Properties

Label 1575.2.bk.i.1151.3
Level $1575$
Weight $2$
Character 1575.1151
Analytic conductor $12.576$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,2,Mod(26,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1575.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5764383184\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 315)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1151.3
Character \(\chi\) \(=\) 1575.1151
Dual form 1575.2.bk.i.26.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.65683 + 0.956572i) q^{2} +(0.830062 - 1.43771i) q^{4} +(2.39757 + 1.11878i) q^{7} -0.650234i q^{8} +(2.79501 + 1.61370i) q^{11} +4.86146i q^{13} +(-5.04256 + 0.439817i) q^{14} +(2.28212 + 3.95275i) q^{16} +(-0.364571 + 0.631456i) q^{17} +(6.81691 - 3.93574i) q^{19} -6.17449 q^{22} +(-4.21599 + 2.43410i) q^{23} +(-4.65034 - 8.05463i) q^{26} +(3.59861 - 2.51835i) q^{28} -7.75958i q^{29} +(-1.23751 - 0.714478i) q^{31} +(-6.43594 - 3.71579i) q^{32} -1.39495i q^{34} +(1.58269 + 2.74130i) q^{37} +(-7.52965 + 13.0417i) q^{38} +1.40264 q^{41} +6.42489 q^{43} +(4.64007 - 2.67894i) q^{44} +(4.65679 - 8.06579i) q^{46} +(2.43524 + 4.21797i) q^{47} +(4.49666 + 5.36470i) q^{49} +(6.98937 + 4.03531i) q^{52} +(-1.31763 - 0.760733i) q^{53} +(0.727468 - 1.55898i) q^{56} +(7.42260 + 12.8563i) q^{58} +(3.15081 - 5.45737i) q^{59} +(-2.05442 + 1.18612i) q^{61} +2.73380 q^{62} +5.08921 q^{64} +(5.56295 - 9.63531i) q^{67} +(0.605233 + 1.04829i) q^{68} +10.1351i q^{71} +(-11.9718 - 6.91195i) q^{73} +(-5.24450 - 3.02792i) q^{74} -13.0676i q^{76} +(4.89586 + 6.99596i) q^{77} +(1.99018 + 3.44710i) q^{79} +(-2.32395 + 1.34173i) q^{82} +4.19208 q^{83} +(-10.6450 + 6.14587i) q^{86} +(1.04928 - 1.81741i) q^{88} +(5.63672 + 9.76309i) q^{89} +(-5.43891 + 11.6557i) q^{91} +8.08181i q^{92} +(-8.06958 - 4.65898i) q^{94} +2.21388i q^{97} +(-12.5819 - 4.58702i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 36 q^{19} - 60 q^{31} - 24 q^{46} - 36 q^{49} + 48 q^{61} - 48 q^{64} + 60 q^{79} + 60 q^{91} - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1575\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(1226\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65683 + 0.956572i −1.17156 + 0.676399i −0.954046 0.299659i \(-0.903127\pi\)
−0.217511 + 0.976058i \(0.569794\pi\)
\(3\) 0 0
\(4\) 0.830062 1.43771i 0.415031 0.718854i
\(5\) 0 0
\(6\) 0 0
\(7\) 2.39757 + 1.11878i 0.906196 + 0.422859i
\(8\) 0.650234i 0.229892i
\(9\) 0 0
\(10\) 0 0
\(11\) 2.79501 + 1.61370i 0.842728 + 0.486549i 0.858191 0.513331i \(-0.171589\pi\)
−0.0154625 + 0.999880i \(0.504922\pi\)
\(12\) 0 0
\(13\) 4.86146i 1.34833i 0.738582 + 0.674164i \(0.235496\pi\)
−0.738582 + 0.674164i \(0.764504\pi\)
\(14\) −5.04256 + 0.439817i −1.34768 + 0.117546i
\(15\) 0 0
\(16\) 2.28212 + 3.95275i 0.570530 + 0.988186i
\(17\) −0.364571 + 0.631456i −0.0884215 + 0.153150i −0.906844 0.421466i \(-0.861516\pi\)
0.818423 + 0.574617i \(0.194849\pi\)
\(18\) 0 0
\(19\) 6.81691 3.93574i 1.56391 0.902922i 0.567051 0.823683i \(-0.308084\pi\)
0.996856 0.0792390i \(-0.0252490\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −6.17449 −1.31641
\(23\) −4.21599 + 2.43410i −0.879094 + 0.507545i −0.870360 0.492417i \(-0.836114\pi\)
−0.00873433 + 0.999962i \(0.502780\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.65034 8.05463i −0.912007 1.57964i
\(27\) 0 0
\(28\) 3.59861 2.51835i 0.680073 0.475923i
\(29\) 7.75958i 1.44092i −0.693498 0.720459i \(-0.743931\pi\)
