Properties

Label 1564.1.w.a.1223.1
Level $1564$
Weight $1$
Character 1564.1223
Analytic conductor $0.781$
Analytic rank $0$
Dimension $10$
Projective image $D_{11}$
CM discriminant -68
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1564,1,Mod(271,1564)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1564, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 12]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1564.271");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1564 = 2^{2} \cdot 17 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1564.w (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.780537679758\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

Embedding invariants

Embedding label 1223.1
Root \(-0.841254 + 0.540641i\) of defining polynomial
Character \(\chi\) \(=\) 1564.1223
Dual form 1564.1.w.a.1087.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.415415 + 0.909632i) q^{2} +(0.273100 - 0.0801894i) q^{3} +(-0.654861 + 0.755750i) q^{4} +(0.186393 + 0.215109i) q^{6} +(0.186393 + 1.29639i) q^{7} +(-0.959493 - 0.281733i) q^{8} +(-0.773100 + 0.496841i) q^{9} +(-0.797176 + 1.74557i) q^{11} +(-0.118239 + 0.258908i) q^{12} +(0.186393 - 1.29639i) q^{13} +(-1.10181 + 0.708089i) q^{14} +(-0.142315 - 0.989821i) q^{16} +(-0.654861 - 0.755750i) q^{17} +(-0.773100 - 0.496841i) q^{18} +(0.154861 + 0.339098i) q^{21} -1.91899 q^{22} +(-0.654861 - 0.755750i) q^{23} -0.284630 q^{24} +(0.415415 + 0.909632i) q^{25} +(1.25667 - 0.368991i) q^{26} +(-0.357685 + 0.412791i) q^{27} +(-1.10181 - 0.708089i) q^{28} +(1.84125 + 0.540641i) q^{31} +(0.841254 - 0.540641i) q^{32} +(-0.0777324 + 0.540641i) q^{33} +(0.415415 - 0.909632i) q^{34} +(0.130785 - 0.909632i) q^{36} +(-0.0530529 - 0.368991i) q^{39} +(-0.244123 + 0.281733i) q^{42} +(-0.797176 - 1.74557i) q^{44} +(0.415415 - 0.909632i) q^{46} +(-0.118239 - 0.258908i) q^{48} +(-0.686393 + 0.201543i) q^{49} +(-0.654861 + 0.755750i) q^{50} +(-0.239446 - 0.153882i) q^{51} +(0.857685 + 0.989821i) q^{52} +(0.273100 + 1.89945i) q^{53} +(-0.524075 - 0.153882i) q^{54} +(0.186393 - 1.29639i) q^{56} +(0.273100 + 1.89945i) q^{62} +(-0.788201 - 0.909632i) q^{63} +(0.841254 + 0.540641i) q^{64} +(-0.524075 + 0.153882i) q^{66} +1.00000 q^{68} +(-0.239446 - 0.153882i) q^{69} +(0.830830 + 1.81926i) q^{71} +(0.881761 - 0.258908i) q^{72} +(0.186393 + 0.215109i) q^{75} +(-2.41153 - 0.708089i) q^{77} +(0.313607 - 0.201543i) q^{78} +(-0.118239 + 0.822373i) q^{79} +(0.317178 - 0.694523i) q^{81} +(-0.357685 - 0.105026i) q^{84} +(1.25667 - 1.45027i) q^{88} +(1.84125 - 0.540641i) q^{89} +1.71537 q^{91} +1.00000 q^{92} +0.546200 q^{93} +(0.186393 - 0.215109i) q^{96} +(-0.468468 - 0.540641i) q^{98} +(-0.250975 - 1.74557i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - 2 q^{3} - q^{4} - 2 q^{6} - 2 q^{7} - q^{8} - 3 q^{9} - 2 q^{11} - 2 q^{12} - 2 q^{13} - 2 q^{14} - q^{16} - q^{17} - 3 q^{18} - 4 q^{21} - 2 q^{22} - q^{23} - 2 q^{24} - q^{25} - 2 q^{26}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1564\mathbb{Z}\right)^\times\).

