\) 2.69439i 0.106422i 0.998583 + 0.0532110i \(0.0169456\pi\)
−0.998583 + 0.0532110i \(0.983054\pi\)
\(642\) −8.28610 14.0034i −0.327026 0.552671i
\(643\) 45.3307i 1.78767i −0.448397 0.893835i \(-0.648005\pi\)
0.448397 0.893835i \(-0.351995\pi\)
\(644\) −4.33936 + 7.31765i −0.170995 + 0.288356i
\(645\) 4.17874 4.31929i 0.164538 0.170072i
\(646\) 1.80158 6.57016i 0.0708821 0.258499i
\(647\) −7.89542 −0.310401 −0.155200 0.987883i \(-0.549602\pi\)
−0.155200 + 0.987883i \(0.549602\pi\)
\(648\) −17.1030 + 18.8543i −0.671871 + 0.740668i
\(649\) −32.3181 −1.26860
\(650\) −2.27363 + 8.29167i −0.0891791 + 0.325226i
\(651\) −3.27823 + 3.38850i −0.128484 + 0.132806i
\(652\) 10.3933 17.5266i 0.407033 0.686396i
\(653\) 47.9737i 1.87736i −0.344793 0.938679i \(-0.612051\pi\)
0.344793 0.938679i \(-0.387949\pi\)
\(654\) −17.4144 29.4302i −0.680956 1.15081i
\(655\) 27.5843i 1.07781i
\(656\) −24.2944 + 13.2810i −0.948535 + 0.518537i
\(657\) −1.60316 48.4506i −0.0625451 1.89024i
\(658\) −5.65511 1.55067i −0.220459 0.0604512i
\(659\) 13.4770 0.524990 0.262495 0.964933i \(-0.415455\pi\)
0.262495 + 0.964933i \(0.415455\pi\)
\(660\) −13.3169 48.7465i −0.518360 1.89746i
\(661\) −30.9685 −1.20454 −0.602268 0.798294i \(-0.705736\pi\)
−0.602268 + 0.798294i \(0.705736\pi\)
\(662\) −0.704827 0.193268i −0.0273939 0.00751157i
\(663\) 0.822169 + 0.795415i 0.0319304 + 0.0308913i
\(664\) 28.5201 27.5397i 1.10679 1.06875i
\(665\) 17.5681i 0.681263i
\(666\) −0.818783 0.195648i −0.0317272 0.00758121i
\(667\) 0 0
\(668\) 2.39230 + 1.41863i 0.0925609 + 0.0548886i
\(669\) 21.6551 + 20.9504i 0.837235 + 0.809990i
\(670\) −14.8417 + 54.1262i −0.573386 + 2.09108i
\(671\) 47.6864 1.84091
\(672\) −6.09497 3.62213i −0.235119 0.139727i
\(673\) −4.11101 −0.158468 −0.0792338 0.996856i \(-0.525247\pi\)
−0.0792338 + 0.996856i \(0.525247\pi\)
\(674\) −6.71694 + 24.4959i −0.258727 + 0.943548i
\(675\) −23.4179 21.2023i −0.901357 0.816077i
\(676\) −1.72028 1.02012i −0.0661645 0.0392355i
\(677\) 3.70069i 0.142229i −0.997468 0.0711146i \(-0.977344\pi\)
0.997468 0.0711146i \(-0.0226556\pi\)
\(678\) 0 0
\(679\) 8.79857i 0.337658i
\(680\) −4.47305 + 4.31929i −0.171534 + 0.165637i
\(681\) 14.6827 15.1765i 0.562642 0.581566i
\(682\) 22.4843 + 6.16533i 0.860967 + 0.236083i
\(683\) 24.9044 0.952939 0.476469 0.879191i \(-0.341916\pi\)
0.476469 + 0.879191i \(0.341916\pi\)
\(684\) −38.3595 21.0646i −1.46671 0.805426i
\(685\) −31.0402 −1.18598
\(686\) 13.3002 + 3.64700i 0.507804 + 0.139243i
\(687\) 18.2469 18.8606i 0.696162 0.719578i
\(688\) −3.65866 + 2.00008i −0.139485 + 0.0762524i
\(689\) 1.32093i 0.0503235i
\(690\) 41.2486 24.4076i 1.57031 0.929181i
\(691\) 46.7780i 1.77952i 0.456431 + 0.889759i \(0.349128\pi\)