0.693498 0.720459i \(-0.256069\pi\)
\(30\) 0 0
\(31\) −1.23751 0.714478i −0.222264 0.128324i 0.384734 0.923027i \(-0.374293\pi\)
−0.606998 + 0.794703i \(0.707626\pi\)
\(32\) −6.43594 3.71579i −1.13772 0.656865i
\(33\) 0 0
\(34\) 1.39495i 0.239233i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.58269 + 2.74130i 0.260193 + 0.450667i 0.966293 0.257445i \(-0.0828806\pi\)
−0.706100 + 0.708112i \(0.749547\pi\)
\(38\) −7.52965 + 13.0417i −1.22147 + 2.11565i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.40264 0.219056 0.109528 0.993984i \(-0.465066\pi\)
0.109528 + 0.993984i \(0.465066\pi\)
\(42\) 0 0
\(43\) 6.42489 0.979787 0.489893 0.871782i \(-0.337036\pi\)
0.489893 + 0.871782i \(0.337036\pi\)
\(44\) 4.64007 2.67894i 0.699516 0.403866i
\(45\) 0 0
\(46\) 4.65679 8.06579i 0.686606 1.18924i
\(47\) 2.43524 + 4.21797i 0.355217 + 0.615254i 0.987155 0.159765i \(-0.0510737\pi\)
−0.631938 + 0.775019i \(0.717740\pi\)
\(48\) 0 0
\(49\) 4.49666 + 5.36470i 0.642381 + 0.766386i
\(50\) 0 0
\(51\) 0 0
\(52\) 6.98937 + 4.03531i 0.969251 + 0.559597i
\(53\) −1.31763 0.760733i −0.180990 0.104495i 0.406768 0.913532i \(-0.366656\pi\)
−0.587758 + 0.809037i \(0.699989\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.727468 1.55898i 0.0972120 0.208327i
\(57\) 0 0
\(58\) 7.42260 + 12.8563i 0.974635 + 1.68812i
\(59\) 3.15081 5.45737i 0.410201 0.710489i −0.584711 0.811242i \(-0.698792\pi\)
0.994911 + 0.100753i \(0.0321253\pi\)
\(60\) 0 0
\(61\) −2.05442 + 1.18612i −0.263042 + 0.151867i −0.625721 0.780047i \(-0.715195\pi\)
0.362680 + 0.931914i \(0.381862\pi\)
\(62\) 2.73380 0.347193
\(63\) 0 0
\(64\) 5.08921 0.636152
\(65\) 0 0
\(66\) 0 0
\(67\) 5.56295 9.63531i 0.679622 1.17714i −0.295472 0.955351i \(-0.595477\pi\)
0.975095 0.221789i \(-0.0711896\pi\)
\(68\) 0.605233 + 1.04829i 0.0733953 + 0.127124i
\(69\) 0 0
\(70\) 0 0
\(71\) 10.1351i 1.20282i 0.798942 + 0.601408i \(0.205393\pi\)
−0.798942 + 0.601408i \(0.794607\pi\)
\(72\) 0 0
\(73\) −11.9718 6.91195i −1.40120 0.808982i −0.406683 0.913570i \(-0.633314\pi\)
−0.994516 + 0.104587i \(0.966648\pi\)
\(74\) −5.24450 3.02792i −0.609661 0.351988i
\(75\) 0 0
\(76\) 13.0676i 1.49896i
\(77\) 4.89586 + 6.99596i 0.557935 + 0.797264i
\(78\) 0 0
\(79\) 1.99018 + 3.44710i 0.223913 + 0.387829i 0.955993 0.293390i \(-0.0947834\pi\)
−0.732080 + 0.681219i \(0.761450\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −2.32395 + 1.34173i −0.256637 + 0.148169i
\(83\) 4.19208 0.460141 0.230070 0.973174i \(-0.426104\pi\)
0.230070 + 0.973174i \(0.426104\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −10.6450 + 6.14587i −1.14788 + 0.662727i
\(87\) 0 0
\(88\) 1.04928 1.81741i 0.111854 0.193737i
\(89\) 5.63672 + 9.76309i 0.597491 + 1.03489i 0.993190 + 0.116505i \(0.0371691\pi\)
−0.395699 + 0.918380i \(0.629498\pi\)
\(90\) 0 0
\(91\) −5.43891 + 11.6557i −0.570152 + 1.22185i
\(92\) 8.08181i 0.842587i
\(93\) 0 0
\(94\) −8.06958 4.65898i −0.832314 0.480537i
\(95\) 0 0
\(96\) 0 0
\(97\) 2.21388i 0.224785i 0.993664 + 0.112393i \(0.0358514\pi\)
−0.993664 + 0.112393i \(0.964149\pi\)
\(98\) −12.5819 4.58702i −1.27097 0.463359i
\(99\) 0 0
\(100\) 0 0
\(101\) 5.85104 10.1343i 0.582201 1.00840i −0.413017 0.910723i \(-0.635525\pi\)
0.995218 0.0976779i \(-0.0311415\pi\)
\(102\) 0 0
\(103\) 0.506851 0.292630i 0.0499415 0.0288337i −0.474821 0.880082i \(-0.657487\pi\)
0.524763 + 0.851248i \(0.324154\pi\)
\(104\) 3.16109 0.309970
\(105\) 0 0
\(106\) 2.91079 0.282721