\(n\) \(783\) \(921\) \(1293\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(3\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(4\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(5\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(6\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(7\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(8\) −0.959493 0.281733i −0.959493 0.281733i
\(9\) −0.773100 + 0.496841i −0.773100 + 0.496841i
\(10\) 0 0
\(11\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(12\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(13\) 0.186393 1.29639i 0.186393 1.29639i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(14\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(15\) 0 0
\(16\) −0.142315 0.989821i −0.142315 0.989821i
\(17\) −0.654861 0.755750i −0.654861 0.755750i
\(18\) −0.773100 0.496841i −0.773100 0.496841i
\(19\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(20\) 0 0
\(21\) 0.154861 + 0.339098i 0.154861 + 0.339098i
\(22\) −1.91899 −1.91899
\(23\) −0.654861 0.755750i −0.654861 0.755750i
\(24\) −0.284630 −0.284630
\(25\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(26\) 1.25667 0.368991i 1.25667 0.368991i
\(27\) −0.357685 + 0.412791i −0.357685 + 0.412791i
\(28\) −1.10181 0.708089i −1.10181 0.708089i
\(29\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(30\) 0 0
\(31\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(32\) 0.841254 0.540641i 0.841254 0.540641i
\(33\) −0.0777324 + 0.540641i −0.0777324 + 0.540641i
\(34\) 0.415415 0.909632i 0.415415 0.909632i
\(35\) 0 0
\(36\) 0.130785 0.909632i 0.130785 0.909632i
\(37\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(38\) 0 0
\(39\) −0.0530529 0.368991i −0.0530529 0.368991i
\(40\) 0 0
\(41\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(42\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(43\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(44\) −0.797176 1.74557i −0.797176 1.74557i
\(45\) 0 0
\(46\) 0.415415 0.909632i 0.415415 0.909632i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −0.118239 0.258908i −0.118239 0.258908i
\(49\) −0.686393 + 0.201543i −0.686393 + 0.201543i
\(50\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(51\) −0.239446 0.153882i −0.239446 0.153882i
\(52\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(53\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(54\) −0.524075 0.153882i −0.524075 0.153882i
\(55\) 0 0
\(56\) 0.186393 1.29639i 0.186393 1.29639i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(60\) 0 0
\(61\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(62\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(63\) −0.788201 0.909632i −0.788201 0.909632i
\(64\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(65\) 0 0
\(66\) −0.524075 + 0.153882i −0.524075 + 0.153882i
\(67\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(68\) 1.00000 1.00000
\(69\) −0.239446 0.153882i −0.239446 0.153882i
\(70\) 0 0
\(71\) 0.830830 + 1.81926i 0.830830 + 1.81926i 0.415415 + 0.909632i \(0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(72\) 0.881761 0.258908i 0.881761 0.258908i
\(73\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(74\) 0 0
\(75\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(76\) 0 0
\(77\) −2.41153 0.708089i −2.41153 0.708089i
\(78\) 0.313607 0.201543i 0.313607 0.201543i
\(79\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(80\) 0 0
\(81\) 0.317178 0.694523i 0.317178 0.694523i
\(82\) 0 0
\(83\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(84\) −0.357685 0.105026i −0.357685 0.105026i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 1.25667 1.45027i 1.25667 1.45027i
\(89\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(90\) 0 0
\(91\) 1.71537 1.71537
\(92\) 1.00000 1.00000
\(93\) 0.546200 0.546200
\(94\) 0 0
\(95\) 0 0
\(96\) 0.186393 0.215109i 0.186393 0.215109i
\(97\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(98\) −0.468468 0.540641i −0.468468 0.540641i
\(99\) −0.250975 1.74557i −0.250975 1.74557i
\(100\) −0.959493 0.281733i −0.959493 0.281733i
\(101\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(102\) 0.0405070 0.281733i 0.0405070 0.281733i
\(103\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(104\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(105\) 0 0
\(106\) −1.61435 + 1.03748i −1.61435 + 1.03748i
