Properties

Label 156.4.q.c.49.3
Level $156$
Weight $4$
Character 156.49
Analytic conductor $9.204$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [156,4,Mod(49,156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(156, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("156.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 156.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20429796090\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 443x^{4} + 53128x^{2} + 1862832 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.3
Root \(-16.5475i\) of defining polynomial
Character \(\chi\) \(=\) 156.49
Dual form 156.4.q.c.121.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{3} +14.8155i q^{5} +(3.28368 + 1.89583i) q^{7} +(-4.50000 + 7.79423i) q^{9} +(-3.38576 + 1.95477i) q^{11} +(-44.4652 - 14.8273i) q^{13} +(-38.4917 + 22.2232i) q^{15} +(-33.6203 + 58.2320i) q^{17} +(-9.91216 - 5.72279i) q^{19} +11.3750i q^{21} +(26.4388 + 45.7933i) q^{23} -94.4977 q^{25} -27.0000 q^{27} +(29.3449 + 50.8269i) q^{29} +182.725i q^{31} +(-10.1573 - 5.86431i) q^{33} +(-28.0876 + 48.6492i) q^{35} +(-33.9350 + 19.5924i) q^{37} +(-28.1754 - 137.765i) q^{39} +(197.469 - 114.009i) q^{41} +(-178.087 + 308.456i) q^{43} +(-115.475 - 66.6695i) q^{45} -108.483i q^{47} +(-164.312 - 284.596i) q^{49} -201.722 q^{51} +642.753 q^{53} +(-28.9608 - 50.1616i) q^{55} -34.3367i q^{57} +(550.716 + 317.956i) q^{59} +(-9.62421 + 16.6696i) q^{61} +(-29.5531 + 17.0625i) q^{63} +(219.673 - 658.772i) q^{65} +(421.110 - 243.128i) q^{67} +(-79.3163 + 137.380i) q^{69} +(331.280 + 191.264i) q^{71} -1057.00i q^{73} +(-141.747 - 245.512i) q^{75} -14.8237 q^{77} +460.065 q^{79} +(-40.5000 - 70.1481i) q^{81} +268.768i q^{83} +(-862.734 - 498.100i) q^{85} +(-88.0347 + 152.481i) q^{87} +(659.691 - 380.873i) q^{89} +(-117.899 - 132.987i) q^{91} +(-474.733 + 274.087i) q^{93} +(84.7857 - 146.853i) q^{95} +(-613.504 - 354.207i) q^{97} -35.1859i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{3} + 9 q^{7} - 27 q^{9} - 120 q^{11} - 77 q^{13} + 36 q^{15} + 32 q^{17} - 24 q^{19} + 104 q^{23} - 166 q^{25} - 162 q^{27} + 220 q^{29} - 360 q^{33} - 88 q^{35} - 684 q^{37} - 66 q^{39} + 576 q^{41}+ \cdots - 873 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/156\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 + 2.59808i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 14.8155i 1.32513i 0.749002 + 0.662567i \(0.230533\pi\)
−0.749002 + 0.662567i \(0.769467\pi\)
\(6\) 0 0
\(7\) 3.28368 + 1.89583i 0.177302 + 0.102365i 0.586024 0.810293i \(-0.300692\pi\)
−0.408722 + 0.912659i \(0.634026\pi\)
\(8\) 0 0
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −3.38576 + 1.95477i −0.0928041 + 0.0535805i −0.545684 0.837991i \(-0.683730\pi\)
0.452880 + 0.891572i \(0.350397\pi\)
\(12\) 0 0
\(13\) −44.4652 14.8273i −0.948648 0.316334i
\(14\) 0 0
\(15\) −38.4917 + 22.2232i −0.662567 + 0.382533i
\(16\) 0 0
\(17\) −33.6203 + 58.2320i −0.479654 + 0.830785i −0.999728 0.0233367i \(-0.992571\pi\)
0.520074 + 0.854121i \(0.325904\pi\)
\(18\) 0 0
\(19\) −9.91216 5.72279i −0.119685 0.0690999i 0.438963 0.898505i \(-0.355346\pi\)
−0.558647 + 0.829405i \(0.688679\pi\)
\(20\) 0 0
\(21\) 11.3750i 0.118201i
\(22\) 0 0
\(23\) 26.4388 + 45.7933i 0.239690 + 0.415155i 0.960625 0.277847i \(-0.0896209\pi\)
−0.720935 + 0.693002i \(0.756288\pi\)
\(24\) 0 0
\(25\) −94.4977 −0.755982
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 29.3449 + 50.8269i 0.187904 + 0.325459i 0.944551 0.328364i \(-0.106497\pi\)
−0.756647 + 0.653823i \(0.773164\pi\)
\(30\) 0 0
\(31\) 182.725i 1.05866i 0.848417 + 0.529329i \(0.177556\pi\)
−0.848417 + 0.529329i \(0.822444\pi\)
\(32\) 0 0
\(33\) −10.1573 5.86431i −0.0535805 0.0309347i
\(34\) 0 0
\(35\) −28.0876 + 48.6492i −0.135648 + 0.234949i
\(36\) 0 0
\(37\) −33.9350 + 19.5924i −0.150781 + 0.0870533i −0.573492 0.819211i \(-0.694412\pi\)
0.422711 + 0.906264i \(0.361078\pi\)
\(38\) 0 0
\(39\) −28.1754 137.765i −0.115684 0.565642i
\(40\) 0 0
\(41\) 197.469 114.009i 0.752183 0.434273i −0.0742993 0.997236i \(-0.523672\pi\)
0.826482 + 0.562963i \(0.190339\pi\)
\(42\) 0 0
\(43\) −178.087 + 308.456i −0.631582 + 1.09393i 0.355647 + 0.934620i \(0.384261\pi\)
−0.987228 + 0.159311i \(0.949073\pi\)
\(44\) 0 0
\(45\) −115.475 66.6695i −0.382533 0.220856i
\(46\) 0 0
\(47\) 108.483i 0.336678i −0.985729 0.168339i \(-0.946160\pi\)
0.985729 0.168339i \(-0.0538403\pi\)
\(48\) 0 0
\(49\) −164.312 284.596i −0.479043 0.829726i
\(50\) 0 0
\(51\) −201.722 −0.553856
\(52\) 0 0
\(53\) 642.753 1.66583 0.832914 0.553402i \(-0.186671\pi\)
0.832914 + 0.553402i \(0.186671\pi\)
\(54\) 0 0
\(55\) −28.9608 50.1616i −0.0710013 0.122978i
\(56\) 0 0
\(57\) 34.3367i 0.0797897i
\(58\) 0 0
\(59\) 550.716 + 317.956i 1.21520 + 0.701599i 0.963888 0.266307i \(-0.0858033\pi\)
0.251316 + 0.967905i \(0.419137\pi\)
\(60\) 0 0
\(61\) −9.62421 + 16.6696i −0.0202009 + 0.0349890i −0.875949 0.482403i \(-0.839764\pi\)
0.855748 + 0.517392i \(0.173097\pi\)
\(62\) 0 0
\(63\) −29.5531 + 17.0625i −0.0591007 + 0.0341218i
\(64\) 0 0
\(65\) 219.673 658.772i 0.419186 1.25709i
\(66\) 0 0
\(67\) 421.110 243.128i 0.767862 0.443325i −0.0642496 0.997934i \(-0.520465\pi\)
0.832111 + 0.554609i \(0.187132\pi\)
\(68\) 0 0