\(107\) −1.46544 + 0.846073i −0.141670 + 0.0817929i −0.569159 0.822227i \(-0.692731\pi\)
0.427490 + 0.904020i \(0.359398\pi\)
\(108\) 0 0
\(109\) −6.70139 + 11.6072i −0.641877 + 1.11176i 0.343136 + 0.939286i \(0.388511\pi\)
−0.985013 + 0.172478i \(0.944823\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.04928 + 12.0302i 0.0991479 + 1.13674i
\(113\) 14.2129i 1.33704i 0.743694 + 0.668520i \(0.233072\pi\)
−0.743694 + 0.668520i \(0.766928\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −11.1560 6.44093i −1.03581 0.598025i
\(117\) 0 0
\(118\) 12.0559i 1.10984i
\(119\) −1.58054 + 1.10608i −0.144888 + 0.101394i
\(120\) 0 0
\(121\) −0.291934 0.505645i −0.0265395 0.0459677i
\(122\) 2.26922 3.93041i 0.205446 0.355842i
\(123\) 0 0
\(124\) −2.05442 + 1.18612i −0.184493 + 0.106517i
\(125\) 0 0
\(126\) 0 0
\(127\) 2.08954 0.185417 0.0927084 0.995693i \(-0.470448\pi\)
0.0927084 + 0.995693i \(0.470448\pi\)
\(128\) 4.43990 2.56338i 0.392436 0.226573i
\(129\) 0 0
\(130\) 0 0
\(131\) 5.60241 + 9.70365i 0.489484 + 0.847812i 0.999927 0.0121001i \(-0.00385167\pi\)
−0.510442 + 0.859912i \(0.670518\pi\)
\(132\) 0 0
\(133\) 20.7472 1.80960i 1.79901 0.156912i
\(134\) 21.2855i 1.83878i
\(135\) 0 0
\(136\) 0.410594 + 0.237056i 0.0352081 + 0.0203274i
\(137\) −6.09673 3.51995i −0.520879 0.300730i 0.216415 0.976301i \(-0.430564\pi\)
−0.737294 + 0.675572i \(0.763897\pi\)
\(138\) 0 0
\(139\) 6.45903i 0.547848i −0.961751 0.273924i \(-0.911678\pi\)
0.961751 0.273924i \(-0.0883216\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −9.69496 16.7922i −0.813583 1.40917i
\(143\) −7.84495 + 13.5879i −0.656028 + 1.13627i
\(144\) 0 0
\(145\) 0 0
\(146\) 26.4471 2.18878
\(147\) 0 0
\(148\) 5.25492 0.431952
\(149\) −20.3962 + 11.7758i −1.67092 + 0.964709i −0.703802 + 0.710396i \(0.748516\pi\)
−0.967122 + 0.254312i \(0.918151\pi\)
\(150\) 0 0
\(151\) −9.05442 + 15.6827i −0.736838 + 1.27624i 0.217074 + 0.976155i \(0.430349\pi\)
−0.953912 + 0.300086i \(0.902985\pi\)
\(152\) −2.55915 4.43258i −0.207575 0.359530i
\(153\) 0 0
\(154\) −14.8038 6.90789i −1.19292 0.556654i
\(155\) 0 0
\(156\) 0 0
\(157\) −2.15168 1.24227i −0.171723 0.0991441i 0.411675 0.911331i \(-0.364944\pi\)
−0.583398 + 0.812187i \(0.698277\pi\)
\(158\) −6.59480 3.80751i −0.524654 0.302909i
\(159\) 0 0
\(160\) 0 0
\(161\) −12.8313 + 1.11916i −1.01125 + 0.0882023i
\(162\) 0 0
\(163\) 1.96885 + 3.41015i 0.154212 + 0.267104i 0.932772 0.360467i \(-0.117383\pi\)
−0.778560 + 0.627571i \(0.784049\pi\)
\(164\) 1.16428 2.01659i 0.0909151 0.157470i
\(165\) 0 0
\(166\) −6.94558 + 4.01003i −0.539081 + 0.311239i
\(167\) −5.31832 −0.411544 −0.205772 0.978600i \(-0.565971\pi\)
−0.205772 + 0.978600i \(0.565971\pi\)
\(168\) 0 0
\(169\) −10.6338 −0.817986
\(170\) 0 0
\(171\) 0 0
\(172\) 5.33306 9.23712i 0.406642 0.704324i
\(173\) 3.72751 + 6.45623i 0.283397 + 0.490858i 0.972219 0.234072i \(-0.0752053\pi\)
−0.688822 + 0.724930i \(0.741872\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 14.7306i 1.11036i
\(177\) 0 0
\(178\) −18.6782 10.7839i −1.39999 0.808285i
\(179\) 11.5242 + 6.65349i 0.861358 + 0.497305i 0.864467 0.502690i \(-0.167656\pi\)
−0.00310866 + 0.999995i \(0.500990\pi\)
\(180\) 0 0
\(181\) 9.95814i 0.740183i 0.928995 + 0.370091i \(0.120674\pi\)
−0.928995 + 0.370091i \(0.879326\pi\)
\(182\) −2.13816 24.5142i −0.158491 1.81712i
\(183\) 0 0
\(184\) 1.58273 + 2.74138i 0.116681 + 0.202097i
\(185\) 0 0
\(186\) 0 0
\(187\) −2.03796 + 1.17662i −0.149031 + 0.0860428i
\(188\) 8.08561 0.589704
\(189\) 0 0