\(107\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(108\) −0.0777324 0.540641i −0.0777324 0.540641i
\(109\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.25667 0.368991i 1.25667 0.368991i
\(113\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.500000 + 1.09485i 0.500000 + 1.09485i
\(118\) 0 0
\(119\) 0.857685 0.989821i 0.857685 0.989821i
\(120\) 0 0
\(121\) −1.75667 2.02730i −1.75667 2.02730i
\(122\) 0 0
\(123\) 0 0
\(124\) −1.61435 + 1.03748i −1.61435 + 1.03748i
\(125\) 0 0
\(126\) 0.500000 1.09485i 0.500000 1.09485i
\(127\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(128\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(129\) 0 0
\(130\) 0 0
\(131\) −0.239446 1.66538i −0.239446 1.66538i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(132\) −0.357685 0.412791i −0.357685 0.412791i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(137\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(138\) 0.0405070 0.281733i 0.0405070 0.281733i
\(139\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.30972 + 1.51150i −1.30972 + 1.51150i
\(143\) 2.11435 + 1.35881i 2.11435 + 1.35881i
\(144\) 0.601808 + 0.694523i 0.601808 + 0.694523i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.171292 + 0.110083i −0.171292 + 0.110083i
\(148\) 0 0
\(149\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(150\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(151\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(152\) 0 0
\(153\) 0.881761 + 0.258908i 0.881761 + 0.258908i
\(154\) −0.357685 2.48775i −0.357685 2.48775i
\(155\) 0 0
\(156\) 0.313607 + 0.201543i 0.313607 + 0.201543i
\(157\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(158\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(159\) 0.226900 + 0.496841i 0.226900 + 0.496841i
\(160\) 0 0
\(161\) 0.857685 0.989821i 0.857685 0.989821i
\(162\) 0.763521 0.763521
\(163\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(168\) −0.0530529 0.368991i −0.0530529 0.368991i
\(169\) −0.686393 0.201543i −0.686393 0.201543i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(174\) 0 0
\(175\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(176\) 1.84125 + 0.540641i 1.84125 + 0.540641i
\(177\) 0 0
\(178\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(179\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(180\) 0 0
\(181\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(182\) 0.712591 + 1.56036i 0.712591 + 1.56036i
\(183\) 0 0
\(184\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(185\) 0 0
\(186\) 0.226900 + 0.496841i 0.226900 + 0.496841i
\(187\) 1.84125 0.540641i 1.84125 0.540641i
\(188\) 0 0
\(189\) −0.601808 0.386758i −0.601808 0.386758i
\(190\) 0 0
\(191\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(192\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(193\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.297176 0.650724i 0.297176 0.650724i
\(197\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(198\) 1.48357 0.953431i 1.48357 0.953431i
\(199\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(200\) −0.142315 0.989821i −0.142315 0.989821i
\(201\) 0 0
\(202\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(203\) 0 0
\(204\) 0.273100 0.0801894i 0.273100 0.0801894i
\(205\) 0 0
\(206\) 0 0
\(207\) 0.881761 + 0.258908i 0.881761 + 0.258908i
\(208\) −1.30972 −1.30972
\(209\) 0 0
\(210\) 0 0
\(211\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(212\) −1.61435 1.03748i −1.61435 1.03748i
\(213\) 0.372786 + 0.430218i 0.372786 + 0.430218i
\(214\) −0.239446 1.66538i −0.239446 1.66538i
\(215\) 0 0
\(216\) 0.459493 0.295298i 0.459493 0.295298i
\(217\) −0.357685 + 2.48775i −0.357685 + 2.48775i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(222\) 0 0
\(223\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(224\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(225\) −0.773100 0.496841i −0.773100 0.496841i
\(226\) 0 0
\(227\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(228\) 0 0
\(229\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(230\) 0 0
\(231\) −0.715370 −0.715370
\(232\) 0 0
\(233\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(234\) −0.788201 + 0.909632i −0.788201 + 0.909632i
\(235\) 0 0
\(236\) 0 0
\(237\) 0.0336545 + 0.234072i 0.0336545 + 0.234072i