\(69\) −79.3163 + 137.380i −0.138385 + 0.239690i
\(70\) 0 0
\(71\) 331.280 + 191.264i 0.553742 + 0.319703i 0.750630 0.660723i \(-0.229750\pi\)
−0.196888 + 0.980426i \(0.563084\pi\)
\(72\) 0 0
\(73\) 1057.00i 1.69469i −0.531043 0.847345i \(-0.678200\pi\)
0.531043 0.847345i \(-0.321800\pi\)
\(74\) 0 0
\(75\) −141.747 245.512i −0.218233 0.377991i
\(76\) 0 0
\(77\) −14.8237 −0.0219391
\(78\) 0 0
\(79\) 460.065 0.655207 0.327603 0.944815i \(-0.393759\pi\)
0.327603 + 0.944815i \(0.393759\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 268.768i 0.355436i 0.984081 + 0.177718i \(0.0568714\pi\)
−0.984081 + 0.177718i \(0.943129\pi\)
\(84\) 0 0
\(85\) −862.734 498.100i −1.10090 0.635606i
\(86\) 0 0
\(87\) −88.0347 + 152.481i −0.108486 + 0.187904i
\(88\) 0 0
\(89\) 659.691 380.873i 0.785698 0.453623i −0.0527478 0.998608i \(-0.516798\pi\)
0.838446 + 0.544985i \(0.183465\pi\)
\(90\) 0 0
\(91\) −117.899 132.987i −0.135815 0.153195i
\(92\) 0 0
\(93\) −474.733 + 274.087i −0.529329 + 0.305608i
\(94\) 0 0
\(95\) 84.7857 146.853i 0.0915667 0.158598i
\(96\) 0 0
\(97\) −613.504 354.207i −0.642185 0.370766i 0.143271 0.989684i \(-0.454238\pi\)
−0.785456 + 0.618918i \(0.787571\pi\)
\(98\) 0 0
\(99\) 35.1859i 0.0357203i
\(100\) 0 0
\(101\) −149.067 258.191i −0.146859 0.254366i 0.783206 0.621762i \(-0.213583\pi\)
−0.930065 + 0.367396i \(0.880250\pi\)
\(102\) 0 0
\(103\) 664.955 0.636116 0.318058 0.948071i \(-0.396969\pi\)
0.318058 + 0.948071i \(0.396969\pi\)
\(104\) 0 0
\(105\) −168.526 −0.156633
\(106\) 0 0
\(107\) 1044.66 + 1809.40i 0.943839 + 1.63478i 0.758058 + 0.652187i \(0.226148\pi\)
0.185781 + 0.982591i \(0.440518\pi\)
\(108\) 0 0
\(109\) 910.270i 0.799890i 0.916539 + 0.399945i \(0.130971\pi\)
−0.916539 + 0.399945i \(0.869029\pi\)
\(110\) 0 0
\(111\) −101.805 58.7772i −0.0870533 0.0502602i
\(112\) 0 0
\(113\) −28.0095 + 48.5138i −0.0233178 + 0.0403876i −0.877449 0.479670i \(-0.840756\pi\)
0.854131 + 0.520058i \(0.174090\pi\)
\(114\) 0 0
\(115\) −678.449 + 391.702i −0.550136 + 0.317621i
\(116\) 0 0
\(117\) 315.660 279.849i 0.249426 0.221129i
\(118\) 0 0
\(119\) −220.796 + 127.477i −0.170087 + 0.0981999i
\(120\) 0 0
\(121\) −657.858 + 1139.44i −0.494258 + 0.856080i
\(122\) 0 0
\(123\) 592.407 + 342.027i 0.434273 + 0.250728i
\(124\) 0 0
\(125\) 451.905i 0.323357i
\(126\) 0 0
\(127\) 958.890 + 1660.85i 0.669982 + 1.16044i 0.977909 + 0.209033i \(0.0670317\pi\)
−0.307926 + 0.951410i \(0.599635\pi\)
\(128\) 0 0
\(129\) −1068.52 −0.729288
\(130\) 0 0
\(131\) −308.770 −0.205934 −0.102967 0.994685i \(-0.532834\pi\)
−0.102967 + 0.994685i \(0.532834\pi\)
\(132\) 0 0
\(133\) −21.6989 37.5836i −0.0141469 0.0245031i
\(134\) 0 0
\(135\) 400.017i 0.255022i
\(136\) 0 0
\(137\) −2570.07 1483.83i −1.60275 0.925346i −0.990935 0.134341i \(-0.957108\pi\)
−0.611811 0.791004i \(-0.709559\pi\)
\(138\) 0 0
\(139\) −1129.30 + 1956.00i −0.689108 + 1.19357i 0.283019 + 0.959114i \(0.408664\pi\)
−0.972127 + 0.234455i \(0.924669\pi\)
\(140\) 0 0
\(141\) 281.847 162.724i 0.168339 0.0971905i
\(142\) 0 0
\(143\) 179.532 36.7176i 0.104988 0.0214719i
\(144\) 0 0
\(145\) −753.023 + 434.758i −0.431277 + 0.248998i
\(146\) 0 0
\(147\) 492.935 853.788i 0.276575 0.479043i
\(148\) 0 0
\(149\) 406.075 + 234.447i 0.223268 + 0.128904i 0.607463 0.794348i \(-0.292187\pi\)
−0.384195 + 0.923252i \(0.625521\pi\)
\(150\) 0 0
\(151\) 2143.41i 1.15516i −0.816336 0.577578i \(-0.803998\pi\)
0.816336 0.577578i \(-0.196002\pi\)
\(152\) 0 0
\(153\) −302.582 524.088i −0.159885 0.276928i
\(154\) 0 0
\(155\) −2707.15 −1.40286
\(156\) 0 0
\(157\) 701.045 0.356366 0.178183 0.983997i \(-0.442978\pi\)
0.178183 + 0.983997i \(0.442978\pi\)
\(158\) 0 0
\(159\) 964.129 + 1669.92i 0.480883 + 0.832914i
\(160\) 0 0
\(161\) 200.494i 0.0981437i
\(162\) 0 0
\(163\) −2655.81 1533.33i −1.27619 0.736808i −0.300044 0.953925i \(-0.597001\pi\)
−0.976146 + 0.217117i \(0.930335\pi\)
\(164\) 0 0
\(165\) 86.8824 150.485i 0.0409926 0.0710013i
\(166\) 0 0
\(167\) −2085.46 + 1204.04i −0.966334 + 0.557913i −0.898117 0.439758i \(-0.855064\pi\)
−0.0682170 + 0.997671i \(0.521731\pi\)
\(168\) 0 0
\(169\) 1757.30 + 1318.60i 0.799865 + 0.600180i
\(170\) 0 0
\(171\) 89.2095 51.5051i 0.0398948 0.0230333i
\(172\) 0 0
\(173\) 1601.64 2774.12i 0.703876 1.21915i −0.263220 0.964736i \(-0.584784\pi\)
0.967096 0.254413i \(-0.0818822\pi\)
\(174\) 0 0
\(175\) −310.300 179.152i −0.134037 0.0773863i
\(176\) 0 0
\(177\) 1907.73i 0.810136i
\(178\) 0 0
\(179\) 778.970 + 1349.22i 0.325268 + 0.563381i 0.981567 0.191121i \(-0.0612121\pi\)
−0.656299 + 0.754501i \(0.727879\pi\)
\(180\) 0 0
\(181\) 4053.88 1.66476 0.832382 0.554203i \(-0.186977\pi\)
0.832382 + 0.554203i \(0.186977\pi\)
\(182\) 0 0
\(183\) −57.7453 −0.0233260
\(184\) 0 0
\(185\) −290.270 502.763i −0.115357 0.199805i
\(186\) 0 0
\(187\) 262.880i 0.102800i
\(188\) 0 0
\(189\) −88.6593 51.1875i −0.0341218 0.0197002i
\(190\) 0 0
\(191\) −1416.11 + 2452.77i −0.536470 + 0.929194i 0.462620 + 0.886556i \(0.346909\pi\)
−0.999091 + 0.0426372i \(0.986424\pi\)
\(192\) 0 0
\(193\) 466.890 269.559i 0.174132 0.100535i −0.410401 0.911905i \(-0.634611\pi\)
0.584533 + 0.811370i \(0.301278\pi\)
\(194\) 0 0
\(195\) 2041.05 417.431i 0.749551 0.153297i
\(196\) 0 0