−0.456431 + 0.889759i \(0.650872\pi\)
\(692\) −14.1224 + 23.8151i −0.536852 + 0.905315i
\(693\) 9.50863 0.314626i 0.361203 0.0119516i
\(694\) 0.107101 0.390585i 0.00406549 0.0148264i
\(695\) 8.28707 0.314347
\(696\) 0 0
\(697\) −4.57167 −0.173165
\(698\) −3.57668 + 13.0437i −0.135379 + 0.493713i
\(699\) −29.0374 28.0925i −1.09830 1.06256i
\(700\) 4.48781 7.56798i 0.169623 0.286043i
\(701\) 4.01532i 0.151657i −0.997121 0.0758283i \(-0.975840\pi\)
0.997121 0.0758283i \(-0.0241601\pi\)
\(702\) 6.19703 3.94928i 0.233892 0.149056i
\(703\) 1.44725i 0.0545839i
\(704\) −1.22589 + 35.0386i −0.0462025 + 1.32057i
\(705\) 23.7425 + 22.9699i 0.894195 + 0.865097i
\(706\) 11.5673 + 3.17184i 0.435343 + 0.119374i
\(707\) −5.77315 −0.217122
\(708\) 24.6425 6.73201i 0.926122 0.253005i
\(709\) 13.3496 0.501354 0.250677 0.968071i \(-0.419347\pi\)
0.250677 + 0.968071i \(0.419347\pi\)
\(710\) −4.14354 1.13618i −0.155504 0.0426402i
\(711\) 5.98370 0.197991i 0.224406 0.00742526i
\(712\) 12.5594 + 13.0065i 0.470685 + 0.487441i
\(713\) 22.1129i 0.828133i
\(714\) −0.596164 1.00751i −0.0223109 0.0377052i
\(715\) 14.5876i 0.545544i
\(716\) 11.1158 + 6.59166i 0.415416 + 0.246342i
\(717\) 17.4567 18.0439i 0.651932 0.673860i
\(718\) 13.7106 50.0011i 0.511675 1.86602i
\(719\) 30.7102 1.14530 0.572649 0.819801i \(-0.305916\pi\)
0.572649 + 0.819801i \(0.305916\pi\)
\(720\) 20.3083 + 34.3952i 0.756844 + 1.28183i
\(721\) −4.00000 −0.148968
\(722\) 12.7899 46.6432i 0.475990 1.73588i
\(723\) −3.36450 + 3.47767i −0.125127 + 0.129336i
\(724\) 18.0358 + 10.6952i 0.670296 + 0.397485i
\(725\) 0 0
\(726\) −10.2365 17.2996i −0.379912 0.642048i
\(727\) 30.0107i 1.11303i −0.830836 0.556517i \(-0.812137\pi\)
0.830836 0.556517i \(-0.187863\pi\)
\(728\) 1.42172 + 1.47233i 0.0526924 + 0.0545682i
\(729\) 2.67479 + 26.8672i 0.0990664 + 0.995081i
\(730\) −73.3583 20.1153i −2.71511 0.744500i
\(731\) −0.688481 −0.0254644
\(732\) −36.3608 + 9.93331i −1.34394 + 0.367146i
\(733\) −28.5165 −1.05328 −0.526641 0.850088i \(-0.676549\pi\)
−0.526641 + 0.850088i \(0.676549\pi\)
\(734\) 43.8604 + 12.0268i 1.61892 + 0.443917i
\(735\) −26.8351 25.9618i −0.989827 0.957616i
\(736\) −32.3575 + 7.66698i −1.19271 + 0.282609i
\(737\) 52.2512i 1.92470i
\(738\) −6.82512 + 28.5630i −0.251236 + 1.05142i
\(739\) 28.3079i 1.04132i −0.853763 0.520662i \(-0.825685\pi\)
0.853763 0.520662i \(-0.174315\pi\)
\(740\) −0.673757 + 1.13618i −0.0247678 + 0.0417669i
\(741\) 9.07953 + 8.78407i 0.333545 + 0.322691i
\(742\) 0.357473 1.30366i 0.0131232 0.0478590i
\(743\) −14.4950 −0.531771 −0.265885 0.964005i \(-0.585664\pi\)
−0.265885 + 0.964005i \(0.585664\pi\)