\(238\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(239\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(240\) 0 0
\(241\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(242\) 1.11435 2.44009i 1.11435 2.44009i
\(243\) 0.108660 0.755750i 0.108660 0.755750i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −1.61435 1.03748i −1.61435 1.03748i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(252\) 1.20362 1.20362
\(253\) 1.84125 0.540641i 1.84125 0.540641i
\(254\) 0 0
\(255\) 0 0
\(256\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(257\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.41542 0.909632i 1.41542 0.909632i
\(263\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(264\) 0.226900 0.496841i 0.226900 0.496841i
\(265\) 0 0
\(266\) 0 0
\(267\) 0.459493 0.295298i 0.459493 0.295298i
\(268\) 0 0
\(269\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(270\) 0 0
\(271\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(272\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(273\) 0.468468 0.137555i 0.468468 0.137555i
\(274\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(275\) −1.91899 −1.91899
\(276\) 0.273100 0.0801894i 0.273100 0.0801894i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(279\) −1.69209 + 0.496841i −1.69209 + 0.496841i
\(280\) 0 0
\(281\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(282\) 0 0
\(283\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(284\) −1.91899 0.563465i −1.91899 0.563465i
\(285\) 0 0
\(286\) −0.357685 + 2.48775i −0.357685 + 2.48775i
\(287\) 0 0
\(288\) −0.381761 + 0.835939i −0.381761 + 0.835939i
\(289\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(294\) −0.171292 0.110083i −0.171292 0.110083i
\(295\) 0 0
\(296\) 0 0
\(297\) −0.435418 0.953431i −0.435418 0.953431i
\(298\) −0.284630 −0.284630
\(299\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(300\) −0.284630 −0.284630
\(301\) 0 0
\(302\) 0 0
\(303\) 0.154861 0.178719i 0.154861 0.178719i
\(304\) 0 0
\(305\) 0 0
\(306\) 0.130785 + 0.909632i 0.130785 + 0.909632i
\(307\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(308\) 2.11435 1.35881i 2.11435 1.35881i
\(309\) 0 0
\(310\) 0 0
\(311\) −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i \(0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(312\) −0.0530529 + 0.368991i −0.0530529 + 0.368991i
\(313\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(314\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(315\) 0 0
\(316\) −0.544078 0.627899i −0.544078 0.627899i
\(317\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(318\) −0.357685 + 0.412791i −0.357685 + 0.412791i
\(319\) 0 0
\(320\) 0 0
\(321\) −0.478891 −0.478891
\(322\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(323\) 0 0
\(324\) 0.317178 + 0.694523i 0.317178 + 0.694523i
\(325\) 1.25667 0.368991i 1.25667 0.368991i
\(326\) 0.857685 0.989821i 0.857685 0.989821i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0.345139 0.755750i 0.345139 0.755750i
\(335\) 0 0
\(336\) 0.313607 0.201543i 0.313607 0.201543i
\(337\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(338\) −0.101808 0.708089i −0.101808 0.708089i
\(339\) 0 0
\(340\) 0 0
\(341\) −2.41153 + 2.78305i −2.41153 + 2.78305i
\(342\) 0 0
\(343\) 0.154861 + 0.339098i 0.154861 + 0.339098i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(348\) 0 0
\(349\) 0.857685 0.989821i 0.857685 0.989821i −0.142315 0.989821i \(-0.545455\pi\)
1.00000 \(0\)
\(350\) −1.10181 0.708089i −1.10181 0.708089i
\(351\) 0.468468 + 0.540641i 0.468468 + 0.540641i
\(352\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(353\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(357\) 0.154861 0.339098i 0.154861 0.339098i
\(358\) 0 0
\(359\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(360\) 0 0
\(361\) −0.142315 0.989821i −0.142315 0.989821i
\(362\) 0 0
\(363\) −0.642315 0.412791i −0.642315 0.412791i
\(364\) −1.12333 + 1.29639i −1.12333 + 1.29639i
\(365\) 0 0
\(366\) 0 0
\(367\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(368\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(369\) 0 0
\(370\) 0 0
\(371\) −2.41153 + 0.708089i −2.41153 + 0.708089i
\(372\) −0.357685 + 0.412791i −0.357685 + 0.412791i
\(373\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(374\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0.101808 0.708089i 0.101808 0.708089i
