Properties

Label 1568.2.a.p
Level $1568$
Weight $2$
Character orbit 1568.a
Self dual yes
Analytic conductor $12.521$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1568,2,Mod(1,1568)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1568, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1568.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1568.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.5205430369\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \beta q^{5} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 \beta q^{5} - 3 q^{9} + 5 \beta q^{13} - 3 \beta q^{17} + 13 q^{25} + 4 q^{29} + 12 q^{37} - \beta q^{41} - 9 \beta q^{45} - 14 q^{53} + \beta q^{61} + 30 q^{65} - 5 \beta q^{73} + 9 q^{81} - 18 q^{85} + 13 \beta q^{89} - 13 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{9} + 26 q^{25} + 8 q^{29} + 24 q^{37} - 28 q^{53} + 60 q^{65} + 18 q^{81} - 36 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 0 0 −4.24264 0 0 0 −3.00000 0
1.2 0 0 0 4.24264 0 0 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
7.b odd 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1568.2.a.p 2
4.b odd 2 1 CM 1568.2.a.p 2
7.b odd 2 1 inner 1568.2.a.p 2
7.c even 3 2 1568.2.i.s 4
7.d odd 6 2 1568.2.i.s 4
8.b even 2 1 3136.2.a.bj 2
8.d odd 2 1 3136.2.a.bj 2
28.d even 2 1 inner 1568.2.a.p 2
28.f even 6 2 1568.2.i.s 4
28.g odd 6 2 1568.2.i.s 4
56.e even 2 1 3136.2.a.bj 2
56.h odd 2 1 3136.2.a.bj 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1568.2.a.p 2 1.a even 1 1 trivial
1568.2.a.p 2 4.b odd 2 1 CM
1568.2.a.p 2 7.b odd 2 1 inner
1568.2.a.p 2 28.d even 2 1 inner
1568.2.i.s 4 7.c even 3 2
1568.2.i.s 4 7.d odd 6 2
1568.2.i.s 4 28.f even 6 2
1568.2.i.s 4 28.g odd 6 2
3136.2.a.bj 2 8.b even 2 1
3136.2.a.bj 2 8.d odd 2 1
3136.2.a.bj 2 56.e even 2 1
3136.2.a.bj 2 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1568))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5}^{2} - 18 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 18 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 50 \) Copy content Toggle raw display
$17$ \( T^{2} - 18 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 4)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 12)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 2 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( (T + 14)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 2 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 50 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 338 \) Copy content Toggle raw display
$97$ \( T^{2} - 338 \) Copy content Toggle raw display
show more
show less