\(744\) −18.4285 0.0174728i −0.675621 0.000640583i
\(745\) −7.11890 −0.260816
\(746\) −3.05133 + 11.1279i −0.111717 + 0.407420i
\(747\) −1.39065 42.0283i −0.0508812 1.53773i
\(748\) −2.95274 + 4.97933i −0.107963 + 0.182062i
\(749\) 4.80684i 0.175638i
\(750\) −7.57497 + 4.48225i −0.276599 + 0.163669i
\(751\) 17.3929i 0.634675i −0.948313 0.317338i \(-0.897211\pi\)
0.948313 0.317338i \(-0.102789\pi\)
\(752\) −10.9942 20.1111i −0.400916 0.733377i
\(753\) 5.92836 6.12777i 0.216042 0.223308i
\(754\) 0 0
\(755\) −29.5732 −1.07628
\(756\) −7.18478 + 2.22060i −0.261308 + 0.0807623i
\(757\) 13.1189 0.476814 0.238407 0.971165i \(-0.423375\pi\)
0.238407 + 0.971165i \(0.423375\pi\)
\(758\) −0.313170 0.0858733i −0.0113749 0.00311906i
\(759\) 31.0260 32.0696i 1.12617 1.16405i
\(760\) −49.3976 + 47.6996i −1.79184 + 1.73025i
\(761\) 0.264708i 0.00959564i 0.999988 + 0.00479782i \(0.00152720\pi\)
−0.999988 + 0.00479782i \(0.998473\pi\)
\(762\) −22.1498 + 13.1064i −0.802401 + 0.474796i
\(763\) 10.1022i 0.365725i
\(764\) 23.5464 + 13.9630i 0.851879 + 0.505164i
\(765\) 0.218108 + 6.59166i 0.00788570 + 0.238322i
\(766\) −3.15081 + 11.4906i −0.113843 + 0.415174i
\(767\) −7.37435 −0.266272
\(768\) −6.36396 26.9722i −0.229640 0.973276i
\(769\) −30.7149 −1.10761 −0.553805 0.832647i \(-0.686825\pi\)
−0.553805 + 0.832647i \(0.686825\pi\)
\(770\) 3.94771 14.3969i 0.142266 0.518827i
\(771\) −9.76827 9.45040i −0.351796 0.340348i
\(772\) −9.63897 5.71591i −0.346914 0.205720i
\(773\) 29.7189i 1.06891i −0.845196 0.534457i \(-0.820516\pi\)
0.845196 0.534457i \(-0.179484\pi\)
\(774\) −1.02784 + 4.30150i −0.0369451 + 0.154614i
\(775\) 22.8693i 0.821491i
\(776\) −24.7396 + 23.8892i −0.888100 + 0.857571i
\(777\) −0.178736 0.172920i −0.00641213 0.00620347i
\(778\) 7.27795 + 1.99566i 0.260927 + 0.0715478i
\(779\) −50.4867 −1.80888
\(780\) −3.03866 11.1230i −0.108801 0.398267i
\(781\) −4.00000 −0.143131
\(782\) −5.29522 1.45198i −0.189357 0.0519228i
\(783\) 0 0
\(784\) 12.4262 + 22.7307i 0.443793 + 0.811810i
\(785\) 2.40342i 0.0857817i
\(786\) −10.3372 17.4698i −0.368717 0.623128i
\(787\) 49.9596i 1.78087i 0.455112 + 0.890434i \(0.349599\pi\)
−0.455112 + 0.890434i \(0.650401\pi\)
\(788\) −18.0821 + 30.4927i −0.644149 + 1.08626i
\(789\) −23.3102 + 24.0943i −0.829866 + 0.857779i
\(790\) 2.48426 9.05982i 0.0883860 0.322334i
\(791\) 0 0
\(792\) 26.7017 + 25.8819i 0.948805 + 0.919673i
\(793\) 10.8811 0.386399
\(794\) 2.54071 9.26570i 0.0901665 0.328827i
\(795\) −5.29522 + 5.47333i −0.187802 + 0.194119i
\(796\) 19.0437 32.1142i 0.674986 1.13826i
\(797\) 40.7346i 1.44289i −0.692469 0.721447i \(-0.743477\pi\)
0.692469 0.721447i \(-0.256523\pi\)
\(798\) −6.58367 11.1263i −0.233059 0.393868i