\(379\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(384\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(390\) 0 0
\(391\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(392\) 0.715370 0.715370
\(393\) −0.198939 0.435615i −0.198939 0.435615i
\(394\) 0 0
\(395\) 0 0
\(396\) 1.48357 + 0.953431i 1.48357 + 0.953431i
\(397\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(398\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(399\) 0 0
\(400\) 0.841254 0.540641i 0.841254 0.540641i
\(401\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(402\) 0 0
\(403\) 1.04408 2.28621i 1.04408 2.28621i
\(404\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(409\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(410\) 0 0
\(411\) 0.226900 0.0666238i 0.226900 0.0666238i
\(412\) 0 0
\(413\) 0 0
\(414\) 0.130785 + 0.909632i 0.130785 + 0.909632i
\(415\) 0 0
\(416\) −0.544078 1.19136i −0.544078 1.19136i
\(417\) 0.459493 0.134919i 0.459493 0.134919i
\(418\) 0 0
\(419\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(420\) 0 0
\(421\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(422\) −0.797176 0.234072i −0.797176 0.234072i
\(423\) 0 0
\(424\) 0.273100 1.89945i 0.273100 1.89945i
\(425\) 0.415415 0.909632i 0.415415 0.909632i
\(426\) −0.236479 + 0.517817i −0.236479 + 0.517817i
\(427\) 0 0
\(428\) 1.41542 0.909632i 1.41542 0.909632i
\(429\) 0.686393 + 0.201543i 0.686393 + 0.201543i
\(430\) 0 0
\(431\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(432\) 0.459493 + 0.295298i 0.459493 + 0.295298i
\(433\) −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i \(0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(434\) −2.41153 + 0.708089i −2.41153 + 0.708089i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(440\) 0 0
\(441\) 0.430515 0.496841i 0.430515 0.496841i
\(442\) −1.10181 0.708089i −1.10181 0.708089i
\(443\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −0.0115295 + 0.0801894i −0.0115295 + 0.0801894i
\(448\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(449\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(450\) 0.130785 0.909632i 0.130785 0.909632i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(455\) 0 0
\(456\) 0 0
\(457\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(458\) −0.544078 1.19136i −0.544078 1.19136i
\(459\) 0.546200 0.546200
\(460\) 0 0
\(461\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(462\) −0.297176 0.650724i −0.297176 0.650724i
\(463\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(468\) −1.15486 0.339098i −1.15486 0.339098i
\(469\) 0 0
\(470\) 0 0
\(471\) 0.0336545 0.0736930i 0.0336545 0.0736930i
\(472\) 0 0
\(473\) 0 0
\(474\) −0.198939 + 0.127850i −0.198939 + 0.127850i
\(475\) 0 0
\(476\) 0.186393 + 1.29639i 0.186393 + 1.29639i
\(477\) −1.15486 1.33278i −1.15486 1.33278i
\(478\) 0 0
\(479\) −1.30972 + 1.51150i −1.30972 + 1.51150i −0.654861 + 0.755750i \(0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0.154861 0.339098i 0.154861 0.339098i
\(484\) 2.68251 2.68251
\(485\) 0 0
\(486\) 0.732593 0.215109i 0.732593 0.215109i
\(487\) 0.857685 0.989821i 0.857685 0.989821i −0.142315 0.989821i \(-0.545455\pi\)
1.00000 \(0\)
\(488\) 0 0
\(489\) −0.244123 0.281733i −0.244123 0.281733i
\(490\) 0 0
\(491\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.273100 1.89945i 0.273100 1.89945i
\(497\) −2.20362 + 1.41618i −2.20362 + 1.41618i
\(498\) 0 0
\(499\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(500\) 0 0
\(501\) −0.198939 0.127850i −0.198939 0.127850i
\(502\) 0 0
\(503\) −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i \(0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(504\) 0.500000 + 1.09485i 0.500000 + 1.09485i
\(505\) 0 0
\(506\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(507\) −0.203616 −0.203616
\(508\) 0 0
\(509\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.654861 0.755750i −0.654861 0.755750i
\(513\) 0 0
\(514\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(522\) 0 0
\(523\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(524\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(525\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(526\) 0 0
\(527\) −0.797176 1.74557i −0.797176 1.74557i
\(528\) 0.546200 0.546200
\(529\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0.459493 + 0.295298i 0.459493 + 0.295298i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.195368 1.35881i 0.195368 1.35881i