\(197\) −72.9076 + 42.0932i −0.0263678 + 0.0152234i −0.513126 0.858313i \(-0.671513\pi\)
0.486758 + 0.873537i \(0.338179\pi\)
\(198\) 0 0
\(199\) 2734.73 4736.69i 0.974171 1.68731i 0.291525 0.956563i \(-0.405837\pi\)
0.682646 0.730750i \(-0.260829\pi\)
\(200\) 0 0
\(201\) 1263.33 + 729.383i 0.443325 + 0.255954i
\(202\) 0 0
\(203\) 222.532i 0.0769394i
\(204\) 0 0
\(205\) 1689.09 + 2925.59i 0.575470 + 0.996743i
\(206\) 0 0
\(207\) −475.898 −0.159793
\(208\) 0 0
\(209\) 44.7469 0.0148096
\(210\) 0 0
\(211\) −29.7642 51.5532i −0.00971116 0.0168202i 0.861129 0.508387i \(-0.169758\pi\)
−0.870840 + 0.491566i \(0.836425\pi\)
\(212\) 0 0
\(213\) 1147.59i 0.369161i
\(214\) 0 0
\(215\) −4569.91 2638.44i −1.44961 0.836931i
\(216\) 0 0
\(217\) −346.416 + 600.010i −0.108370 + 0.187702i
\(218\) 0 0
\(219\) 2746.16 1585.50i 0.847345 0.489215i
\(220\) 0 0
\(221\) 2358.35 2090.80i 0.717828 0.636391i
\(222\) 0 0
\(223\) 4032.25 2328.02i 1.21085 0.699084i 0.247905 0.968784i \(-0.420258\pi\)
0.962944 + 0.269700i \(0.0869247\pi\)
\(224\) 0 0
\(225\) 425.240 736.537i 0.125997 0.218233i
\(226\) 0 0
\(227\) −3194.70 1844.46i −0.934095 0.539300i −0.0459906 0.998942i \(-0.514644\pi\)
−0.888104 + 0.459642i \(0.847978\pi\)
\(228\) 0 0
\(229\) 3641.69i 1.05087i −0.850833 0.525436i \(-0.823902\pi\)
0.850833 0.525436i \(-0.176098\pi\)
\(230\) 0 0
\(231\) −22.2355 38.5130i −0.00633328 0.0109696i
\(232\) 0 0
\(233\) −4462.98 −1.25485 −0.627424 0.778678i \(-0.715891\pi\)
−0.627424 + 0.778678i \(0.715891\pi\)
\(234\) 0 0
\(235\) 1607.22 0.446143
\(236\) 0 0
\(237\) 690.097 + 1195.28i 0.189142 + 0.327603i
\(238\) 0 0
\(239\) 643.226i 0.174087i −0.996205 0.0870436i \(-0.972258\pi\)
0.996205 0.0870436i \(-0.0277419\pi\)
\(240\) 0 0
\(241\) −4264.45 2462.08i −1.13982 0.658078i −0.193437 0.981113i \(-0.561964\pi\)
−0.946387 + 0.323035i \(0.895297\pi\)
\(242\) 0 0
\(243\) 121.500 210.444i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 4216.42 2434.35i 1.09950 0.634796i
\(246\) 0 0
\(247\) 355.893 + 401.435i 0.0916798 + 0.103412i
\(248\) 0 0
\(249\) −698.281 + 403.152i −0.177718 + 0.102605i
\(250\) 0 0
\(251\) 1493.42 2586.68i 0.375553 0.650478i −0.614856 0.788639i \(-0.710786\pi\)
0.990410 + 0.138162i \(0.0441193\pi\)
\(252\) 0 0
\(253\) −179.031 103.363i −0.0444884 0.0256854i
\(254\) 0 0
\(255\) 2988.60i 0.733934i
\(256\) 0 0
\(257\) 157.195 + 272.270i 0.0381539 + 0.0660846i 0.884472 0.466594i \(-0.154519\pi\)
−0.846318 + 0.532678i \(0.821186\pi\)
\(258\) 0 0
\(259\) −148.576 −0.0356450
\(260\) 0 0
\(261\) −528.208 −0.125269
\(262\) 0 0
\(263\) 564.595 + 977.908i 0.132374 + 0.229279i 0.924591 0.380960i \(-0.124407\pi\)
−0.792217 + 0.610239i \(0.791073\pi\)
\(264\) 0 0
\(265\) 9522.68i 2.20745i
\(266\) 0 0
\(267\) 1979.07 + 1142.62i 0.453623 + 0.261899i
\(268\) 0 0
\(269\) −44.5279 + 77.1246i −0.0100926 + 0.0174809i −0.871028 0.491234i \(-0.836546\pi\)
0.860935 + 0.508715i \(0.169879\pi\)
\(270\) 0 0
\(271\) 4564.74 2635.45i 1.02320 0.590747i 0.108174 0.994132i \(-0.465500\pi\)
0.915030 + 0.403385i \(0.132166\pi\)
\(272\) 0 0
\(273\) 168.660 505.791i 0.0373912 0.112131i
\(274\) 0 0
\(275\) 319.947 184.721i 0.0701582 0.0405059i
\(276\) 0 0
\(277\) −2173.97 + 3765.42i −0.471556 + 0.816760i −0.999470 0.0325382i \(-0.989641\pi\)
0.527914 + 0.849298i \(0.322974\pi\)
\(278\) 0 0
\(279\) −1424.20 822.262i −0.305608 0.176443i
\(280\) 0 0
\(281\) 3386.80i 0.719002i 0.933145 + 0.359501i \(0.117053\pi\)
−0.933145 + 0.359501i \(0.882947\pi\)
\(282\) 0 0
\(283\) 1045.84 + 1811.45i 0.219678 + 0.380494i 0.954710 0.297539i \(-0.0961659\pi\)
−0.735031 + 0.678033i \(0.762833\pi\)
\(284\) 0 0
\(285\) 508.714 0.105732
\(286\) 0 0
\(287\) 864.567 0.177818
\(288\) 0 0
\(289\) 195.855 + 339.231i 0.0398647 + 0.0690476i
\(290\) 0 0
\(291\) 2125.24i 0.428123i
\(292\) 0 0
\(293\) −2041.92 1178.90i −0.407134 0.235059i 0.282424 0.959290i \(-0.408862\pi\)
−0.689558 + 0.724231i \(0.742195\pi\)
\(294\) 0 0
\(295\) −4710.66 + 8159.10i −0.929713 + 1.61031i
\(296\) 0 0
\(297\) 91.4155 52.7788i 0.0178602 0.0103116i
\(298\) 0 0
\(299\) −496.615 2428.22i −0.0960534 0.469658i
\(300\) 0 0
\(301\) −1169.56 + 675.246i −0.223961 + 0.129304i
\(302\) 0 0
\(303\) 447.201 774.574i 0.0847888 0.146859i
\(304\) 0 0
\(305\) −246.968 142.587i −0.0463651 0.0267689i
\(306\) 0 0
\(307\) 6738.19i 1.25267i −0.779555 0.626334i \(-0.784555\pi\)
0.779555 0.626334i \(-0.215445\pi\)
\(308\) 0 0
\(309\) 997.433 + 1727.60i 0.183631 + 0.318058i
\(310\) 0 0
\(311\) −8796.16 −1.60381 −0.801904 0.597453i \(-0.796179\pi\)
−0.801904 + 0.597453i \(0.796179\pi\)
\(312\) 0 0
\(313\) −1286.70 −0.232360 −0.116180 0.993228i \(-0.537065\pi\)
−0.116180 + 0.993228i \(0.537065\pi\)
\(314\) 0 0
\(315\) −252.789 437.843i −0.0452160 0.0783163i
\(316\) 0 0
\(317\) 10694.6i 1.89486i 0.319960 + 0.947431i \(0.396331\pi\)
−0.319960 + 0.947431i \(0.603669\pi\)
\(318\) 0 0
\(319\) −198.710 114.725i −0.0348765 0.0201360i
\(320\) 0 0
\(321\) −3133.97 + 5428.20i −0.544926 + 0.943839i
\(322\) 0 0
\(323\) 666.499 384.803i 0.114814 0.0662880i
\(324\) 0 0
\(325\) 4201.86 + 1401.14i 0.717160 + 0.239143i
\(326\) 0 0
\(327\) −2364.95 + 1365.40i −0.399945 + 0.230908i
\(328\) 0 0
\(329\) 205.665 356.223i 0.0344641 0.0596937i
\(330\) 0 0