\(799\) 3.78448i 0.133885i
\(800\) 33.4644 7.92927i 1.18315 0.280342i
\(801\) 19.1669 0.634204i 0.677231 0.0224085i
\(802\) −9.76576 2.67783i −0.344841 0.0945576i
\(803\) −70.8171 −2.49908
\(804\) −10.8842 39.8414i −0.383855 1.40510i
\(805\) 14.1591 0.499041
\(806\) 5.13046 + 1.40681i 0.180713 + 0.0495526i
\(807\) 28.8089 + 27.8715i 1.01412 + 0.981122i
\(808\) −15.6748 16.2328i −0.551437 0.571068i
\(809\) 23.0118i 0.809051i −0.914527 0.404526i \(-0.867437\pi\)
0.914527 0.404526i \(-0.132563\pi\)
\(810\) 41.5091 + 8.47809i 1.45848 + 0.297890i
\(811\) 15.6268i 0.548732i 0.961625 + 0.274366i \(0.0884680\pi\)
−0.961625 + 0.274366i \(0.911532\pi\)
\(812\) 0 0
\(813\) 28.8614 + 27.9222i 1.01221 + 0.979275i
\(814\) −0.325209 + 1.18600i −0.0113986 + 0.0415693i
\(815\) −33.9126 −1.18791
\(816\) 1.21424 4.41180i 0.0425069 0.154444i
\(817\) −7.60316 −0.266001
\(818\) −13.6712 + 49.8574i −0.478003 + 1.74322i
\(819\) 2.16968 0.0717914i 0.0758148 0.00250859i
\(820\) 39.6354 + 23.5038i 1.38413 + 0.820788i
\(821\) 34.2636i 1.19581i −0.801568 0.597904i \(-0.796000\pi\)
0.801568 0.597904i \(-0.204000\pi\)
\(822\) 19.6585 11.6323i 0.685670 0.405724i
\(823\) 24.7442i 0.862529i −0.902226 0.431264i \(-0.858068\pi\)
0.902226 0.431264i \(-0.141932\pi\)
\(824\) −10.8605 11.2471i −0.378343 0.391811i
\(825\) −32.0874 + 33.1667i −1.11714 + 1.15472i
\(826\) 7.27795 + 1.99566i 0.253232 + 0.0694379i
\(827\) 39.3562 1.36855 0.684275 0.729224i \(-0.260119\pi\)
0.684275 + 0.729224i \(0.260119\pi\)
\(828\) −16.9770 + 30.9159i −0.589993 + 1.07440i
\(829\) 22.0874 0.767128 0.383564 0.923514i \(-0.374697\pi\)
0.383564 + 0.923514i \(0.374697\pi\)
\(830\) −63.6342 17.4489i −2.20878 0.605661i
\(831\) −19.9386 + 20.6093i −0.691664 + 0.714929i
\(832\) −0.279724 + 7.99511i −0.00969769 + 0.277181i
\(833\) 4.27742i 0.148204i
\(834\) −5.24842 + 3.10559i −0.181738 + 0.107538i
\(835\) 4.62890i 0.160190i
\(836\) −32.6082 + 54.9886i −1.12778 + 1.90182i
\(837\) −13.1189 + 14.4898i −0.453455 + 0.500841i
\(838\) 7.05984 25.7465i 0.243878 0.889396i
\(839\) 14.0171 0.483924 0.241962 0.970286i \(-0.422209\pi\)
0.241962 + 0.970286i \(0.422209\pi\)
\(840\) −0.0111880 + 11.7999i −0.000386021 + 0.407135i
\(841\) 29.0000 1.00000
\(842\) 9.31714 33.9786i 0.321090 1.17098i
\(843\) 18.2512 + 17.6573i 0.628604 + 0.608148i
\(844\) 15.6516 26.3939i 0.538749 0.908514i
\(845\) 3.32859i 0.114507i
\(846\) −23.6447 5.64991i −0.812923 0.194248i
\(847\) 5.93828i 0.204042i
\(848\) 4.63619 2.53447i 0.159207 0.0870340i
\(849\) 8.11101 + 7.84707i 0.278369 + 0.269311i
\(850\) 5.47637 + 1.50165i 0.187838 + 0.0515063i
\(851\) −1.16641 −0.0399840
\(852\) 3.04999 0.833219i 0.104491 0.0285456i
