Properties

Label 156.2.p.a
Level 156156
Weight 22
Character orbit 156.p
Analytic conductor 1.2461.246
Analytic rank 00
Dimension 88
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [156,2,Mod(35,156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("156.35");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 156=22313 156 = 2^{2} \cdot 3 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 156.p (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.245666271531.24566627153
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 8.0.3317760000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x84x6+7x436x2+81 x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β5q2β6q32β4q4+(β7+β2)q5+(β4β2)q6+(β5β3+2β1)q7+2β3q8+(2β4+β2)q9++(6β6+6β5+6β1)q99+O(q100) q + \beta_{5} q^{2} - \beta_{6} q^{3} - 2 \beta_{4} q^{4} + ( - \beta_{7} + \beta_{2}) q^{5} + (\beta_{4} - \beta_{2}) q^{6} + ( - \beta_{5} - \beta_{3} + 2 \beta_1) q^{7} + 2 \beta_{3} q^{8} + (2 \beta_{4} + \beta_{2}) q^{9}+ \cdots + ( - 6 \beta_{6} + 6 \beta_{5} + \cdots - 6 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q4+4q6+8q928q1316q16+40q2124q22+8q24+20q30+12q33+16q364q3720q4516q46+12q49+16q5228q5480q57++64q97+O(q100) 8 q - 8 q^{4} + 4 q^{6} + 8 q^{9} - 28 q^{13} - 16 q^{16} + 40 q^{21} - 24 q^{22} + 8 q^{24} + 20 q^{30} + 12 q^{33} + 16 q^{36} - 4 q^{37} - 20 q^{45} - 16 q^{46} + 12 q^{49} + 16 q^{52} - 28 q^{54} - 80 q^{57}+ \cdots + 64 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x84x6+7x436x2+81 x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν6+14ν4+7ν236)/63 ( \nu^{6} + 14\nu^{4} + 7\nu^{2} - 36 ) / 63 Copy content Toggle raw display
β3\beta_{3}== (4ν7+7ν5+35ν3+81ν)/189 ( -4\nu^{7} + 7\nu^{5} + 35\nu^{3} + 81\nu ) / 189 Copy content Toggle raw display
β4\beta_{4}== (4ν6+7ν428ν2+144)/63 ( -4\nu^{6} + 7\nu^{4} - 28\nu^{2} + 144 ) / 63 Copy content Toggle raw display
β5\beta_{5}== (5ν77ν535ν3+180ν)/189 ( -5\nu^{7} - 7\nu^{5} - 35\nu^{3} + 180\nu ) / 189 Copy content Toggle raw display
β6\beta_{6}== (ν74ν5+7ν336ν)/27 ( \nu^{7} - 4\nu^{5} + 7\nu^{3} - 36\nu ) / 27 Copy content Toggle raw display
β7\beta_{7}== (8ν6+14ν4+7ν2+162)/63 ( -8\nu^{6} + 14\nu^{4} + 7\nu^{2} + 162 ) / 63 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β72β4+2 \beta_{7} - 2\beta_{4} + 2 Copy content Toggle raw display
ν3\nu^{3}== β6β5+3β3+β1 \beta_{6} - \beta_{5} + 3\beta_{3} + \beta_1 Copy content Toggle raw display
ν4\nu^{4}== β4+4β2 \beta_{4} + 4\beta_{2} Copy content Toggle raw display
ν5\nu^{5}== 5β67β5 -5\beta_{6} - 7\beta_{5} Copy content Toggle raw display
ν6\nu^{6}== 7β7+7β2+22 -7\beta_{7} + 7\beta_{2} + 22 Copy content Toggle raw display
ν7\nu^{7}== 21β521β3+29β1 -21\beta_{5} - 21\beta_{3} + 29\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/156Z)×\left(\mathbb{Z}/156\mathbb{Z}\right)^\times.