\(540\) 0 0
\(541\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.959493 0.281733i −0.959493 0.281733i
\(545\) 0 0
\(546\) 0.319733 + 0.368991i 0.319733 + 0.368991i
\(547\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(548\) −0.544078 + 0.627899i −0.544078 + 0.627899i
\(549\) 0 0
\(550\) −0.797176 1.74557i −0.797176 1.74557i
\(551\) 0 0
\(552\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(553\) −1.08816 −1.08816
\(554\) 0 0
\(555\) 0 0
\(556\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(557\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(558\) −1.15486 1.33278i −1.15486 1.33278i
\(559\) 0 0
\(560\) 0 0
\(561\) 0.459493 0.295298i 0.459493 0.295298i
\(562\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(563\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.698939 0.449181i 0.698939 0.449181i
\(567\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(568\) −0.284630 1.97964i −0.284630 1.97964i
\(569\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(570\) 0 0
\(571\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(572\) −2.41153 + 0.708089i −2.41153 + 0.708089i
\(573\) 0 0
\(574\) 0 0
\(575\) 0.415415 0.909632i 0.415415 0.909632i
\(576\) −0.918986 −0.918986
\(577\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(578\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.53334 1.03748i −3.53334 1.03748i
\(584\) 0 0
\(585\) 0 0
\(586\) 0.345139 0.755750i 0.345139 0.755750i
\(587\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(588\) 0.0289775 0.201543i 0.0289775 0.201543i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(594\) 0.686393 0.792140i 0.686393 0.792140i
\(595\) 0 0
\(596\) −0.118239 0.258908i −0.118239 0.258908i
\(597\) 0.0810141 0.0810141
\(598\) −1.10181 0.708089i −1.10181 0.708089i
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −0.118239 0.258908i −0.118239 0.258908i
\(601\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0.226900 + 0.0666238i 0.226900 + 0.0666238i
\(607\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.773100 + 0.496841i −0.773100 + 0.496841i
\(613\) −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i \(-0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 2.11435 + 1.35881i 2.11435 + 1.35881i
\(617\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(618\) 0 0
\(619\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(620\) 0 0
\(621\) 0.546200 0.546200
\(622\) −1.30972 −1.30972
\(623\) 1.04408 + 2.28621i 1.04408 + 2.28621i
\(624\) −0.357685 + 0.105026i −0.357685 + 0.105026i
\(625\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(632\) 0.345139 0.755750i 0.345139 0.755750i
\(633\) −0.0982369 + 0.215109i −0.0982369 + 0.215109i
\(634\) 0 0
\(635\) 0 0
\(636\) −0.524075 0.153882i −0.524075 0.153882i
\(637\) 0.133340 + 0.927399i 0.133340 + 0.927399i
\(638\) 0 0
\(639\) −1.54620 0.993683i −1.54620 0.993683i
\(640\) 0 0
\(641\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(642\) −0.198939 0.435615i −0.198939 0.435615i
\(643\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(644\) 0.186393 + 1.29639i 0.186393 + 1.29639i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(648\) −0.500000 + 0.577031i −0.500000 + 0.577031i
\(649\) 0 0
\(650\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(651\) 0.101808 + 0.708089i 0.101808 + 0.708089i
\(652\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(653\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(660\) 0 0
\(661\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(662\) 0 0
\(663\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.830830 0.830830
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0.313607 + 0.201543i 0.313607 + 0.201543i
\(673\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(674\) 0 0
\(675\) −0.524075 0.153882i −0.524075 0.153882i
\(676\) 0.601808 0.386758i 0.601808 0.386758i
\(677\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.0681534 0.0437995i 0.0681534 0.0437995i
\(682\) −3.53334 1.03748i −3.53334 1.03748i
\(683\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(687\) −0.357685 + 0.105026i −0.357685 + 0.105026i
\(688\) 0 0
\(689\) 2.51334 2.51334
\(690\) 0 0
\(691\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(692\) 0 0
\(693\) 2.21616 0.650724i 2.21616 0.650724i