\(853\) 14.7543 0.505178 0.252589 0.967574i \(-0.418718\pi\)
0.252589 + 0.967574i \(0.418718\pi\)
\(854\) −10.7389 2.94466i −0.367476 0.100764i
\(855\) 2.40865 + 72.7942i 0.0823740 + 2.48951i
\(856\) 13.5157 13.0511i 0.461959 0.446079i
\(857\) 14.3207i 0.489185i 0.969626 + 0.244592i \(0.0786542\pi\)
−0.969626 + 0.244592i \(0.921346\pi\)
\(858\) −5.46670 9.23867i −0.186630 0.315403i
\(859\) 52.4721i 1.79032i 0.445741 + 0.895162i \(0.352940\pi\)
−0.445741 + 0.895162i \(0.647060\pi\)
\(860\) 5.96898 + 3.53960i 0.203540 + 0.120699i
\(861\) −6.03226 + 6.23516i −0.205579 + 0.212494i
\(862\) 2.46813 9.00099i 0.0840647 0.306575i
\(863\) 11.5032 0.391572 0.195786 0.980647i \(-0.437274\pi\)
0.195786 + 0.980647i \(0.437274\pi\)
\(864\) −25.7513 14.1728i −0.876079 0.482168i
\(865\) 46.0803 1.56678
\(866\) 7.73494 28.2085i 0.262844 0.958563i
\(867\) −19.9482 + 20.6191i −0.677475 + 0.700262i
\(868\) −4.68268 2.77683i −0.158941 0.0942517i
\(869\) 8.74598i 0.296687i
\(870\) 0 0
\(871\) 11.9227i 0.403985i
\(872\) 28.4052 27.4288i 0.961922 0.928855i
\(873\) 1.20631 + 36.4572i 0.0408275 + 1.23389i
\(874\) −58.4772 16.0348i −1.97802 0.542385i
\(875\) −2.60019 −0.0879026
\(876\) 53.9979 14.7515i 1.82442 0.498408i
\(877\) 11.3260 0.382452 0.191226 0.981546i \(-0.438754\pi\)
0.191226 + 0.981546i \(0.438754\pi\)
\(878\) −55.4688 15.2099i −1.87198 0.513309i
\(879\) −11.7421 11.3600i −0.396052 0.383164i
\(880\) 51.1992 27.9891i 1.72592 0.943513i
\(881\) 30.7751i 1.03684i 0.855126 + 0.518420i \(0.173480\pi\)
−0.855126 + 0.518420i \(0.826520\pi\)
\(882\) 26.7246 + 6.38583i 0.899862 + 0.215022i
\(883\) 3.12725i 0.105240i 0.998615 + 0.0526202i \(0.0167573\pi\)
−0.998615 + 0.0526202i \(0.983243\pi\)
\(884\) −0.673757 + 1.13618i −0.0226609 + 0.0382140i
\(885\) −30.5559 29.5616i −1.02713 0.993701i
\(886\) 9.29763 33.9074i 0.312360 1.13914i
\(887\) −14.2603 −0.478815 −0.239408 0.970919i \(-0.576953\pi\)
−0.239408 + 0.970919i \(0.576953\pi\)
\(888\) 0.000921653 0.972065i 3.09287e−5 0.0326204i
\(889\) −7.60316 −0.255002
\(890\) 7.95756 29.0203i 0.266738 0.972764i
\(891\) 39.3562 2.60733i 1.31848 0.0873487i
\(892\) −17.7461 + 29.9259i −0.594183 + 1.00199i
\(893\) 41.7935i 1.39856i
\(894\) 4.50858 2.66781i 0.150789 0.0892250i
\(895\) 21.5081i 0.718938i
\(896\) 2.43972 7.81489i 0.0815052 0.261077i
\(897\) 7.07953 7.31765i 0.236378 0.244329i
\(898\) −29.7264 8.15116i −0.991982 0.272008i
\(899\) 0 0
\(900\) 17.5578 31.9735i 0.585261 1.06578i
\(901\) 0.872431 0.0290649
\(902\) 41.3732 + 11.3448i 1.37758 + 0.377740i
\(903\) −0.908441 + 0.938997i −0.0302310 + 0.0312479i
\(904\) 0 0
\(905\) 34.8978i 1.16004i
\(906\) 18.7295 11.0826i 0.622246 0.368194i