\(331\) −3605.97 2081.91i −0.598798 0.345716i 0.169771 0.985484i \(-0.445697\pi\)
−0.768568 + 0.639768i \(0.779031\pi\)
\(332\) 0 0
\(333\) 352.663i 0.0580355i
\(334\) 0 0
\(335\) 3602.05 + 6238.93i 0.587465 + 1.01752i
\(336\) 0 0
\(337\) −12074.9 −1.95182 −0.975909 0.218177i \(-0.929989\pi\)
−0.975909 + 0.218177i \(0.929989\pi\)
\(338\) 0 0
\(339\) −168.057 −0.0269251
\(340\) 0 0
\(341\) −357.185 618.663i −0.0567234 0.0982477i
\(342\) 0 0
\(343\) 2546.57i 0.400880i
\(344\) 0 0
\(345\) −2035.35 1175.11i −0.317621 0.183379i
\(346\) 0 0
\(347\) −4917.13 + 8516.73i −0.760708 + 1.31758i 0.181778 + 0.983340i \(0.441815\pi\)
−0.942486 + 0.334245i \(0.891519\pi\)
\(348\) 0 0
\(349\) 6376.59 3681.52i 0.978026 0.564663i 0.0763521 0.997081i \(-0.475673\pi\)
0.901673 + 0.432418i \(0.142339\pi\)
\(350\) 0 0
\(351\) 1200.56 + 400.337i 0.182567 + 0.0608786i
\(352\) 0 0
\(353\) 4691.43 2708.60i 0.707365 0.408397i −0.102720 0.994710i \(-0.532755\pi\)
0.810084 + 0.586313i \(0.199421\pi\)
\(354\) 0 0
\(355\) −2833.67 + 4908.06i −0.423649 + 0.733782i
\(356\) 0 0
\(357\) −662.389 382.431i −0.0981999 0.0566957i
\(358\) 0 0
\(359\) 660.418i 0.0970907i −0.998821 0.0485453i \(-0.984541\pi\)
0.998821 0.0485453i \(-0.0154585\pi\)
\(360\) 0 0
\(361\) −3364.00 5826.62i −0.490450 0.849485i
\(362\) 0 0
\(363\) −3947.15 −0.570720
\(364\) 0 0
\(365\) 15659.9 2.24569
\(366\) 0 0
\(367\) 1288.28 + 2231.36i 0.183236 + 0.317374i 0.942981 0.332848i \(-0.108010\pi\)
−0.759745 + 0.650221i \(0.774676\pi\)
\(368\) 0 0
\(369\) 2052.16i 0.289515i
\(370\) 0 0
\(371\) 2110.59 + 1218.55i 0.295355 + 0.170523i
\(372\) 0 0
\(373\) −2587.69 + 4482.01i −0.359210 + 0.622171i −0.987829 0.155543i \(-0.950287\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(374\) 0 0
\(375\) −1174.08 + 677.858i −0.161679 + 0.0933452i
\(376\) 0 0
\(377\) −551.202 2695.13i −0.0753007 0.368186i
\(378\) 0 0
\(379\) 5345.24 3086.07i 0.724449 0.418261i −0.0919388 0.995765i \(-0.529306\pi\)
0.816388 + 0.577504i \(0.195973\pi\)
\(380\) 0 0
\(381\) −2876.67 + 4982.54i −0.386815 + 0.669982i
\(382\) 0 0
\(383\) −4584.41 2646.81i −0.611625 0.353122i 0.161976 0.986795i \(-0.448213\pi\)
−0.773601 + 0.633673i \(0.781547\pi\)
\(384\) 0 0
\(385\) 219.619i 0.0290723i
\(386\) 0 0
\(387\) −1602.78 2776.10i −0.210527 0.364644i
\(388\) 0 0
\(389\) 7481.61 0.975148 0.487574 0.873082i \(-0.337882\pi\)
0.487574 + 0.873082i \(0.337882\pi\)
\(390\) 0 0
\(391\) −3555.51 −0.459872
\(392\) 0 0
\(393\) −463.156 802.209i −0.0594481 0.102967i
\(394\) 0 0
\(395\) 6816.07i 0.868237i
\(396\) 0 0
\(397\) −827.803 477.932i −0.104650 0.0604200i 0.446761 0.894653i \(-0.352577\pi\)
−0.551412 + 0.834233i \(0.685911\pi\)
\(398\) 0 0
\(399\) 65.0967 112.751i 0.00816770 0.0141469i
\(400\) 0 0
\(401\) 6919.93 3995.22i 0.861758 0.497536i −0.00284281 0.999996i \(-0.500905\pi\)
0.864600 + 0.502460i \(0.167572\pi\)
\(402\) 0 0
\(403\) 2709.31 8124.90i 0.334890 1.00429i
\(404\) 0 0
\(405\) 1039.28 600.026i 0.127511 0.0736186i
\(406\) 0 0
\(407\) 76.5973 132.670i 0.00932871 0.0161578i
\(408\) 0 0
\(409\) −5914.45 3414.71i −0.715039 0.412828i 0.0978850 0.995198i \(-0.468792\pi\)
−0.812924 + 0.582370i \(0.802126\pi\)
\(410\) 0 0
\(411\) 8902.99i 1.06850i
\(412\) 0 0
\(413\) 1205.58 + 2088.13i 0.143639 + 0.248790i
\(414\) 0 0
\(415\) −3981.92 −0.471000
\(416\) 0 0
\(417\) −6775.80 −0.795713
\(418\) 0 0
\(419\) −1601.07 2773.13i −0.186676 0.323332i 0.757464 0.652877i \(-0.226438\pi\)
−0.944140 + 0.329545i \(0.893105\pi\)
\(420\) 0 0
\(421\) 3408.00i 0.394527i 0.980351 + 0.197263i \(0.0632054\pi\)
−0.980351 + 0.197263i \(0.936795\pi\)
\(422\) 0 0
\(423\) 845.541 + 488.173i 0.0971905 + 0.0561130i
\(424\) 0 0
\(425\) 3177.04 5502.79i 0.362609 0.628058i
\(426\) 0 0
\(427\) −63.2056 + 36.4918i −0.00716332 + 0.00413574i
\(428\) 0 0
\(429\) 364.694 + 411.362i 0.0410433 + 0.0462955i
\(430\) 0 0
\(431\) 8669.72 5005.46i 0.968922 0.559408i 0.0700148 0.997546i \(-0.477695\pi\)
0.898908 + 0.438138i \(0.144362\pi\)
\(432\) 0 0
\(433\) 6353.96 11005.4i 0.705201 1.22144i −0.261418 0.965226i \(-0.584190\pi\)
0.966619 0.256218i \(-0.0824765\pi\)
\(434\) 0 0
\(435\) −2259.07 1304.27i −0.248998 0.143759i
\(436\) 0 0
\(437\) 605.214i 0.0662502i
\(438\) 0 0
\(439\) −1396.56 2418.90i −0.151831 0.262980i 0.780069 0.625693i \(-0.215184\pi\)
−0.931901 + 0.362713i \(0.881850\pi\)
\(440\) 0 0
\(441\) 2957.61 0.319362
\(442\) 0 0
\(443\) 16148.4 1.73191 0.865953 0.500126i \(-0.166713\pi\)
0.865953 + 0.500126i \(0.166713\pi\)
\(444\) 0 0
\(445\) 5642.81 + 9773.63i 0.601112 + 1.04116i
\(446\) 0 0
\(447\) 1406.68i 0.148845i
\(448\) 0 0
\(449\) −12559.3 7251.13i −1.32007 0.762142i −0.336330 0.941744i \(-0.609186\pi\)
−0.983739 + 0.179602i \(0.942519\pi\)
\(450\) 0 0
\(451\) −445.722 + 772.013i −0.0465371 + 0.0806046i
\(452\) 0 0
\(453\) 5568.75 3215.12i 0.577578 0.333465i
\(454\) 0 0
\(455\) 1970.26 1746.73i 0.203005 0.179974i
\(456\) 0 0
\(457\) −10615.6 + 6128.91i −1.08660 + 0.627349i −0.932669 0.360733i \(-0.882527\pi\)
−0.153931 + 0.988082i \(0.549193\pi\)
\(458\) 0 0
\(459\) 907.747 1572.26i 0.0923094 0.159885i
\(460\) 0 0
\(461\) 4391.44 + 2535.40i 0.443665 + 0.256150i 0.705151 0.709057i \(-0.250879\pi\)
−0.261486 + 0.965207i \(0.584212\pi\)
\(462\) 0 0