\(694\) 1.25667 1.45027i 1.25667 1.45027i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(699\) 0 0
\(700\) 0.186393 1.29639i 0.186393 1.29639i
\(701\) −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i \(0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(702\) −0.297176 + 0.650724i −0.297176 + 0.650724i
\(703\) 0 0
\(704\) −1.61435 + 1.03748i −1.61435 + 1.03748i
\(705\) 0 0
\(706\) −0.239446 1.66538i −0.239446 1.66538i
\(707\) 0.712591 + 0.822373i 0.712591 + 0.822373i
\(708\) 0 0
\(709\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(710\) 0 0
\(711\) −0.317178 0.694523i −0.317178 0.694523i
\(712\) −1.91899 −1.91899
\(713\) −0.797176 1.74557i −0.797176 1.74557i
\(714\) 0.372786 0.372786
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.841254 0.540641i 0.841254 0.540641i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.108660 0.755750i 0.108660 0.755750i
\(727\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(728\) −1.64589 0.483276i −1.64589 0.483276i
\(729\) 0.0777324 + 0.540641i 0.0777324 + 0.540641i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(734\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(735\) 0 0
\(736\) −0.959493 0.281733i −0.959493 0.281733i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.64589 1.89945i −1.64589 1.89945i
\(743\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(744\) −0.524075 0.153882i −0.524075 0.153882i
\(745\) 0 0
\(746\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(747\) 0 0
\(748\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(749\) 0.313607 2.18119i 0.313607 2.18119i
\(750\) 0 0
\(751\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0.686393 0.201543i 0.686393 0.201543i
\(757\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(758\) 1.68251 1.68251
\(759\) 0.459493 0.295298i 0.459493 0.295298i
\(760\) 0 0
\(761\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(769\) 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
1.00000 \(0\)
\(770\) 0 0
\(771\) 0.0336545 0.0736930i 0.0336545 0.0736930i
\(772\) 0 0
\(773\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(774\) 0 0
\(775\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(776\) 0 0
\(777\) 0 0
\(778\) 0.186393 0.215109i 0.186393 0.215109i
\(779\) 0 0
\(780\) 0 0
\(781\) −3.83797 −3.83797
\(782\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(783\) 0 0
\(784\) 0.297176 + 0.650724i 0.297176 + 0.650724i
\(785\) 0 0
\(786\) 0.313607 0.361922i 0.313607 0.361922i
\(787\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.250975 + 1.74557i −0.250975 + 1.74557i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(797\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(801\) −1.15486 + 1.33278i −1.15486 + 1.33278i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 2.51334 2.51334
\(807\) 0 0
\(808\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(809\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(810\) 0 0
\(811\) −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(817\) 0 0
\(818\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(819\) −1.32615 + 0.852267i −1.32615 + 0.852267i
\(820\) 0 0
\(821\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(822\) 0.154861 + 0.178719i 0.154861 + 0.178719i
\(823\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(824\) 0 0
\(825\) −0.524075 + 0.153882i −0.524075 + 0.153882i
\(826\) 0 0
\(827\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(828\) −0.773100 + 0.496841i −0.773100 + 0.496841i
\(829\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.857685 0.989821i 0.857685 0.989821i
\(833\) 0.601808 + 0.386758i 0.601808 + 0.386758i
\(834\) 0.313607 + 0.361922i 0.313607 + 0.361922i
\(835\) 0 0
\(836\) 0 0
\(837\) −0.881761 + 0.566673i −0.881761 + 0.566673i
\(838\) 0.273100 1.89945i 0.273100 1.89945i
\(839\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(840\) 0 0
\(841\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(842\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(843\) 0.459493 + 0.134919i 0.459493 + 0.134919i
\(844\) −0.118239 0.822373i −0.118239 0.822373i
\(845\) 0 0
\(846\) 0 0
\(847\) 2.30075 2.65520i 2.30075 2.65520i
\(848\) 1.84125 0.540641i 1.84125 0.540641i
\(849\) −0.0982369 0.215109i −0.0982369 0.215109i
\(850\) 1.00000 1.00000
\(851\) 0 0
\(852\) −0.569259 −0.569259