\(190\) 0 0
\(191\) 21.3140 12.3056i 1.54223 0.890404i 0.543527 0.839392i \(-0.317089\pi\)
0.998698 0.0510125i \(-0.0162448\pi\)
\(192\) 0 0
\(193\) 6.25714 10.8377i 0.450399 0.780113i −0.548012 0.836470i \(-0.684615\pi\)
0.998411 + 0.0563571i \(0.0179485\pi\)
\(194\) −2.11773 3.66802i −0.152044 0.263349i
\(195\) 0 0
\(196\) 11.4454 2.01186i 0.817528 0.143704i
\(197\) 15.6968i 1.11835i 0.829049 + 0.559177i \(0.188883\pi\)
−0.829049 + 0.559177i \(0.811117\pi\)
\(198\) 0 0
\(199\) −17.1436 9.89788i −1.21528 0.701642i −0.251375 0.967890i \(-0.580883\pi\)
−0.963905 + 0.266247i \(0.914216\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 22.3878i 1.57520i
\(203\) 8.68126 18.6041i 0.609305 1.30575i
\(204\) 0 0
\(205\) 0 0
\(206\) −0.559844 + 0.969678i −0.0390062 + 0.0675607i
\(207\) 0 0
\(208\) −19.2161 + 11.0944i −1.33240 + 0.769261i
\(209\) 25.4045 1.75726
\(210\) 0 0
\(211\) 11.5839 0.797466 0.398733 0.917067i \(-0.369450\pi\)
0.398733 + 0.917067i \(0.369450\pi\)
\(212\) −2.18743 + 1.26291i −0.150233 + 0.0867371i
\(213\) 0 0
\(214\) 1.61866 2.80360i 0.110649 0.191650i
\(215\) 0 0
\(216\) 0 0
\(217\) −2.16768 3.09751i −0.147151 0.210273i
\(218\) 25.6415i 1.73666i
\(219\) 0 0
\(220\) 0 0
\(221\) −3.06980 1.77235i −0.206497 0.119221i
\(222\) 0 0
\(223\) 24.1321i 1.61600i 0.589180 + 0.808002i \(0.299451\pi\)
−0.589180 + 0.808002i \(0.700549\pi\)
\(224\) −11.2734 16.1093i −0.753239 1.07634i
\(225\) 0 0
\(226\) −13.5957 23.5484i −0.904372 1.56642i
\(227\) −5.09441 + 8.82377i −0.338128 + 0.585654i −0.984081 0.177723i \(-0.943127\pi\)
0.645953 + 0.763377i \(0.276460\pi\)
\(228\) 0 0
\(229\) −22.7373 + 13.1274i −1.50252 + 0.867483i −0.502529 + 0.864561i \(0.667597\pi\)
−0.999996 + 0.00292226i \(0.999070\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.04554 −0.331256
\(233\) 15.9291 9.19667i 1.04355 0.602494i 0.122713 0.992442i \(-0.460840\pi\)
0.920837 + 0.389948i \(0.127507\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −5.23074 9.05990i −0.340492 0.589749i
\(237\) 0 0
\(238\) 1.56065 3.34450i 0.101162 0.216792i
\(239\) 0.961317i 0.0621824i −0.999517 0.0310912i \(-0.990102\pi\)
0.999517 0.0310912i \(-0.00989824\pi\)
\(240\) 0 0
\(241\) −5.63829 3.25527i −0.363194 0.209690i 0.307287 0.951617i \(-0.400579\pi\)
−0.670481 + 0.741927i \(0.733912\pi\)
\(242\) 0.967371 + 0.558512i 0.0621850 + 0.0359025i
\(243\) 0 0
\(244\) 3.93821i 0.252118i
\(245\) 0 0
\(246\) 0 0
\(247\) 19.1335 + 33.1402i 1.21743 + 2.10866i
\(248\) −0.464578 + 0.804672i −0.0295007 + 0.0510967i
\(249\) 0 0
\(250\) 0 0
\(251\) −2.02506 −0.127820 −0.0639102 0.997956i \(-0.520357\pi\)
−0.0639102 + 0.997956i \(0.520357\pi\)
\(252\) 0 0
\(253\) −15.7116 −0.987783
\(254\) −3.46202 + 1.99880i −0.217226 + 0.125416i
\(255\) 0 0
\(256\) −9.99333 + 17.3090i −0.624583 + 1.08181i
\(257\) 9.09510 + 15.7532i 0.567337 + 0.982656i 0.996828 + 0.0795849i \(0.0253595\pi\)
−0.429491 + 0.903071i \(0.641307\pi\)
\(258\) 0 0
\(259\) 0.727697 + 8.34313i 0.0452169 + 0.518417i
\(260\) 0 0
\(261\) 0 0
\(262\) −18.5645 10.7182i −1.14692 0.662173i
\(263\) −16.9400 9.78034i −1.04457 0.603082i −0.123444 0.992351i \(-0.539394\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −32.6437 + 22.8444i −2.00151 + 1.40068i
\(267\) 0 0
\(268\) −9.23518 15.9958i −0.564128 0.977099i
\(269\) −2.30801 + 3.99759i −0.140722 + 0.243738i −0.927769 0.373156i \(-0.878276\pi\)
0.787047 + 0.616893i \(0.211609\pi\)
\(270\) 0 0
\(271\) −9.33654 + 5.39045i −0.567154 + 0.327447i −0.756012 0.654558i \(-0.772855\pi\)