\(463\) 5871.79i 0.589385i 0.955592 + 0.294693i \(0.0952173\pi\)
−0.955592 + 0.294693i \(0.904783\pi\)
\(464\) 0 0
\(465\) −4060.73 7033.39i −0.404972 0.701432i
\(466\) 0 0
\(467\) 4555.36 0.451385 0.225693 0.974199i \(-0.427535\pi\)
0.225693 + 0.974199i \(0.427535\pi\)
\(468\) 0 0
\(469\) 1843.72 0.181525
\(470\) 0 0
\(471\) 1051.57 + 1821.37i 0.102874 + 0.178183i
\(472\) 0 0
\(473\) 1392.48i 0.135362i
\(474\) 0 0
\(475\) 936.677 + 540.791i 0.0904793 + 0.0522383i
\(476\) 0 0
\(477\) −2892.39 + 5009.76i −0.277638 + 0.480883i
\(478\) 0 0
\(479\) −4109.82 + 2372.80i −0.392030 + 0.226339i −0.683039 0.730382i \(-0.739342\pi\)
0.291009 + 0.956720i \(0.406009\pi\)
\(480\) 0 0
\(481\) 1799.43 368.015i 0.170576 0.0348858i
\(482\) 0 0
\(483\) −520.899 + 300.741i −0.0490719 + 0.0283317i
\(484\) 0 0
\(485\) 5247.74 9089.35i 0.491314 0.850981i
\(486\) 0 0
\(487\) 13274.6 + 7664.07i 1.23517 + 0.713125i 0.968103 0.250553i \(-0.0806125\pi\)
0.267066 + 0.963678i \(0.413946\pi\)
\(488\) 0 0
\(489\) 9199.99i 0.850793i
\(490\) 0 0
\(491\) 9269.93 + 16056.0i 0.852029 + 1.47576i 0.879374 + 0.476131i \(0.157961\pi\)
−0.0273459 + 0.999626i \(0.508706\pi\)
\(492\) 0 0
\(493\) −3946.33 −0.360515
\(494\) 0 0
\(495\) 521.294 0.0473342
\(496\) 0 0
\(497\) 725.211 + 1256.10i 0.0654530 + 0.113368i
\(498\) 0 0
\(499\) 10245.7i 0.919156i −0.888137 0.459578i \(-0.848001\pi\)
0.888137 0.459578i \(-0.151999\pi\)
\(500\) 0 0
\(501\) −6256.38 3612.12i −0.557913 0.322111i
\(502\) 0 0
\(503\) 4421.17 7657.68i 0.391909 0.678806i −0.600793 0.799405i \(-0.705148\pi\)
0.992701 + 0.120599i \(0.0384816\pi\)
\(504\) 0 0
\(505\) 3825.22 2208.49i 0.337070 0.194607i
\(506\) 0 0
\(507\) −789.855 + 6543.50i −0.0691887 + 0.573190i
\(508\) 0 0
\(509\) 15791.0 9116.96i 1.37510 0.793914i 0.383534 0.923527i \(-0.374707\pi\)
0.991565 + 0.129613i \(0.0413735\pi\)
\(510\) 0 0
\(511\) 2003.89 3470.84i 0.173478 0.300472i
\(512\) 0 0
\(513\) 267.628 + 154.515i 0.0230333 + 0.0132983i
\(514\) 0 0
\(515\) 9851.61i 0.842940i
\(516\) 0 0
\(517\) 212.059 + 367.297i 0.0180394 + 0.0312451i
\(518\) 0 0
\(519\) 9609.85 0.812766
\(520\) 0 0
\(521\) −7109.30 −0.597819 −0.298910 0.954281i \(-0.596623\pi\)
−0.298910 + 0.954281i \(0.596623\pi\)
\(522\) 0 0
\(523\) −999.051 1730.41i −0.0835286 0.144676i 0.821235 0.570591i \(-0.193286\pi\)
−0.904763 + 0.425915i \(0.859952\pi\)
\(524\) 0 0
\(525\) 1074.91i 0.0893581i
\(526\) 0 0
\(527\) −10640.4 6143.26i −0.879516 0.507789i
\(528\) 0 0
\(529\) 4685.48 8115.49i 0.385098 0.667009i
\(530\) 0 0
\(531\) −4956.44 + 2861.60i −0.405068 + 0.233866i
\(532\) 0 0
\(533\) −10470.9 + 2141.49i −0.850932 + 0.174031i
\(534\) 0 0
\(535\) −26807.1 + 15477.1i −2.16630 + 1.25071i
\(536\) 0 0
\(537\) −2336.91 + 4047.65i −0.187794 + 0.325268i
\(538\) 0 0
\(539\) 1112.64 + 642.383i 0.0889142 + 0.0513347i
\(540\) 0 0
\(541\) 12689.9i 1.00847i −0.863567 0.504234i \(-0.831775\pi\)
0.863567 0.504234i \(-0.168225\pi\)
\(542\) 0 0
\(543\) 6080.81 + 10532.3i 0.480576 + 0.832382i
\(544\) 0 0
\(545\) −13486.1 −1.05996
\(546\) 0 0
\(547\) −8535.41 −0.667180 −0.333590 0.942718i \(-0.608260\pi\)
−0.333590 + 0.942718i \(0.608260\pi\)
\(548\) 0 0
\(549\) −86.6179 150.027i −0.00673363 0.0116630i
\(550\) 0 0
\(551\) 671.739i 0.0519366i
\(552\) 0 0
\(553\) 1510.71 + 872.206i 0.116169 + 0.0670705i
\(554\) 0 0
\(555\) 870.811 1508.29i 0.0666016 0.115357i
\(556\) 0 0
\(557\) −22101.0 + 12760.0i −1.68124 + 0.970663i −0.720397 + 0.693561i \(0.756041\pi\)
−0.960841 + 0.277102i \(0.910626\pi\)
\(558\) 0 0
\(559\) 12492.2 11075.0i 0.945197 0.837965i
\(560\) 0 0
\(561\) 682.981 394.319i 0.0514001 0.0296759i
\(562\) 0 0
\(563\) −2965.67 + 5136.70i −0.222004 + 0.384522i −0.955416 0.295262i \(-0.904593\pi\)
0.733412 + 0.679784i \(0.237926\pi\)
\(564\) 0 0
\(565\) −718.754 414.973i −0.0535190 0.0308992i
\(566\) 0 0
\(567\) 307.125i 0.0227479i
\(568\) 0 0
\(569\) −3205.89 5552.76i −0.236200 0.409111i 0.723421 0.690407i \(-0.242569\pi\)
−0.959621 + 0.281297i \(0.909235\pi\)
\(570\) 0 0
\(571\) 4364.14 0.319849 0.159924 0.987129i \(-0.448875\pi\)
0.159924 + 0.987129i \(0.448875\pi\)
\(572\) 0 0
\(573\) −8496.63 −0.619462
\(574\) 0 0
\(575\) −2498.40 4327.36i −0.181201 0.313849i
\(576\) 0 0
\(577\) 9544.78i 0.688656i −0.938849 0.344328i \(-0.888107\pi\)
0.938849 0.344328i \(-0.111893\pi\)
\(578\) 0 0
\(579\) 1400.67 + 808.678i 0.100535 + 0.0580440i
\(580\) 0 0
\(581\) −509.540 + 882.549i −0.0363843 + 0.0630195i
\(582\) 0 0
\(583\) −2176.21 + 1256.43i −0.154596 + 0.0892559i
\(584\) 0 0
\(585\) 4146.09 + 4676.65i 0.293025 + 0.330523i
\(586\) 0 0
\(587\) −12963.5 + 7484.47i −0.911517 + 0.526264i −0.880919 0.473267i \(-0.843074\pi\)
−0.0305979 + 0.999532i \(0.509741\pi\)
\(588\) 0 0
\(589\) 1045.70 1811.20i 0.0731531 0.126705i
\(590\) 0 0
\(591\) −218.723 126.280i −0.0152234 0.00878926i
\(592\) 0 0
\(593\) 22985.5i 1.59174i 0.605468 + 0.795869i \(0.292986\pi\)
−0.605468 + 0.795869i \(0.707014\pi\)
\(594\) 0 0
\(595\) −1888.63 3271.20i −0.130128 0.225388i
\(596\) 0 0
\(597\) 16408.4 1.12488
\(598\) 0 0
\(599\) 12936.8 0.882446 0.441223 0.897397i \(-0.354545\pi\)
0.441223 + 0.897397i \(0.354545\pi\)
\(600\) 0 0
\(601\) 13153.7 + 22782.9i 0.892764 + 1.54631i 0.836547 + 0.547894i \(0.184570\pi\)
0.0562168 + 0.998419i \(0.482096\pi\)