\(907\) 8.10658i 0.269174i −0.990902 0.134587i \(-0.957029\pi\)
0.990902 0.134587i \(-0.0429708\pi\)
\(908\) 20.9730 + 12.4370i 0.696013 + 0.412736i
\(909\) −23.9213 + 0.791517i −0.793418 + 0.0262530i
\(910\) 0.900789 3.28508i 0.0298609 0.108899i
\(911\) −17.3385 −0.574449 −0.287224 0.957863i \(-0.592733\pi\)
−0.287224 + 0.957863i \(0.592733\pi\)
\(912\) 13.4093 48.7212i 0.444027 1.61332i
\(913\) −61.4299 −2.03303
\(914\) −13.7366 + 50.0959i −0.454367 + 1.65702i
\(915\) 45.0862 + 43.6191i 1.49051 + 1.44200i
\(916\) 26.0642 + 15.4560i 0.861185 + 0.510682i
\(917\) 5.99672i 0.198029i
\(918\) −2.60836 4.09293i −0.0860888 0.135087i
\(919\) 7.26215i 0.239556i −0.992801 0.119778i \(-0.961782\pi\)
0.992801 0.119778i \(-0.0382183\pi\)
\(920\) 38.4435 + 39.8121i 1.26745 + 1.31256i
\(921\) −13.1189 12.6920i −0.432282 0.418215i
\(922\) −19.0957 5.23615i −0.628882 0.172443i
\(923\) −0.912721 −0.0300426
\(924\) 2.89505 + 10.5973i 0.0952401 + 0.348626i
\(925\) 1.20631 0.0396633
\(926\) 28.9737 + 7.94477i 0.952134 + 0.261081i
\(927\) −16.5741 + 0.548413i −0.544366 + 0.0180122i
\(928\) 0 0
\(929\) 40.2078i 1.31918i −0.751628 0.659588i \(-0.770731\pi\)
0.751628 0.659588i \(-0.229269\pi\)
\(930\) 15.6188 + 26.3956i 0.512161 + 0.865547i
\(931\) 47.2372i 1.54814i
\(932\) 23.7958 40.1279i 0.779458 1.31443i
\(933\) −40.0480 + 41.3951i −1.31111 + 1.35521i
\(934\) −6.23779 + 22.7485i −0.204107 + 0.744355i
\(935\) 9.63459 0.315085
\(936\) 6.09281 + 5.90573i 0.199150 + 0.193035i
\(937\) 32.9614 1.07680 0.538401 0.842689i \(-0.319029\pi\)
0.538401 + 0.842689i \(0.319029\pi\)
\(938\) 3.22654 11.7668i 0.105350 0.384200i
\(939\) −1.19482 + 1.23501i −0.0389915 + 0.0403030i
\(940\) −19.4567 + 32.8106i −0.634607 + 1.07016i
\(941\) 15.0074i 0.489227i −0.969621 0.244614i \(-0.921339\pi\)
0.969621 0.244614i \(-0.0786611\pi\)
\(942\) 0.900683 + 1.52215i 0.0293458 + 0.0495942i
\(943\) 40.6898i 1.32504i
\(944\) 14.1492 + 25.8824i 0.460516 + 0.842400i
\(945\) 9.27795 + 8.40014i 0.301812 + 0.273256i
\(946\) 6.23069 + 1.70849i 0.202577 + 0.0555479i
\(947\) 59.7918 1.94297 0.971486 0.237095i \(-0.0761953\pi\)
0.971486 + 0.237095i \(0.0761953\pi\)
\(948\) 1.82183 + 6.66879i 0.0591702 + 0.216592i
\(949\) −16.1591 −0.524545
\(950\) 60.4776 + 16.5833i 1.96215 + 0.538035i
\(951\) −33.4778 32.3884i −1.08559 1.05027i
\(952\) 0.972425 0.938997i 0.0315165 0.0304331i
\(953\) 37.9617i 1.22970i 0.788644 + 0.614850i \(0.210784\pi\)
−0.788644 + 0.614850i \(0.789216\pi\)
\(954\) 1.30247 5.45079i 0.0421689 0.176476i
\(955\) 45.5603i 1.47430i
\(956\) 24.9354 + 14.7867i 0.806469 + 0.478236i
\(957\) 0 0
\(958\) 1.70670 6.22416i 0.0551411 0.201093i
\(959\) 6.74801 0.217905