0.188858 + 0.982004i \(0.439522\pi\)
\(272\) −3.32798 −0.201788
\(273\) 0 0
\(274\) 13.4684 0.813653
\(275\) 0 0
\(276\) 0 0
\(277\) 10.2534 17.7594i 0.616067 1.06706i −0.374130 0.927376i \(-0.622059\pi\)
0.990196 0.139682i \(-0.0446081\pi\)
\(278\) 6.17853 + 10.7015i 0.370564 + 0.641835i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.714666i 0.0426334i −0.999773 0.0213167i \(-0.993214\pi\)
0.999773 0.0213167i \(-0.00678583\pi\)
\(282\) 0 0
\(283\) −24.2677 14.0110i −1.44257 0.832866i −0.444545 0.895756i \(-0.646635\pi\)
−0.998020 + 0.0628908i \(0.979968\pi\)
\(284\) 14.5713 + 8.41276i 0.864649 + 0.499206i
\(285\) 0 0
\(286\) 30.0171i 1.77495i
\(287\) 3.36293 + 1.56925i 0.198508 + 0.0926299i
\(288\) 0 0
\(289\) 8.23418 + 14.2620i 0.484363 + 0.838942i
\(290\) 0 0
\(291\) 0 0
\(292\) −19.8747 + 11.4747i −1.16308 + 0.671505i
\(293\) 9.79171 0.572038 0.286019 0.958224i \(-0.407668\pi\)
0.286019 + 0.958224i \(0.407668\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.78249 1.02912i 0.103605 0.0598163i
\(297\) 0 0
\(298\) 22.5287 39.0209i 1.30506 2.26042i
\(299\) −11.8333 20.4959i −0.684337 1.18531i
\(300\) 0 0
\(301\) 15.4041 + 7.18804i 0.887878 + 0.414312i
\(302\) 34.6448i 1.99359i
\(303\) 0 0
\(304\) 31.1140 + 17.9637i 1.78451 + 1.03029i
\(305\) 0 0
\(306\) 0 0
\(307\) 25.4778i 1.45410i −0.686586 0.727048i \(-0.740892\pi\)
0.686586 0.727048i \(-0.259108\pi\)
\(308\) 14.1220 1.23174i 0.804677 0.0701847i
\(309\) 0 0
\(310\) 0 0
\(311\) 5.05422 8.75417i 0.286599 0.496404i −0.686397 0.727227i \(-0.740809\pi\)
0.972996 + 0.230824i \(0.0741420\pi\)
\(312\) 0 0
\(313\) 20.3300 11.7375i 1.14912 0.663445i 0.200447 0.979705i \(-0.435760\pi\)
0.948673 + 0.316260i \(0.102427\pi\)
\(314\) 4.75329 0.268244
\(315\) 0 0
\(316\) 6.60790 0.371724
\(317\) 27.2202 15.7156i 1.52884 0.882677i 0.529430 0.848353i \(-0.322406\pi\)
0.999411 0.0343235i \(-0.0109277\pi\)
\(318\) 0 0
\(319\) 12.5216 21.6881i 0.701077 1.21430i
\(320\) 0 0
\(321\) 0 0
\(322\) 20.1888 14.1284i 1.12508 0.787343i
\(323\) 5.73943i 0.319351i
\(324\) 0 0
\(325\) 0 0
\(326\) −6.52412 3.76670i −0.361337 0.208618i
\(327\) 0 0
\(328\) 0.912047i 0.0503593i
\(329\) 1.11969 + 12.8374i 0.0617304 + 0.707747i
\(330\) 0 0
\(331\) 0.589214 + 1.02055i 0.0323861 + 0.0560944i 0.881764 0.471691i \(-0.156356\pi\)
−0.849378 + 0.527785i \(0.823023\pi\)
\(332\) 3.47969 6.02700i 0.190973 0.330774i
\(333\) 0 0
\(334\) 8.81156 5.08736i 0.482147 0.278368i
\(335\) 0 0
\(336\) 0 0
\(337\) 3.92868 0.214009 0.107004 0.994259i \(-0.465874\pi\)
0.107004 + 0.994259i \(0.465874\pi\)
\(338\) 17.6185 10.1720i 0.958318 0.553285i
\(339\) 0 0
\(340\) 0 0
\(341\) −2.30591 3.99395i −0.124872 0.216285i
\(342\) 0 0
\(343\) 4.77914 + 17.8930i 0.258049 + 0.966132i
\(344\) 4.17768i 0.225245i
\(345\) 0 0
\(346\) −12.3517 7.13126i −0.664032 0.383379i
\(347\) 4.18346 + 2.41532i 0.224580 + 0.129661i 0.608069 0.793884i \(-0.291944\pi\)
−0.383489 + 0.923545i \(0.625278\pi\)
\(348\) 0 0
\(349\) 16.0461i 0.858927i −0.903084 0.429463i \(-0.858703\pi\)
0.903084 0.429463i \(-0.141297\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −11.9924 20.7714i −0.639195 1.10712i
\(353\) 2.94047 5.09305i 0.156505 0.271075i −0.777101 0.629376i \(-0.783310\pi\)
0.933606 + 0.358301i \(0.116644\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 18.7153 0.991909
\(357\) 0 0
\(358\) −25.4582 −1.34551
\(359\) 7.00295 4.04315i 0.369601 0.213389i −0.303683 0.952773i \(-0.598216\pi\)
