Properties

Label 1575.1.h.d
Level $1575$
Weight $1$
Character orbit 1575.h
Self dual yes
Analytic conductor $0.786$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,1,Mod(1126,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1126");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1575.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.786027394897\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.5788125.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + 2 q^{4} - q^{7} - \beta q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{2} + 2 q^{4} - q^{7} - \beta q^{8} - \beta q^{11} + \beta q^{14} + q^{16} + 3 q^{22} + \beta q^{23} - 2 q^{28} + \beta q^{29} + q^{37} + q^{43} - 2 \beta q^{44} - 3 q^{46} + q^{49} + \beta q^{56} - 3 q^{58} - q^{64} - q^{67} + \beta q^{71} - \beta q^{74} + \beta q^{77} - q^{79} - \beta q^{86} + 3 q^{88} + 2 \beta q^{92} - \beta q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{4} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{4} - 2 q^{7} + 2 q^{16} + 6 q^{22} - 4 q^{28} + 2 q^{37} + 2 q^{43} - 6 q^{46} + 2 q^{49} - 6 q^{58} - 2 q^{64} - 2 q^{67} - 2 q^{79} + 6 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1126.1
1.73205
−1.73205
−1.73205 0 2.00000 0 0 −1.00000 −1.73205 0 0
1126.2 1.73205 0 2.00000 0 0 −1.00000 1.73205 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
3.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.1.h.d 2
3.b odd 2 1 inner 1575.1.h.d 2
5.b even 2 1 1575.1.h.e yes 2
5.c odd 4 2 1575.1.e.c 4
7.b odd 2 1 CM 1575.1.h.d 2
15.d odd 2 1 1575.1.h.e yes 2
15.e even 4 2 1575.1.e.c 4
21.c even 2 1 inner 1575.1.h.d 2
35.c odd 2 1 1575.1.h.e yes 2
35.f even 4 2 1575.1.e.c 4
105.g even 2 1 1575.1.h.e yes 2
105.k odd 4 2 1575.1.e.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1575.1.e.c 4 5.c odd 4 2
1575.1.e.c 4 15.e even 4 2
1575.1.e.c 4 35.f even 4 2
1575.1.e.c 4 105.k odd 4 2
1575.1.h.d 2 1.a even 1 1 trivial
1575.1.h.d 2 3.b odd 2 1 inner
1575.1.h.d 2 7.b odd 2 1 CM
1575.1.h.d 2 21.c even 2 1 inner
1575.1.h.e yes 2 5.b even 2 1
1575.1.h.e yes 2 15.d odd 2 1
1575.1.h.e yes 2 35.c odd 2 1
1575.1.h.e yes 2 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1575, [\chi])\):

\( T_{2}^{2} - 3 \) Copy content Toggle raw display
\( T_{37} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 3 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 3 \) Copy content Toggle raw display
$29$ \( T^{2} - 3 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( (T + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 3 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( (T + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less