\(602\) 0 0
\(603\) 4376.30i 0.295550i
\(604\) 0 0
\(605\) −16881.4 9746.46i −1.13442 0.654959i
\(606\) 0 0
\(607\) −13036.5 + 22579.9i −0.871722 + 1.50987i −0.0115075 + 0.999934i \(0.503663\pi\)
−0.860214 + 0.509933i \(0.829670\pi\)
\(608\) 0 0
\(609\) −578.156 + 333.798i −0.0384697 + 0.0222105i
\(610\) 0 0
\(611\) −1608.51 + 4823.71i −0.106503 + 0.319389i
\(612\) 0 0
\(613\) 13208.8 7626.08i 0.870305 0.502471i 0.00285537 0.999996i \(-0.499091\pi\)
0.867450 + 0.497525i \(0.165758\pi\)
\(614\) 0 0
\(615\) −5067.28 + 8776.78i −0.332248 + 0.575470i
\(616\) 0 0
\(617\) 3054.01 + 1763.23i 0.199270 + 0.115049i 0.596315 0.802751i \(-0.296631\pi\)
−0.397045 + 0.917799i \(0.629964\pi\)
\(618\) 0 0
\(619\) 9081.76i 0.589704i 0.955543 + 0.294852i \(0.0952703\pi\)
−0.955543 + 0.294852i \(0.904730\pi\)
\(620\) 0 0
\(621\) −713.847 1236.42i −0.0461283 0.0798966i
\(622\) 0 0
\(623\) 2888.29 0.185741
\(624\) 0 0
\(625\) −18507.4 −1.18447
\(626\) 0 0
\(627\) 67.1204 + 116.256i 0.00427517 + 0.00740481i
\(628\) 0 0
\(629\) 2634.81i 0.167022i
\(630\) 0 0
\(631\) 11545.3 + 6665.70i 0.728387 + 0.420534i 0.817832 0.575457i \(-0.195176\pi\)
−0.0894450 + 0.995992i \(0.528509\pi\)
\(632\) 0 0
\(633\) 89.2927 154.659i 0.00560674 0.00971116i
\(634\) 0 0
\(635\) −24606.2 + 14206.4i −1.53774 + 0.887817i
\(636\) 0 0
\(637\) 3086.36 + 15090.9i 0.191972 + 0.938656i
\(638\) 0 0
\(639\) −2981.52 + 1721.38i −0.184581 + 0.106568i
\(640\) 0 0
\(641\) 2246.03 3890.24i 0.138398 0.239712i −0.788493 0.615044i \(-0.789138\pi\)
0.926890 + 0.375333i \(0.122472\pi\)
\(642\) 0 0
\(643\) 21952.2 + 12674.1i 1.34636 + 0.777323i 0.987732 0.156156i \(-0.0499102\pi\)
0.358631 + 0.933479i \(0.383244\pi\)
\(644\) 0 0
\(645\) 15830.6i 0.966404i
\(646\) 0 0
\(647\) 5405.35 + 9362.34i 0.328449 + 0.568890i 0.982204 0.187816i \(-0.0601409\pi\)
−0.653756 + 0.756706i \(0.726808\pi\)
\(648\) 0 0
\(649\) −2486.12 −0.150368
\(650\) 0 0
\(651\) −2078.50 −0.125135
\(652\) 0 0
\(653\) −5024.03 8701.87i −0.301080 0.521486i 0.675301 0.737542i \(-0.264014\pi\)
−0.976381 + 0.216056i \(0.930680\pi\)
\(654\) 0 0
\(655\) 4574.57i 0.272891i
\(656\) 0 0
\(657\) 8238.49 + 4756.49i 0.489215 + 0.282448i
\(658\) 0 0
\(659\) 10461.2 18119.3i 0.618376 1.07106i −0.371406 0.928471i \(-0.621124\pi\)
0.989782 0.142589i \(-0.0455426\pi\)
\(660\) 0 0
\(661\) −14162.0 + 8176.43i −0.833340 + 0.481129i −0.854995 0.518637i \(-0.826440\pi\)
0.0216550 + 0.999766i \(0.493106\pi\)
\(662\) 0 0
\(663\) 8969.59 + 2990.98i 0.525415 + 0.175204i
\(664\) 0 0
\(665\) 556.818 321.479i 0.0324699 0.0187465i
\(666\) 0 0
\(667\) −1551.69 + 2687.60i −0.0900773 + 0.156018i
\(668\) 0 0
\(669\) 12096.7 + 6984.06i 0.699084 + 0.403616i
\(670\) 0 0
\(671\) 75.2525i 0.00432949i
\(672\) 0 0
\(673\) −8681.74 15037.2i −0.497261 0.861281i 0.502734 0.864441i \(-0.332327\pi\)
−0.999995 + 0.00316005i \(0.998994\pi\)
\(674\) 0 0
\(675\) 2551.44 0.145489
\(676\) 0 0
\(677\) −15301.1 −0.868639 −0.434320 0.900759i \(-0.643011\pi\)
−0.434320 + 0.900759i \(0.643011\pi\)
\(678\) 0 0
\(679\) −1343.03 2326.20i −0.0759071 0.131475i
\(680\) 0 0
\(681\) 11066.8i 0.622730i
\(682\) 0 0
\(683\) −3082.15 1779.48i −0.172672 0.0996923i 0.411173 0.911557i \(-0.365119\pi\)
−0.583845 + 0.811865i \(0.698453\pi\)
\(684\) 0 0
\(685\) 21983.7 38076.8i 1.22621 2.12385i
\(686\) 0 0
\(687\) 9461.39 5462.54i 0.525436 0.303361i
\(688\) 0 0
\(689\) −28580.1 9530.28i −1.58028 0.526959i
\(690\) 0 0
\(691\) −15496.5 + 8946.91i −0.853132 + 0.492556i −0.861707 0.507407i \(-0.830604\pi\)
0.00857407 + 0.999963i \(0.497271\pi\)
\(692\) 0 0
\(693\) 66.7065 115.539i 0.00365652 0.00633328i
\(694\) 0 0
\(695\) −28979.1 16731.1i −1.58164 0.913160i
\(696\) 0 0
\(697\) 15332.0i 0.833202i
\(698\) 0 0
\(699\) −6694.47 11595.2i −0.362243 0.627424i
\(700\) 0 0
\(701\) 16354.9 0.881194 0.440597 0.897705i \(-0.354767\pi\)
0.440597 + 0.897705i \(0.354767\pi\)
\(702\) 0 0
\(703\) 448.493 0.0240615
\(704\) 0 0
\(705\) 2410.84 + 4175.69i 0.128791 + 0.223072i
\(706\) 0 0
\(707\) 1130.42i 0.0601329i
\(708\) 0 0
\(709\) 10044.0 + 5798.90i 0.532031 + 0.307168i 0.741843 0.670573i \(-0.233952\pi\)
−0.209812 + 0.977742i \(0.567285\pi\)
\(710\) 0 0
\(711\) −2070.29 + 3585.85i −0.109201 + 0.189142i
\(712\) 0 0
\(713\) −8367.58 + 4831.02i −0.439507 + 0.253749i
\(714\) 0 0
\(715\) 543.987 + 2659.85i 0.0284531 + 0.139123i
\(716\) 0 0
\(717\) 1671.15 964.839i 0.0870436 0.0502546i
\(718\) 0 0
\(719\) 11713.7 20288.7i 0.607577 1.05235i −0.384062 0.923307i \(-0.625475\pi\)
0.991639 0.129047i \(-0.0411917\pi\)
\(720\) 0 0
\(721\) 2183.50 + 1260.64i 0.112785 + 0.0651163i
\(722\) 0 0
\(723\) 14772.5i 0.759883i
\(724\) 0 0
\(725\) −2773.03 4803.02i −0.142052 0.246041i
\(726\) 0 0
\(727\) 17357.7 0.885503 0.442752 0.896644i \(-0.354002\pi\)
0.442752 + 0.896644i \(0.354002\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −11974.7 20740.7i −0.605881 1.04942i
\(732\) 0 0
\(733\) 842.308i 0.0424438i −0.999775 0.0212219i \(-0.993244\pi\)
0.999775 0.0212219i \(-0.00675565\pi\)
\(734\) 0 0
\(735\) 12649.3 + 7303.05i 0.634796 + 0.366500i
\(736\) 0 0
\(737\) −950.517 + 1646.34i −0.0475071 + 0.0822848i
\(738\) 0 0
\(739\) 31137.8 17977.4i 1.54996 0.894873i 0.551822 0.833962i \(-0.313933\pi\)