0.673284 + 0.739384i \(0.264883\pi\)
\(360\) 0 0
\(361\) 21.4802 37.2048i 1.13054 1.95815i
\(362\) −9.52569 16.4990i −0.500659 0.867167i
\(363\) 0 0
\(364\) 12.2429 + 17.4945i 0.641700 + 0.916961i
\(365\) 0 0
\(366\) 0 0
\(367\) −16.0818 9.28484i −0.839464 0.484665i 0.0176181 0.999845i \(-0.494392\pi\)
−0.857082 + 0.515180i \(0.827725\pi\)
\(368\) −19.2428 11.1098i −1.00310 0.579139i
\(369\) 0 0
\(370\) 0 0
\(371\) −2.30801 3.29805i −0.119826 0.171226i
\(372\) 0 0
\(373\) −1.32173 2.28930i −0.0684365 0.118536i 0.829777 0.558095i \(-0.188468\pi\)
−0.898213 + 0.439560i \(0.855134\pi\)
\(374\) 2.25104 3.89892i 0.116399 0.201608i
\(375\) 0 0
\(376\) 2.74266 1.58348i 0.141442 0.0816617i
\(377\) 37.7229 1.94283
\(378\) 0 0
\(379\) 23.8582 1.22551 0.612756 0.790272i \(-0.290061\pi\)
0.612756 + 0.790272i \(0.290061\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −23.5425 + 40.7767i −1.20454 + 2.08632i
\(383\) −5.55752 9.62590i −0.283976 0.491861i 0.688384 0.725346i \(-0.258320\pi\)
−0.972360 + 0.233485i \(0.924987\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 23.9416i 1.21860i
\(387\) 0 0
\(388\) 3.18291 + 1.83765i 0.161588 + 0.0932928i
\(389\) −10.8957 6.29064i −0.552434 0.318948i 0.197669 0.980269i \(-0.436663\pi\)
−0.750103 + 0.661321i \(0.769996\pi\)
\(390\) 0 0
\(391\) 3.54961i 0.179512i
\(392\) 3.48831 2.92388i 0.176186 0.147678i
\(393\) 0 0
\(394\) −15.0152 26.0070i −0.756453 1.31021i
\(395\) 0 0
\(396\) 0 0
\(397\) 24.7951 14.3154i 1.24443 0.718471i 0.274436 0.961605i \(-0.411509\pi\)
0.969993 + 0.243134i \(0.0781755\pi\)
\(398\) 37.8722 1.89836
\(399\) 0 0
\(400\) 0 0
\(401\) −10.2994 + 5.94639i −0.514330 + 0.296948i −0.734612 0.678488i \(-0.762636\pi\)
0.220282 + 0.975436i \(0.429302\pi\)
\(402\) 0 0
\(403\) 3.47341 6.01612i 0.173023 0.299684i
\(404\) −9.71345 16.8242i −0.483262 0.837035i
\(405\) 0 0
\(406\) 3.41280 + 39.1281i 0.169374 + 1.94190i
\(407\) 10.2160i 0.506386i
\(408\) 0 0
\(409\) 12.4855 + 7.20852i 0.617369 + 0.356438i 0.775844 0.630925i \(-0.217324\pi\)
−0.158475 + 0.987363i \(0.550658\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.971605i 0.0478675i
\(413\) 13.6599 9.55934i 0.672159 0.470384i
\(414\) 0 0
\(415\) 0 0
\(416\) 18.0642 31.2881i 0.885669 1.53402i
\(417\) 0 0
\(418\) −42.0909 + 24.3012i −2.05874 + 1.18861i
\(419\) −34.9400 −1.70693 −0.853466 0.521149i \(-0.825504\pi\)
−0.853466 + 0.521149i \(0.825504\pi\)
\(420\) 0 0
\(421\) 23.8515 1.16245 0.581226 0.813742i \(-0.302573\pi\)
0.581226 + 0.813742i \(0.302573\pi\)
\(422\) −19.1925 + 11.0808i −0.934277 + 0.539405i
\(423\) 0 0
\(424\) −0.494655 + 0.856767i −0.0240225 + 0.0416083i
\(425\) 0 0
\(426\) 0 0
\(427\) −6.25262 + 0.545360i −0.302586 + 0.0263918i
\(428\) 2.80917i 0.135786i
\(429\) 0 0
\(430\) 0 0
\(431\) 7.06551 + 4.07928i 0.340334 + 0.196492i 0.660420 0.750897i \(-0.270378\pi\)
−0.320086 + 0.947389i \(0.603712\pi\)
\(432\) 0 0
\(433\) 25.2667i 1.21424i −0.794610 0.607121i \(-0.792324\pi\)
0.794610 0.607121i \(-0.207676\pi\)
\(434\) 6.55447 + 3.05852i 0.314625 + 0.146814i
\(435\) 0 0
\(436\) 11.1251 + 19.2693i 0.532798 + 0.922832i
\(437\) −19.1600 + 33.1861i −0.916547 + 1.58751i
\(438\) 0 0
\(439\) 0.688243 0.397357i 0.0328480 0.0189648i −0.483486 0.875352i \(-0.660630\pi\)
0.516334 + 0.856387i \(0.327296\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 6.78152 0.322564
\(443\) −19.6145 + 11.3244i −0.931913 + 0.538040i −0.887416 0.460970i \(-0.847502\pi\)
