Properties

Label 156.2.p.a
Level $156$
Weight $2$
Character orbit 156.p
Analytic conductor $1.246$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [156,2,Mod(35,156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("156.35");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 156.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.24566627153\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} - \beta_{6} q^{3} - 2 \beta_{4} q^{4} + ( - \beta_{7} + \beta_{2}) q^{5} + (\beta_{4} - \beta_{2}) q^{6} + ( - \beta_{5} - \beta_{3} + 2 \beta_1) q^{7} + 2 \beta_{3} q^{8} + (2 \beta_{4} + \beta_{2}) q^{9}+ \cdots + ( - 6 \beta_{6} + 6 \beta_{5} + \cdots - 6 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 4 q^{6} + 8 q^{9} - 28 q^{13} - 16 q^{16} + 40 q^{21} - 24 q^{22} + 8 q^{24} + 20 q^{30} + 12 q^{33} + 16 q^{36} - 4 q^{37} - 20 q^{45} - 16 q^{46} + 12 q^{49} + 16 q^{52} - 28 q^{54} - 80 q^{57}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 14\nu^{4} + 7\nu^{2} - 36 ) / 63 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{7} + 7\nu^{5} + 35\nu^{3} + 81\nu ) / 189 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{6} + 7\nu^{4} - 28\nu^{2} + 144 ) / 63 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -5\nu^{7} - 7\nu^{5} - 35\nu^{3} + 180\nu ) / 189 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} - 4\nu^{5} + 7\nu^{3} - 36\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -8\nu^{6} + 14\nu^{4} + 7\nu^{2} + 162 ) / 63 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{7} - 2\beta_{4} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} - \beta_{5} + 3\beta_{3} + \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 4\beta_{2} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -5\beta_{6} - 7\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -7\beta_{7} + 7\beta_{2} + 22 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -21\beta_{5} - 21\beta_{3} + 29\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(-1\) \(-1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
35.1
−1.01575 + 1.40294i
1.72286 0.178197i
−1.72286 + 0.178197i
1.01575 1.40294i
−1.01575 1.40294i
1.72286 + 0.178197i
−1.72286 0.178197i
1.01575 + 1.40294i
−0.707107 + 1.22474i −1.01575 1.40294i −1.00000 1.73205i 2.23607i 2.43649 0.252009i −2.73861 + 1.58114i 2.82843 −0.936492 + 2.85008i −2.73861 1.58114i
35.2 −0.707107 + 1.22474i 1.72286 + 0.178197i −1.00000 1.73205i 2.23607i −1.43649 + 1.98406i 2.73861 1.58114i 2.82843 2.93649 + 0.614017i 2.73861 + 1.58114i
35.3 0.707107 1.22474i −1.72286 0.178197i −1.00000 1.73205i 2.23607i −1.43649 + 1.98406i −2.73861 + 1.58114i −2.82843 2.93649 + 0.614017i −2.73861 1.58114i
35.4 0.707107 1.22474i 1.01575 + 1.40294i −1.00000 1.73205i 2.23607i 2.43649 0.252009i 2.73861 1.58114i −2.82843 −0.936492 + 2.85008i 2.73861 + 1.58114i
107.1 −0.707107 1.22474i −1.01575 + 1.40294i −1.00000 + 1.73205i 2.23607i 2.43649 + 0.252009i −2.73861 1.58114i 2.82843 −0.936492 2.85008i −2.73861 + 1.58114i
107.2 −0.707107 1.22474i 1.72286 0.178197i −1.00000 + 1.73205i 2.23607i −1.43649 1.98406i 2.73861 + 1.58114i 2.82843 2.93649 0.614017i 2.73861 1.58114i
107.3 0.707107 + 1.22474i −1.72286 + 0.178197i −1.00000 + 1.73205i 2.23607i −1.43649 1.98406i −2.73861 1.58114i −2.82843 2.93649 0.614017i −2.73861 + 1.58114i
107.4 0.707107 + 1.22474i 1.01575 1.40294i −1.00000 + 1.73205i 2.23607i 2.43649 + 0.252009i 2.73861 + 1.58114i −2.82843 −0.936492 2.85008i 2.73861 1.58114i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 35.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner
13.c even 3 1 inner
39.i odd 6 1 inner
52.j odd 6 1 inner
156.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 156.2.p.a 8
3.b odd 2 1 inner 156.2.p.a 8
4.b odd 2 1 inner 156.2.p.a 8
12.b even 2 1 inner 156.2.p.a 8
13.c even 3 1 inner 156.2.p.a 8
39.i odd 6 1 inner 156.2.p.a 8
52.j odd 6 1 inner 156.2.p.a 8
156.p even 6 1 inner 156.2.p.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.p.a 8 1.a even 1 1 trivial
156.2.p.a 8 3.b odd 2 1 inner
156.2.p.a 8 4.b odd 2 1 inner
156.2.p.a 8 12.b even 2 1 inner
156.2.p.a 8 13.c even 3 1 inner
156.2.p.a 8 39.i odd 6 1 inner
156.2.p.a 8 52.j odd 6 1 inner
156.2.p.a 8 156.p even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 5 \) acting on \(S_{2}^{\mathrm{new}}(156, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} - 4 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( (T^{2} + 5)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} - 10 T^{2} + 100)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 18 T^{2} + 324)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 7 T + 13)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 5 T^{2} + 25)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 40 T^{2} + 1600)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 8 T^{2} + 64)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 45 T^{2} + 2025)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 10)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 125 T^{2} + 15625)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 10 T^{2} + 100)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 8)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 5)^{4} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} - 40 T^{2} + 1600)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 8 T^{2} + 64)^{2} \) Copy content Toggle raw display
$73$ \( (T + 3)^{8} \) Copy content Toggle raw display
$79$ \( (T^{2} + 160)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 98)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} - 20 T^{2} + 400)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 16 T + 256)^{4} \) Copy content Toggle raw display
show more
show less