gp: [N,k,chi] = [1568,1,Mod(99,1568)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1568, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 3, 0]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1568.99");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 1568 Z ) × \left(\mathbb{Z}/1568\mathbb{Z}\right)^\times ( Z / 1 5 6 8 Z ) × .
n n n
197 197 1 9 7
1471 1471 1 4 7 1
1473 1473 1 4 7 3
χ ( n ) \chi(n) χ ( n )
ζ 8 3 \zeta_{8}^{3} ζ 8 3
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 1568 , [ χ ] ) S_{1}^{\mathrm{new}}(1568, [\chi]) S 1 n e w ( 1 5 6 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 1 T^{4} + 1 T 4 + 1
T^4 + 1
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
T 4 + 2 T 2 + ⋯ + 2 T^{4} + 2 T^{2} + \cdots + 2 T 4 + 2 T 2 + ⋯ + 2
T^4 + 2*T^2 - 4*T + 2
13 13 1 3
T 4 T^{4} T 4
T^4
17 17 1 7
T 4 T^{4} T 4
T^4
19 19 1 9
T 4 T^{4} T 4
T^4
23 23 2 3
( T 2 − 2 T + 2 ) 2 (T^{2} - 2 T + 2)^{2} ( T 2 − 2 T + 2 ) 2
(T^2 - 2*T + 2)^2
29 29 2 9
T 4 + 2 T 2 + ⋯ + 2 T^{4} + 2 T^{2} + \cdots + 2 T 4 + 2 T 2 + ⋯ + 2
T^4 + 2*T^2 + 4*T + 2
31 31 3 1
T 4 T^{4} T 4
T^4
37 37 3 7
T 4 + 2 T 2 + ⋯ + 2 T^{4} + 2 T^{2} + \cdots + 2 T 4 + 2 T 2 + ⋯ + 2
T^4 + 2*T^2 + 4*T + 2
41 41 4 1
T 4 T^{4} T 4
T^4
43 43 4 3
T 4 − 4 T 3 + ⋯ + 2 T^{4} - 4 T^{3} + \cdots + 2 T 4 − 4 T 3 + ⋯ + 2
T^4 - 4*T^3 + 6*T^2 - 4*T + 2
47 47 4 7
T 4 T^{4} T 4
T^4
53 53 5 3
T 4 + 4 T 3 + ⋯ + 2 T^{4} + 4 T^{3} + \cdots + 2 T 4 + 4 T 3 + ⋯ + 2
T^4 + 4*T^3 + 6*T^2 + 4*T + 2
59 59 5 9
T 4 T^{4} T 4
T^4
61 61 6 1
T 4 T^{4} T 4
T^4
67 67 6 7
T 4 − 4 T 3 + ⋯ + 2 T^{4} - 4 T^{3} + \cdots + 2 T 4 − 4 T 3 + ⋯ + 2
T^4 - 4*T^3 + 6*T^2 - 4*T + 2
71 71 7 1
T 4 + 16 T^{4} + 16 T 4 + 1 6
T^4 + 16
73 73 7 3
T 4 T^{4} T 4
T^4
79 79 7 9
( T 2 − 2 ) 2 (T^{2} - 2)^{2} ( T 2 − 2 ) 2
(T^2 - 2)^2
83 83 8 3
T 4 T^{4} T 4
T^4
89 89 8 9
T 4 T^{4} T 4
T^4
97 97 9 7
T 4 T^{4} T 4
T^4
show more
show less