−0.0444966 + 0.999010i \(0.514168\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −23.0841 39.9828i −1.09306 1.89324i
\(447\) 0 0
\(448\) 12.2017 + 5.69371i 0.576478 + 0.269002i
\(449\) 2.15664i 0.101778i 0.998704 + 0.0508891i \(0.0162055\pi\)
−0.998704 + 0.0508891i \(0.983794\pi\)
\(450\) 0 0
\(451\) 3.92041 + 2.26345i 0.184605 + 0.106582i
\(452\) 20.4340 + 11.7976i 0.961137 + 0.554913i
\(453\) 0 0
\(454\) 19.4927i 0.914836i
\(455\) 0 0
\(456\) 0 0
\(457\) 2.73666 + 4.74004i 0.128016 + 0.221730i 0.922908 0.385021i \(-0.125806\pi\)
−0.794892 + 0.606751i \(0.792473\pi\)
\(458\) 25.1146 43.4998i 1.17353 2.03261i
\(459\) 0 0
\(460\) 0 0
\(461\) 10.1084 0.470797 0.235399 0.971899i \(-0.424360\pi\)
0.235399 + 0.971899i \(0.424360\pi\)
\(462\) 0 0
\(463\) −12.0455 −0.559800 −0.279900 0.960029i \(-0.590301\pi\)
−0.279900 + 0.960029i \(0.590301\pi\)
\(464\) 30.6716 17.7083i 1.42389 0.822086i
\(465\) 0 0
\(466\) −17.5946 + 30.4747i −0.815052 + 1.41171i
\(467\) −9.96636 17.2622i −0.461188 0.798801i 0.537832 0.843052i \(-0.319243\pi\)
−0.999020 + 0.0442505i \(0.985910\pi\)
\(468\) 0 0
\(469\) 24.1173 16.8776i 1.11363 0.779335i
\(470\) 0 0
\(471\) 0 0
\(472\) −3.54856 2.04876i −0.163336 0.0943020i
\(473\) 17.9577 + 10.3679i 0.825694 + 0.476715i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.278277 + 3.19048i 0.0127548 + 0.146235i
\(477\) 0 0
\(478\) 0.919569 + 1.59274i 0.0420601 + 0.0728503i
\(479\) 9.69290 16.7886i 0.442880 0.767091i −0.555022 0.831836i \(-0.687290\pi\)
0.997902 + 0.0647451i \(0.0206234\pi\)
\(480\) 0 0
\(481\) −13.3267 + 7.69419i −0.607646 + 0.350825i
\(482\) 12.4556 0.567337
\(483\) 0 0
\(484\) −0.969293 −0.0440588
\(485\) 0 0
\(486\) 0 0
\(487\) 0.924082 1.60056i 0.0418742 0.0725282i −0.844329 0.535826i \(-0.820000\pi\)
0.886203 + 0.463297i \(0.153334\pi\)
\(488\) 0.771256 + 1.33585i 0.0349131 + 0.0604713i
\(489\) 0 0
\(490\) 0 0
\(491\) 25.4836i 1.15006i 0.818133 + 0.575030i \(0.195009\pi\)
−0.818133 + 0.575030i \(0.804991\pi\)
\(492\) 0 0
\(493\) 4.89983 + 2.82892i 0.220677 + 0.127408i
\(494\) −63.4019 36.6051i −2.85259 1.64694i
\(495\) 0 0
\(496\) 6.52209i 0.292851i
\(497\) −11.3390 + 24.2996i −0.508621 + 1.08999i
\(498\) 0 0
\(499\) −13.1142 22.7144i −0.587072 1.01684i −0.994614 0.103652i \(-0.966947\pi\)
0.407542 0.913187i \(-0.366386\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3.35518 1.93711i 0.149749 0.0864576i
\(503\) 4.25713 0.189816 0.0949081 0.995486i \(-0.469744\pi\)
0.0949081 + 0.995486i \(0.469744\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 26.0316 15.0293i 1.15724 0.668135i
\(507\) 0 0
\(508\) 1.73445 3.00415i 0.0769537 0.133288i
\(509\) −9.55960 16.5577i −0.423722 0.733907i 0.572578 0.819850i \(-0.305943\pi\)
−0.996300 + 0.0859425i \(0.972610\pi\)
\(510\) 0 0
\(511\) −20.9704 29.9657i −0.927674 1.32561i
\(512\) 27.9839i 1.23672i
\(513\) 0 0
\(514\) −30.1381 17.4002i −1.32933 0.767492i
\(515\) 0 0
\(516\) 0 0
\(517\) 15.7190i 0.691322i
\(518\) −9.18648 13.1271i −0.403631 0.576771i
\(519\) 0 0
\(520\) 0 0
\(521\) −11.4068 + 19.7571i −0.499739 + 0.865573i −1.00000 0.000301478i \(-0.999904\pi\)
0.500261 + 0.865875i \(0.333237\pi\)
\(522\) 0 0
\(523\) 2.71011 1.56468i 0.118505 0.0684188i −0.439576 0.898205i \(-0.644871\pi\)
0.558081 + 0.829787i \(0.311538\pi\)
\(524\) 18.6014 0.812604
\(525\) 0 0
\(526\) 37.4224 1.63169
\(527\) 0.902322 0.520956i 0.0393058 0.0226932i
\(528\) 0 0
\(529\) 0.349692 0.605685i 0.0152040 0.0263341i
\(530\) 0 0
\(531\) 0 0
