Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [156,2,Mod(35,156)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(156, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("156.35");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 156.p (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.3317760000.3 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
35.1 |
|
−0.707107 | + | 1.22474i | −1.01575 | − | 1.40294i | −1.00000 | − | 1.73205i | 2.23607i | 2.43649 | − | 0.252009i | −2.73861 | + | 1.58114i | 2.82843 | −0.936492 | + | 2.85008i | −2.73861 | − | 1.58114i | ||||||||||||||||||||||||||||
35.2 | −0.707107 | + | 1.22474i | 1.72286 | + | 0.178197i | −1.00000 | − | 1.73205i | − | 2.23607i | −1.43649 | + | 1.98406i | 2.73861 | − | 1.58114i | 2.82843 | 2.93649 | + | 0.614017i | 2.73861 | + | 1.58114i | ||||||||||||||||||||||||||||
35.3 | 0.707107 | − | 1.22474i | −1.72286 | − | 0.178197i | −1.00000 | − | 1.73205i | − | 2.23607i | −1.43649 | + | 1.98406i | −2.73861 | + | 1.58114i | −2.82843 | 2.93649 | + | 0.614017i | −2.73861 | − | 1.58114i | ||||||||||||||||||||||||||||
35.4 | 0.707107 | − | 1.22474i | 1.01575 | + | 1.40294i | −1.00000 | − | 1.73205i | 2.23607i | 2.43649 | − | 0.252009i | 2.73861 | − | 1.58114i | −2.82843 | −0.936492 | + | 2.85008i | 2.73861 | + | 1.58114i | |||||||||||||||||||||||||||||
107.1 | −0.707107 | − | 1.22474i | −1.01575 | + | 1.40294i | −1.00000 | + | 1.73205i | − | 2.23607i | 2.43649 | + | 0.252009i | −2.73861 | − | 1.58114i | 2.82843 | −0.936492 | − | 2.85008i | −2.73861 | + | 1.58114i | ||||||||||||||||||||||||||||
107.2 | −0.707107 | − | 1.22474i | 1.72286 | − | 0.178197i | −1.00000 | + | 1.73205i | 2.23607i | −1.43649 | − | 1.98406i | 2.73861 | + | 1.58114i | 2.82843 | 2.93649 | − | 0.614017i | 2.73861 | − | 1.58114i | |||||||||||||||||||||||||||||
107.3 | 0.707107 | + | 1.22474i | −1.72286 | + | 0.178197i | −1.00000 | + | 1.73205i | 2.23607i | −1.43649 | − | 1.98406i | −2.73861 | − | 1.58114i | −2.82843 | 2.93649 | − | 0.614017i | −2.73861 | + | 1.58114i | |||||||||||||||||||||||||||||
107.4 | 0.707107 | + | 1.22474i | 1.01575 | − | 1.40294i | −1.00000 | + | 1.73205i | − | 2.23607i | 2.43649 | + | 0.252009i | 2.73861 | + | 1.58114i | −2.82843 | −0.936492 | − | 2.85008i | 2.73861 | − | 1.58114i | ||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
39.i | odd | 6 | 1 | inner |
52.j | odd | 6 | 1 | inner |
156.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 156.2.p.a | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 156.2.p.a | ✓ | 8 |
4.b | odd | 2 | 1 | inner | 156.2.p.a | ✓ | 8 |
12.b | even | 2 | 1 | inner | 156.2.p.a | ✓ | 8 |
13.c | even | 3 | 1 | inner | 156.2.p.a | ✓ | 8 |
39.i | odd | 6 | 1 | inner | 156.2.p.a | ✓ | 8 |
52.j | odd | 6 | 1 | inner | 156.2.p.a | ✓ | 8 |
156.p | even | 6 | 1 | inner | 156.2.p.a | ✓ | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
156.2.p.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
156.2.p.a | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
156.2.p.a | ✓ | 8 | 4.b | odd | 2 | 1 | inner |
156.2.p.a | ✓ | 8 | 12.b | even | 2 | 1 | inner |
156.2.p.a | ✓ | 8 | 13.c | even | 3 | 1 | inner |
156.2.p.a | ✓ | 8 | 39.i | odd | 6 | 1 | inner |
156.2.p.a | ✓ | 8 | 52.j | odd | 6 | 1 | inner |
156.2.p.a | ✓ | 8 | 156.p | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .