Properties

Label 1568.1.x.a
Level 15681568
Weight 11
Character orbit 1568.x
Analytic conductor 0.7830.783
Analytic rank 00
Dimension 44
Projective image D8D_{8}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,1,Mod(99,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 3, 0])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.99"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 1568=2572 1568 = 2^{5} \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1568.x (of order 88, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7825339398090.782533939809
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D8D_{8}
Projective field: Galois closure of 8.0.5156108238848.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ83q2ζ82q4ζ8q8+ζ8q9+(ζ82ζ8)q11q16+q18+(ζ81)q22+(ζ82+1)q23++(ζ83ζ82)q99+O(q100) q - \zeta_{8}^{3} q^{2} - \zeta_{8}^{2} q^{4} - \zeta_{8} q^{8} + \zeta_{8} q^{9} + ( - \zeta_{8}^{2} - \zeta_{8}) q^{11} - q^{16} + q^{18} + ( - \zeta_{8} - 1) q^{22} + ( - \zeta_{8}^{2} + 1) q^{23} + \cdots + ( - \zeta_{8}^{3} - \zeta_{8}^{2}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q16+4q184q22+4q23+4q434q444q53+4q67+4q744q92+O(q100) 4 q - 4 q^{16} + 4 q^{18} - 4 q^{22} + 4 q^{23} + 4 q^{43} - 4 q^{44} - 4 q^{53} + 4 q^{67} + 4 q^{74} - 4 q^{92}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1568Z)×\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times.

nn 197197 14711471 14731473
χ(n)\chi(n) ζ83\zeta_{8}^{3} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
99.1
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i 0 1.00000i 0 0 0 −0.707107 0.707107i 0.707107 + 0.707107i 0
491.1 0.707107 + 0.707107i 0 1.00000i 0 0 0 −0.707107 + 0.707107i 0.707107 0.707107i 0
883.1 −0.707107 + 0.707107i 0 1.00000i 0 0 0 0.707107 + 0.707107i −0.707107 0.707107i 0
1275.1 −0.707107 0.707107i 0 1.00000i 0 0 0 0.707107 0.707107i −0.707107 + 0.707107i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
32.h odd 8 1 inner
224.x even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1568.1.x.a 4
7.b odd 2 1 CM 1568.1.x.a 4
7.c even 3 2 1568.1.bo.a 8
7.d odd 6 2 1568.1.bo.a 8
32.h odd 8 1 inner 1568.1.x.a 4
224.x even 8 1 inner 1568.1.x.a 4
224.be even 24 2 1568.1.bo.a 8
224.bf odd 24 2 1568.1.bo.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1568.1.x.a 4 1.a even 1 1 trivial
1568.1.x.a 4 7.b odd 2 1 CM
1568.1.x.a 4 32.h odd 8 1 inner
1568.1.x.a 4 224.x even 8 1 inner
1568.1.bo.a 8 7.c even 3 2
1568.1.bo.a 8 7.d odd 6 2
1568.1.bo.a 8 224.be even 24 2
1568.1.bo.a 8 224.bf odd 24 2

Hecke kernels

This newform subspace is the entire newspace S1new(1568,[χ])S_{1}^{\mathrm{new}}(1568, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+1 T^{4} + 1 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+2T2++2 T^{4} + 2 T^{2} + \cdots + 2 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 (T22T+2)2 (T^{2} - 2 T + 2)^{2} Copy content Toggle raw display
2929 T4+2T2++2 T^{4} + 2 T^{2} + \cdots + 2 Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4+2T2++2 T^{4} + 2 T^{2} + \cdots + 2 Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T44T3++2 T^{4} - 4 T^{3} + \cdots + 2 Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4+4T3++2 T^{4} + 4 T^{3} + \cdots + 2 Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T44T3++2 T^{4} - 4 T^{3} + \cdots + 2 Copy content Toggle raw display
7171 T4+16 T^{4} + 16 Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less