\(853\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(857\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(858\) 0.101808 + 0.708089i 0.101808 + 0.708089i
\(859\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(863\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(864\) −0.0777324 + 0.540641i −0.0777324 + 0.540641i
\(865\) 0 0
\(866\) −1.61435 0.474017i −1.61435 0.474017i
\(867\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(868\) −1.64589 1.89945i −1.64589 1.89945i
\(869\) −1.34125 0.861971i −1.34125 0.861971i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(878\) 1.25667 1.45027i 1.25667 1.45027i
\(879\) −0.198939 0.127850i −0.198939 0.127850i
\(880\) 0 0
\(881\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(882\) 0.630785 + 0.185215i 0.630785 + 0.185215i
\(883\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(884\) 0.186393 1.29639i 0.186393 1.29639i
\(885\) 0 0
\(886\) 0 0
\(887\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.959493 + 1.10731i 0.959493 + 1.10731i
\(892\) 0 0
\(893\) 0 0
\(894\) −0.0777324 + 0.0228243i −0.0777324 + 0.0228243i
\(895\) 0 0
\(896\) −1.30972 −1.30972
\(897\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(898\) 0 0
\(899\) 0 0
\(900\) 0.881761 0.258908i 0.881761 0.258908i
\(901\) 1.25667 1.45027i 1.25667 1.45027i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.0405070 0.281733i 0.0405070 0.281733i −0.959493 0.281733i \(-0.909091\pi\)
1.00000 \(0\)
\(908\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(909\) −0.317178 + 0.694523i −0.317178 + 0.694523i
\(910\) 0 0
\(911\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(915\) 0 0
\(916\) 0.857685 0.989821i 0.857685 0.989821i
\(917\) 2.11435 0.620830i 2.11435 0.620830i
\(918\) 0.226900 + 0.496841i 0.226900 + 0.496841i
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(923\) 2.51334 0.737982i 2.51334 0.737982i
\(924\) 0.468468 0.540641i 0.468468 0.540641i
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −0.0530529 + 0.368991i −0.0530529 + 0.368991i
\(934\) 0 0
\(935\) 0 0
\(936\) −0.171292 1.19136i −0.171292 1.19136i
\(937\) 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i \(0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(942\) 0.0810141 0.0810141
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i \(0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(948\) −0.198939 0.127850i −0.198939 0.127850i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(953\) −0.284630 + 1.97964i −0.284630 + 1.97964i −0.142315 + 0.989821i \(0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(954\) 0.732593 1.60416i 0.732593 1.60416i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −1.91899 0.563465i −1.91899 0.563465i
\(959\) 0.154861 + 1.07708i 0.154861 + 1.07708i
\(960\) 0 0
\(961\) 2.25667 + 1.45027i 2.25667 + 1.45027i
\(962\) 0 0
\(963\) 1.48357 0.435615i 1.48357 0.435615i
\(964\) 0 0
\(965\) 0 0
\(966\) 0.372786 0.372786
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 1.11435 + 2.44009i 1.11435 + 2.44009i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(972\) 0.500000 + 0.577031i 0.500000 + 0.577031i
\(973\) 0.313607 + 2.18119i 0.313607 + 2.18119i
\(974\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(975\) 0.313607 0.201543i 0.313607 0.201543i
\(976\) 0 0
\(977\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(978\) 0.154861 0.339098i 0.154861 0.339098i
\(979\) −0.524075 + 3.64502i −0.524075 + 3.64502i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(992\) 1.84125 0.540641i 1.84125 0.540641i
\(993\) 0 0
\(994\) −2.20362 1.41618i −2.20362 1.41618i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(998\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1564.1.w.a.1223.1 yes 10
4.3 odd 2 1564.1.w.b.1223.1 yes 10
17.16 even 2 1564.1.w.b.1223.1 yes 10
23.6 even 11 inner 1564.1.w.a.1087.1 10
68.67 odd 2 CM 1564.1.w.a.1223.1 yes 10
92.75 odd 22 1564.1.w.b.1087.1 yes 10
391.305 even 22 1564.1.w.b.1087.1 yes 10
1564.1087 odd 22 inner 1564.1.w.a.1087.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1564.1.w.a.1087.1 10 23.6 even 11 inner
1564.1.w.a.1087.1 10 1564.1087 odd 22 inner
1564.1.w.a.1223.1 yes 10 1.1 even 1 trivial
1564.1.w.a.1223.1 yes 10 68.67 odd 2 CM
1564.1.w.b.1087.1 yes 10 92.75 odd 22
1564.1.w.b.1087.1 yes 10 391.305 even 22
1564.1.w.b.1223.1 yes 10 4.3 odd 2
1564.1.w.b.1223.1 yes 10 17.16 even 2