nn 5353 7979 145145
χ(n)\chi(n) 1-1 1-1 β4-\beta_{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
35.1
−1.01575 + 1.40294i
1.72286 0.178197i
−1.72286 + 0.178197i
1.01575 1.40294i
−1.01575 1.40294i
1.72286 + 0.178197i
−1.72286 0.178197i
1.01575 + 1.40294i
−0.707107 + 1.22474i −1.01575 1.40294i −1.00000 1.73205i 2.23607i 2.43649 0.252009i −2.73861 + 1.58114i 2.82843 −0.936492 + 2.85008i −2.73861 1.58114i
35.2 −0.707107 + 1.22474i 1.72286 + 0.178197i −1.00000 1.73205i 2.23607i −1.43649 + 1.98406i 2.73861 1.58114i 2.82843 2.93649 + 0.614017i 2.73861 + 1.58114i
35.3 0.707107 1.22474i −1.72286 0.178197i −1.00000 1.73205i 2.23607i −1.43649 + 1.98406i −2.73861 + 1.58114i −2.82843 2.93649 + 0.614017i −2.73861 1.58114i
35.4 0.707107 1.22474i 1.01575 + 1.40294i −1.00000 1.73205i 2.23607i 2.43649 0.252009i 2.73861 1.58114i −2.82843 −0.936492 + 2.85008i 2.73861 + 1.58114i
107.1 −0.707107 1.22474i −1.01575 + 1.40294i −1.00000 + 1.73205i 2.23607i 2.43649 + 0.252009i −2.73861 1.58114i 2.82843 −0.936492 2.85008i −2.73861 + 1.58114i
107.2 −0.707107 1.22474i 1.72286 0.178197i −1.00000 + 1.73205i 2.23607i −1.43649 1.98406i 2.73861 + 1.58114i 2.82843 2.93649 0.614017i 2.73861 1.58114i
107.3 0.707107 + 1.22474i −1.72286 + 0.178197i −1.00000 + 1.73205i 2.23607i −1.43649 1.98406i −2.73861 1.58114i −2.82843 2.93649 0.614017i −2.73861 + 1.58114i
107.4 0.707107 + 1.22474i 1.01575 1.40294i −1.00000 + 1.73205i 2.23607i 2.43649 + 0.252009i 2.73861 + 1.58114i −2.82843 −0.936492 2.85008i 2.73861 1.58114i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 35.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner
13.c even 3 1 inner
39.i odd 6 1 inner
52.j odd 6 1 inner
156.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 156.2.p.a 8
3.b odd 2 1 inner 156.2.p.a 8
4.b odd 2 1 inner 156.2.p.a 8
12.b even 2 1 inner 156.2.p.a 8
13.c even 3 1 inner 156.2.p.a 8
39.i odd 6 1 inner 156.2.p.a 8
52.j odd 6 1 inner 156.2.p.a 8
156.p even 6 1 inner 156.2.p.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.p.a 8 1.a even 1 1 trivial
156.2.p.a 8 3.b odd 2 1 inner
156.2.p.a 8 4.b odd 2 1 inner
156.2.p.a 8 12.b even 2 1 inner
156.2.p.a 8 13.c even 3 1 inner
156.2.p.a 8 39.i odd 6 1 inner
156.2.p.a 8 52.j odd 6 1 inner
156.2.p.a 8 156.p even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+5 T_{5}^{2} + 5 acting on S2new(156,[χ])S_{2}^{\mathrm{new}}(156, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+2T2+4)2 (T^{4} + 2 T^{2} + 4)^{2} Copy content Toggle raw display
33 T84T6++81 T^{8} - 4 T^{6} + \cdots + 81 Copy content Toggle raw display
55 (T2+5)4 (T^{2} + 5)^{4} Copy content Toggle raw display
77 (T410T2+100)2 (T^{4} - 10 T^{2} + 100)^{2} Copy content Toggle raw display
1111 (T4+18T2+324)2 (T^{4} + 18 T^{2} + 324)^{2} Copy content Toggle raw display
1313 (T2+7T+13)4 (T^{2} + 7 T + 13)^{4} Copy content Toggle raw display
1717 (T45T2+25)2 (T^{4} - 5 T^{2} + 25)^{2} Copy content Toggle raw display
1919 (T440T2+1600)2 (T^{4} - 40 T^{2} + 1600)^{2} Copy content Toggle raw display
2323 (T4+8T2+64)2 (T^{4} + 8 T^{2} + 64)^{2} Copy content Toggle raw display
2929 (T445T2+2025)2 (T^{4} - 45 T^{2} + 2025)^{2} Copy content Toggle raw display
3131 (T2+10)4 (T^{2} + 10)^{4} Copy content Toggle raw display
3737 (T2+T+1)4 (T^{2} + T + 1)^{4} Copy content Toggle raw display
4141 (T4125T2+15625)2 (T^{4} - 125 T^{2} + 15625)^{2} Copy content Toggle raw display
4343 (T410T2+100)2 (T^{4} - 10 T^{2} + 100)^{2} Copy content Toggle raw display
4747 (T28)4 (T^{2} - 8)^{4} Copy content Toggle raw display
5353 (T2+5)4 (T^{2} + 5)^{4} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 (T2+T+1)4 (T^{2} + T + 1)^{4} Copy content Toggle raw display
6767 (T440T2+1600)2 (T^{4} - 40 T^{2} + 1600)^{2} Copy content Toggle raw display
7171 (T4+8T2+64)2 (T^{4} + 8 T^{2} + 64)^{2} Copy content Toggle raw display
7373 (T+3)8 (T + 3)^{8} Copy content Toggle raw display
7979 (T2+160)4 (T^{2} + 160)^{4} Copy content Toggle raw display
8383 (T298)4 (T^{2} - 98)^{4} Copy content Toggle raw display
8989 (T420T2+400)2 (T^{4} - 20 T^{2} + 400)^{2} Copy content Toggle raw display
9797 (T216T+256)4 (T^{2} - 16 T + 256)^{4} Copy content Toggle raw display
show more
show less