0.998143 0.0609105i \(-0.0194004\pi\)
\(740\) 0 0
\(741\) −509.120 + 1526.79i −0.0252402 + 0.0756923i
\(742\) 0 0
\(743\) 9844.48 5683.72i 0.486082 0.280640i −0.236865 0.971542i \(-0.576120\pi\)
0.722948 + 0.690903i \(0.242787\pi\)
\(744\) 0 0
\(745\) −3473.44 + 6016.18i −0.170815 + 0.295860i
\(746\) 0 0
\(747\) −2094.84 1209.46i −0.102605 0.0592393i
\(748\) 0 0
\(749\) 7921.98i 0.386466i
\(750\) 0 0
\(751\) −6487.12 11236.0i −0.315204 0.545950i 0.664277 0.747487i \(-0.268740\pi\)
−0.979481 + 0.201537i \(0.935406\pi\)
\(752\) 0 0
\(753\) 8960.53 0.433652
\(754\) 0 0
\(755\) 31755.7 1.53074
\(756\) 0 0
\(757\) 1209.83 + 2095.49i 0.0580872 + 0.100610i 0.893607 0.448851i \(-0.148167\pi\)
−0.835520 + 0.549461i \(0.814833\pi\)
\(758\) 0 0
\(759\) 620.180i 0.0296589i
\(760\) 0 0
\(761\) 24443.6 + 14112.5i 1.16436 + 0.672246i 0.952346 0.305020i \(-0.0986631\pi\)
0.212018 + 0.977266i \(0.431996\pi\)
\(762\) 0 0
\(763\) −1725.72 + 2989.03i −0.0818811 + 0.141822i
\(764\) 0 0
\(765\) 7764.60 4482.90i 0.366967 0.211869i
\(766\) 0 0
\(767\) −19773.2 22303.6i −0.930861 1.04998i
\(768\) 0 0
\(769\) 14068.7 8122.55i 0.659726 0.380893i −0.132447 0.991190i \(-0.542283\pi\)
0.792172 + 0.610297i \(0.208950\pi\)
\(770\) 0 0
\(771\) −471.585 + 816.810i −0.0220282 + 0.0381539i
\(772\) 0 0
\(773\) 1680.27 + 970.103i 0.0781824 + 0.0451387i 0.538582 0.842573i \(-0.318960\pi\)
−0.460399 + 0.887712i \(0.652294\pi\)
\(774\) 0 0
\(775\) 17267.1i 0.800326i
\(776\) 0 0
\(777\) −222.864 386.011i −0.0102898 0.0178225i
\(778\) 0 0
\(779\) −2609.79 −0.120033
\(780\) 0 0
\(781\) −1495.51 −0.0685193
\(782\) 0 0
\(783\) −792.312 1372.33i −0.0361621 0.0626346i
\(784\) 0 0
\(785\) 10386.3i 0.472233i
\(786\) 0 0
\(787\) 17188.1 + 9923.54i 0.778512 + 0.449474i 0.835903 0.548878i \(-0.184945\pi\)
−0.0573908 + 0.998352i \(0.518278\pi\)
\(788\) 0 0
\(789\) −1693.79 + 2933.72i −0.0764263 + 0.132374i
\(790\) 0 0
\(791\) −183.948 + 106.203i −0.00826858 + 0.00477387i
\(792\) 0 0
\(793\) 675.107 598.517i 0.0302317 0.0268020i
\(794\) 0 0
\(795\) −24740.6 + 14284.0i −1.10372 + 0.637235i
\(796\) 0 0
\(797\) −17877.2 + 30964.2i −0.794533 + 1.37617i 0.128601 + 0.991696i \(0.458951\pi\)
−0.923135 + 0.384476i \(0.874382\pi\)
\(798\) 0 0
\(799\) 6317.18 + 3647.22i 0.279707 + 0.161489i
\(800\) 0 0
\(801\) 6855.71i 0.302415i
\(802\) 0 0
\(803\) 2066.19 + 3578.74i 0.0908023 + 0.157274i
\(804\) 0 0
\(805\) −2970.41 −0.130054
\(806\) 0 0
\(807\) −267.168 −0.0116540
\(808\) 0 0
\(809\) 1708.12 + 2958.56i 0.0742329 + 0.128575i 0.900752 0.434333i \(-0.143016\pi\)
−0.826520 + 0.562908i \(0.809683\pi\)
\(810\) 0 0
\(811\) 26171.6i 1.13318i −0.823999 0.566591i \(-0.808262\pi\)
0.823999 0.566591i \(-0.191738\pi\)
\(812\) 0 0
\(813\) 13694.2 + 7906.36i 0.590747 + 0.341068i
\(814\) 0 0
\(815\) 22717.0 39347.0i 0.976370 1.69112i
\(816\) 0 0
\(817\) 3530.45 2038.31i 0.151181 0.0872845i
\(818\) 0 0
\(819\) 1567.07 320.495i 0.0668596 0.0136740i
\(820\) 0 0
\(821\) 34547.3 19945.9i 1.46859 0.847889i 0.469206 0.883089i \(-0.344540\pi\)
0.999380 + 0.0352001i \(0.0112069\pi\)
\(822\) 0 0
\(823\) −18207.2 + 31535.8i −0.771157 + 1.33568i 0.165772 + 0.986164i \(0.446989\pi\)
−0.936929 + 0.349520i \(0.886345\pi\)
\(824\) 0 0
\(825\) 959.840 + 554.164i 0.0405059 + 0.0233861i
\(826\) 0 0
\(827\) 43200.2i 1.81647i 0.418464 + 0.908234i \(0.362569\pi\)
−0.418464 + 0.908234i \(0.637431\pi\)
\(828\) 0 0
\(829\) −11372.3 19697.3i −0.476447 0.825231i 0.523188 0.852217i \(-0.324742\pi\)
−0.999636 + 0.0269858i \(0.991409\pi\)
\(830\) 0 0
\(831\) −13043.8 −0.544506
\(832\) 0 0
\(833\) 22096.8 0.919098
\(834\) 0 0
\(835\) −17838.4 30897.0i −0.739310 1.28052i
\(836\) 0 0
\(837\) 4933.57i 0.203739i
\(838\) 0 0
\(839\) 14931.8 + 8620.89i 0.614426 + 0.354739i 0.774696 0.632334i \(-0.217903\pi\)
−0.160270 + 0.987073i \(0.551236\pi\)
\(840\) 0 0
\(841\) 10472.3 18138.5i 0.429384 0.743715i
\(842\) 0 0
\(843\) −8799.17 + 5080.20i −0.359501 + 0.207558i
\(844\) 0 0
\(845\) −19535.6 + 26035.3i −0.795319 + 1.05993i
\(846\) 0 0
\(847\) −4320.39 + 2494.38i −0.175266 + 0.101190i
\(848\) 0 0
\(849\) −3137.53 + 5434.36i −0.126831 + 0.219678i
\(850\) 0 0
\(851\) −1794.40 1036.00i −0.0722812 0.0417316i
\(852\) 0 0
\(853\) 25949.7i 1.04162i −0.853673 0.520809i \(-0.825630\pi\)
0.853673 0.520809i \(-0.174370\pi\)
\(854\) 0 0
\(855\) 763.072 + 1321.68i 0.0305222 + 0.0528660i
\(856\) 0 0
\(857\) −43312.3 −1.72640 −0.863198 0.504866i \(-0.831542\pi\)
−0.863198 + 0.504866i \(0.831542\pi\)
\(858\) 0 0
\(859\) −30465.4 −1.21009 −0.605045 0.796191i \(-0.706845\pi\)
−0.605045 + 0.796191i \(0.706845\pi\)
\(860\) 0 0
\(861\) 1296.85 + 2246.21i 0.0513316 + 0.0889090i
\(862\) 0 0
\(863\) 34192.7i 1.34871i −0.738409 0.674354i \(-0.764422\pi\)
0.738409 0.674354i \(-0.235578\pi\)
\(864\) 0 0
\(865\) 41099.9 + 23729.0i 1.61554 + 0.932730i
\(866\) 0 0
\(867\) −587.565 + 1017.69i −0.0230159 + 0.0398647i
\(868\) 0 0
\(869\) −1557.67 + 899.321i −0.0608059 + 0.0351063i
\(870\) 0 0
\(871\) −22329.6 + 4566.81i −0.868669 + 0.177658i
\(872\) 0 0
\(873\) 5521.54 3187.86i 0.214062 0.123589i
\(874\) 0 0
\(875\) −856.737 + 1483.91i −0.0331006 + 0.0573319i
\(876\) 0 0
\(877\) −17808.5 10281.7i −0.685690 0.395884i 0.116305 0.993214i \(-0.462895\pi\)
−0.801996 + 0.597330i \(0.796228\pi\)
