Properties

Label 1568.1.x.a
Level $1568$
Weight $1$
Character orbit 1568.x
Analytic conductor $0.783$
Analytic rank $0$
Dimension $4$
Projective image $D_{8}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1568,1,Mod(99,1568)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1568, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1568.99");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1568.x (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.782533939809\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.0.5156108238848.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{8}^{3} q^{2} - \zeta_{8}^{2} q^{4} - \zeta_{8} q^{8} + \zeta_{8} q^{9} + ( - \zeta_{8}^{2} - \zeta_{8}) q^{11} - q^{16} + q^{18} + ( - \zeta_{8} - 1) q^{22} + ( - \zeta_{8}^{2} + 1) q^{23} + \cdots + ( - \zeta_{8}^{3} - \zeta_{8}^{2}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{16} + 4 q^{18} - 4 q^{22} + 4 q^{23} + 4 q^{43} - 4 q^{44} - 4 q^{53} + 4 q^{67} + 4 q^{74} - 4 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(\zeta_{8}^{3}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i 0 1.00000i 0 0 0 −0.707107 0.707107i 0.707107 + 0.707107i 0
491.1 0.707107 + 0.707107i 0 1.00000i 0 0 0 −0.707107 + 0.707107i 0.707107 0.707107i 0
883.1 −0.707107 + 0.707107i 0 1.00000i 0 0 0 0.707107 + 0.707107i −0.707107 0.707107i 0
1275.1 −0.707107 0.707107i 0 1.00000i 0 0 0 0.707107 0.707107i −0.707107 + 0.707107i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
32.h odd 8 1 inner
224.x even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1568.1.x.a 4
7.b odd 2 1 CM 1568.1.x.a 4
7.c even 3 2 1568.1.bo.a 8
7.d odd 6 2 1568.1.bo.a 8
32.h odd 8 1 inner 1568.1.x.a 4
224.x even 8 1 inner 1568.1.x.a 4
224.be even 24 2 1568.1.bo.a 8
224.bf odd 24 2 1568.1.bo.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1568.1.x.a 4 1.a even 1 1 trivial
1568.1.x.a 4 7.b odd 2 1 CM
1568.1.x.a 4 32.h odd 8 1 inner
1568.1.x.a 4 224.x even 8 1 inner
1568.1.bo.a 8 7.c even 3 2
1568.1.bo.a 8 7.d odd 6 2
1568.1.bo.a 8 224.be even 24 2
1568.1.bo.a 8 224.bf odd 24 2

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1568, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} - 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$71$ \( T^{4} + 16 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less