\(960\) −33.2090 + 32.0067i −1.07182 + 1.03301i
\(961\) 16.8496 0.543536
\(962\) −0.0742062 + 0.270622i −0.00239250 + 0.00872519i
\(963\) −0.659033 19.9173i −0.0212370 0.641826i
\(964\) −4.80591 2.84991i −0.154788 0.0917893i
\(965\) 18.6506i 0.600385i
\(966\) −8.96729 + 5.30611i −0.288518 + 0.170721i
\(967\) 20.9913i 0.675036i −0.941319 0.337518i \(-0.890413\pi\)
0.941319 0.337518i \(-0.109587\pi\)
\(968\) 16.6971 16.1231i 0.536665 0.518217i
\(969\) 5.80158 5.99672i 0.186374 0.192642i
\(970\) 55.1992 + 15.1360i 1.77234 + 0.485987i
\(971\) −46.7410 −1.49999 −0.749996 0.661443i \(-0.769944\pi\)
−0.749996 + 0.661443i \(0.769944\pi\)
\(972\) −29.4659 + 10.1862i −0.945121 + 0.326722i
\(973\) −1.80158 −0.0577559
\(974\) −41.0601 11.2589i −1.31565 0.360759i
\(975\) −7.32171 + 7.56798i −0.234483 + 0.242369i
\(976\) −20.8775 38.1903i −0.668274 1.22244i
\(977\) 17.0125i 0.544277i 0.962258 + 0.272138i \(0.0877308\pi\)
−0.962258 + 0.272138i \(0.912269\pi\)
\(978\) 21.4777 12.7088i 0.686782 0.406382i
\(979\) 28.0150i 0.895364i
\(980\) 21.9910 37.0843i 0.702476 1.18462i
\(981\) −1.38505 41.8590i −0.0442212 1.33645i
\(982\) 10.9488 39.9292i 0.349391 1.27419i
\(983\) −22.8769 −0.729660 −0.364830 0.931074i \(-0.618873\pi\)
−0.364830 + 0.931074i \(0.618873\pi\)
\(984\) −33.9102 0.0321516i −1.08102 0.00102496i
\(985\) 59.0008 1.87992
\(986\) 0 0
\(987\) −5.16153 4.99357i −0.164293 0.158947i
\(988\) −7.44055 + 12.5473i −0.236715 + 0.399183i
\(989\) 6.12777i 0.194852i
\(990\) 14.3836 60.1951i 0.457141 1.91313i
\(991\) 38.3437i 1.21803i 0.793159 + 0.609015i \(0.208435\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(992\) −4.90622 20.7061i −0.155773 0.657418i
\(993\) −0.643310 0.622376i −0.0204148 0.0197505i
\(994\) 0.900789 + 0.247002i 0.0285713 + 0.00783443i
\(995\) −62.1383 −1.96992
\(996\) 46.8402 12.7961i 1.48419 0.405461i
\(997\) 18.5717 0.588171 0.294085 0.955779i \(-0.404985\pi\)
0.294085 + 0.955779i \(0.404985\pi\)
\(998\) 15.3914 + 4.22042i 0.487206 + 0.133595i
\(999\) −0.764309 0.691995i −0.0241817 0.0218938i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.2.c.d.131.6 yes 12
3.2 odd 2 inner 156.2.c.d.131.7 yes 12
4.3 odd 2 inner 156.2.c.d.131.8 yes 12
8.3 odd 2 2496.2.d.o.1535.4 12
8.5 even 2 2496.2.d.o.1535.9 12
12.11 even 2 inner 156.2.c.d.131.5 12
24.5 odd 2 2496.2.d.o.1535.3 12
24.11 even 2 2496.2.d.o.1535.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.c.d.131.5 12 12.11 even 2 inner
156.2.c.d.131.6 yes 12 1.1 even 1 trivial
156.2.c.d.131.7 yes 12 3.2 odd 2 inner
156.2.c.d.131.8 yes 12 4.3 odd 2 inner
2496.2.d.o.1535.3 12 24.5 odd 2
2496.2.d.o.1535.4 12 8.3 odd 2
2496.2.d.o.1535.9 12 8.5 even 2
2496.2.d.o.1535.10 12 24.11 even 2