\(878\) 0 0
\(879\) 7073.42i 0.271423i
\(880\) 0 0
\(881\) 8859.76 + 15345.6i 0.338812 + 0.586839i 0.984209 0.177008i \(-0.0566418\pi\)
−0.645398 + 0.763847i \(0.723308\pi\)
\(882\) 0 0
\(883\) 35140.1 1.33925 0.669625 0.742699i \(-0.266455\pi\)
0.669625 + 0.742699i \(0.266455\pi\)
\(884\) 0 0
\(885\) −28264.0 −1.07354
\(886\) 0 0
\(887\) −18493.9 32032.4i −0.700072 1.21256i −0.968441 0.249244i \(-0.919818\pi\)
0.268368 0.963316i \(-0.413516\pi\)
\(888\) 0 0
\(889\) 7271.58i 0.274332i
\(890\) 0 0
\(891\) 274.247 + 158.336i 0.0103116 + 0.00595339i
\(892\) 0 0
\(893\) −620.825 + 1075.30i −0.0232644 + 0.0402951i
\(894\) 0 0
\(895\) −19989.3 + 11540.8i −0.746555 + 0.431024i
\(896\) 0 0
\(897\) 5563.78 4932.58i 0.207101 0.183605i
\(898\) 0 0
\(899\) −9287.34 + 5362.05i −0.344550 + 0.198926i
\(900\) 0 0
\(901\) −21609.5 + 37428.8i −0.799021 + 1.38394i
\(902\) 0 0
\(903\) −3508.68 2025.74i −0.129304 0.0746538i
\(904\) 0 0
\(905\) 60060.0i 2.20604i
\(906\) 0 0
\(907\) 1163.43 + 2015.11i 0.0425920 + 0.0737715i 0.886536 0.462661i \(-0.153105\pi\)
−0.843944 + 0.536432i \(0.819772\pi\)
\(908\) 0 0
\(909\) 2683.20 0.0979057
\(910\) 0 0
\(911\) 34700.9 1.26201 0.631005 0.775779i \(-0.282643\pi\)
0.631005 + 0.775779i \(0.282643\pi\)
\(912\) 0 0
\(913\) −525.380 909.985i −0.0190444 0.0329859i
\(914\) 0 0
\(915\) 855.522i 0.0309101i
\(916\) 0 0
\(917\) −1013.90 585.377i −0.0365126 0.0210805i
\(918\) 0 0
\(919\) −15829.7 + 27417.9i −0.568199 + 0.984149i 0.428546 + 0.903520i \(0.359026\pi\)
−0.996744 + 0.0806286i \(0.974307\pi\)
\(920\) 0 0
\(921\) 17506.3 10107.3i 0.626334 0.361614i
\(922\) 0 0
\(923\) −11894.5 13416.6i −0.424173 0.478453i
\(924\) 0 0
\(925\) 3206.78 1851.44i 0.113987 0.0658107i
\(926\) 0 0
\(927\) −2992.30 + 5182.81i −0.106019 + 0.183631i
\(928\) 0 0
\(929\) 34177.5 + 19732.4i 1.20703 + 0.696877i 0.962109 0.272667i \(-0.0879056\pi\)
0.244918 + 0.969544i \(0.421239\pi\)
\(930\) 0 0
\(931\) 3761.28i 0.132407i
\(932\) 0 0
\(933\) −13194.2 22853.1i −0.462979 0.801904i
\(934\) 0 0
\(935\) 3894.68 0.136224
\(936\) 0 0
\(937\) −572.068 −0.0199452 −0.00997260 0.999950i \(-0.503174\pi\)
−0.00997260 + 0.999950i \(0.503174\pi\)
\(938\) 0 0
\(939\) −1930.05 3342.94i −0.0670764 0.116180i
\(940\) 0 0
\(941\) 26136.2i 0.905437i 0.891654 + 0.452718i \(0.149546\pi\)
−0.891654 + 0.452718i \(0.850454\pi\)
\(942\) 0 0
\(943\) 10441.7 + 6028.51i 0.360581 + 0.208182i
\(944\) 0 0
\(945\) 758.366 1313.53i 0.0261054 0.0452160i
\(946\) 0 0
\(947\) −8465.13 + 4887.34i −0.290475 + 0.167706i −0.638156 0.769907i \(-0.720303\pi\)
0.347681 + 0.937613i \(0.386969\pi\)
\(948\) 0 0
\(949\) −15672.4 + 46999.6i −0.536089 + 1.60766i
\(950\) 0 0
\(951\) −27785.5 + 16042.0i −0.947431 + 0.547000i
\(952\) 0 0
\(953\) 18961.0 32841.4i 0.644498 1.11630i −0.339919 0.940455i \(-0.610400\pi\)
0.984417 0.175849i \(-0.0562670\pi\)
\(954\) 0 0
\(955\) −36338.9 20980.2i −1.23131 0.710895i
\(956\) 0 0
\(957\) 688.350i 0.0232510i
\(958\) 0 0
\(959\) −5626.20 9744.86i −0.189447 0.328131i
\(960\) 0 0
\(961\) −3597.42 −0.120755
\(962\) 0 0
\(963\) −18803.8 −0.629226
\(964\) 0 0
\(965\) 3993.64 + 6917.19i 0.133223 + 0.230749i
\(966\) 0 0
\(967\) 23198.3i 0.771467i 0.922610 + 0.385733i \(0.126052\pi\)
−0.922610 + 0.385733i \(0.873948\pi\)
\(968\) 0 0
\(969\) 1999.50 + 1154.41i 0.0662880 + 0.0382714i
\(970\) 0 0
\(971\) 17277.8 29926.0i 0.571030 0.989053i −0.425430 0.904991i \(-0.639877\pi\)
0.996461 0.0840622i \(-0.0267894\pi\)
\(972\) 0 0
\(973\) −7416.52 + 4281.93i −0.244360 + 0.141082i
\(974\) 0 0
\(975\) 2662.51 + 13018.5i 0.0874549 + 0.427615i
\(976\) 0 0
\(977\) 26697.5 15413.8i 0.874236 0.504740i 0.00548232 0.999985i \(-0.498255\pi\)
0.868754 + 0.495245i \(0.164922\pi\)
\(978\) 0 0
\(979\) −1489.04 + 2579.09i −0.0486107 + 0.0841961i
\(980\) 0 0
\(981\) −7094.85 4096.21i −0.230908 0.133315i
\(982\) 0 0
\(983\) 35014.7i 1.13611i 0.822990 + 0.568055i \(0.192304\pi\)
−0.822990 + 0.568055i \(0.807696\pi\)
\(984\) 0 0
\(985\) −623.630 1080.16i −0.0201731 0.0349408i
\(986\) 0 0
\(987\) 1233.99 0.0397958
\(988\) 0 0
\(989\) −18833.6 −0.605535
\(990\) 0 0
\(991\) −21702.4 37589.7i −0.695661 1.20492i −0.969957 0.243275i \(-0.921778\pi\)
0.274297 0.961645i \(-0.411555\pi\)
\(992\) 0 0
\(993\) 12491.4i 0.399198i
\(994\) 0 0
\(995\) 70176.3 + 40516.3i 2.23592 + 1.29091i
\(996\) 0 0
\(997\) −11481.0 + 19885.6i −0.364700 + 0.631679i −0.988728 0.149723i \(-0.952162\pi\)
0.624028 + 0.781402i \(0.285495\pi\)
\(998\) 0 0
\(999\) 916.246 528.995i 0.0290178 0.0167534i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 156.4.q.c.49.3 6
3.2 odd 2 468.4.t.f.361.1 6
4.3 odd 2 624.4.bv.f.49.3 6
13.2 odd 12 2028.4.a.o.1.6 6
13.3 even 3 2028.4.b.h.337.6 6
13.4 even 6 inner 156.4.q.c.121.1 yes 6
13.10 even 6 2028.4.b.h.337.1 6
13.11 odd 12 2028.4.a.o.1.1 6
39.17 odd 6 468.4.t.f.433.3 6
52.43 odd 6 624.4.bv.f.433.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.4.q.c.49.3 6 1.1 even 1 trivial
156.4.q.c.121.1 yes 6 13.4 even 6 inner
468.4.t.f.361.1 6 3.2 odd 2
468.4.t.f.433.3 6 39.17 odd 6
624.4.bv.f.49.3 6 4.3 odd 2
624.4.bv.f.433.1 6 52.43 odd 6
2028.4.a.o.1.1 6 13.11 odd 12
2028.4.a.o.1.6 6 13.2 odd 12
2028.4.b.h.337.1 6 13.10 even 6
2028.4.b.h.337.6 6 13.3 even 3