\(532\) 14.6198 31.3306i 0.633849 1.35835i
\(533\) 6.81890i 0.295359i
\(534\) 0 0
\(535\) 0 0
\(536\) −6.26520 3.61722i −0.270616 0.156240i
\(537\) 0 0
\(538\) 8.83112i 0.380737i
\(539\) 3.91121 + 22.2507i 0.168468 + 0.958405i
\(540\) 0 0
\(541\) 11.2308 + 19.4524i 0.482852 + 0.836323i 0.999806 0.0196894i \(-0.00626775\pi\)
−0.516955 + 0.856013i \(0.672934\pi\)
\(542\) 10.3127 17.8622i 0.442969 0.767245i
\(543\) 0 0
\(544\) 4.69271 2.70934i 0.201198 0.116162i
\(545\) 0 0
\(546\) 0 0
\(547\) 10.4567 0.447097 0.223549 0.974693i \(-0.428236\pi\)
0.223549 + 0.974693i \(0.428236\pi\)
\(548\) −10.1213 + 5.84355i −0.432362 + 0.249624i
\(549\) 0 0
\(550\) 0 0
\(551\) −30.5397 52.8963i −1.30104 2.25346i
\(552\) 0 0
\(553\) 0.915056 + 10.4912i 0.0389122 + 0.446133i
\(554\) 39.2324i 1.66683i
\(555\) 0 0
\(556\) −9.28620 5.36139i −0.393823 0.227374i
\(557\) −27.0614 15.6239i −1.14663 0.662006i −0.198564 0.980088i \(-0.563628\pi\)
−0.948063 + 0.318082i \(0.896961\pi\)
\(558\) 0 0
\(559\) 31.2344i 1.32107i
\(560\) 0 0
\(561\) 0 0
\(562\) 0.683630 + 1.18408i 0.0288372 + 0.0499475i
\(563\) −14.9354 + 25.8689i −0.629452 + 1.09024i 0.358210 + 0.933641i \(0.383387\pi\)
−0.987662 + 0.156601i \(0.949946\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 53.6100 2.25340
\(567\) 0 0
\(568\) 6.59019 0.276518
\(569\) 25.0218 14.4464i 1.04897 0.605623i 0.126608 0.991953i \(-0.459591\pi\)
0.922361 + 0.386330i \(0.126257\pi\)
\(570\) 0 0
\(571\) 3.68844 6.38856i 0.154356 0.267353i −0.778468 0.627684i \(-0.784003\pi\)
0.932824 + 0.360331i \(0.117336\pi\)
\(572\) 13.0236 + 22.5575i 0.544543 + 0.943177i
\(573\) 0 0
\(574\) −7.07292 + 0.616907i −0.295218 + 0.0257492i
\(575\) 0 0
\(576\) 0 0
\(577\) −15.6540 9.03785i −0.651686 0.376251i 0.137416 0.990513i \(-0.456120\pi\)
−0.789102 + 0.614263i \(0.789454\pi\)
\(578\) −27.2853 15.7532i −1.13492 0.655246i
\(579\) 0 0
\(580\) 0 0
\(581\) 10.0508 + 4.69002i 0.416978 + 0.194575i
\(582\) 0 0
\(583\) −2.45519 4.25252i −0.101684 0.176121i
\(584\) −4.49438 + 7.78450i −0.185979 + 0.322125i
\(585\) 0 0
\(586\) −16.2232 + 9.36648i −0.670175 + 0.386926i
\(587\) −35.0876 −1.44822 −0.724111 0.689684i \(-0.757750\pi\)
−0.724111 + 0.689684i \(0.757750\pi\)
\(588\) 0 0
\(589\) −11.2480 −0.463466
\(590\) 0 0
\(591\) 0 0
\(592\) −7.22377 + 12.5119i −0.296895 + 0.514238i
\(593\) −3.52896 6.11233i −0.144917 0.251003i 0.784425 0.620224i \(-0.212958\pi\)
−0.929342 + 0.369220i \(0.879625\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 39.0984i 1.60153i
\(597\) 0 0
\(598\) 39.2115 + 22.6388i 1.60348 + 0.925769i
\(599\) 4.23198 + 2.44333i 0.172914 + 0.0998318i 0.583959 0.811783i \(-0.301503\pi\)
−0.411045 + 0.911615i \(0.634836\pi\)
\(600\) 0 0
\(601\) 36.1905i 1.47624i −0.674669 0.738121i \(-0.735714\pi\)
0.674669 0.738121i \(-0.264286\pi\)
\(602\) −32.3979 + 2.82578i −1.32044 + 0.115170i
\(603\) 0 0
\(604\) 15.0315 + 26.0352i 0.611621 + 1.05936i
\(605\) 0 0
\(606\) 0 0
\(607\) −14.6579 + 8.46272i −0.594944 + 0.343491i −0.767050 0.641587i \(-0.778276\pi\)
0.172106 + 0.985078i \(0.444943\pi\)
\(608\) −58.4976 −2.37239
\(609\) 0 0
\(610\) 0 0
\(611\) −20.5055 + 11.8389i −0.829563 + 0.478949i
\(612\) 0 0
\(613\) 9.30275 16.1128i 0.375735 0.650792i −0.614702 0.788759i \(-0.710724\pi\)
0.990437 + 0.137968i \(0.0440571\pi\)
\(614\) 24.3714 + 42.2125i 0.983549 + 1.70356i
\(615\) 0 0
\(616\) 4.54901 3.18345i 0.183285 0.128265i
\(617\) 44.6022i 1.79562i −0.440384 0.897809i \(-0.645158\pi\)
0.440384 0.897809i \(-0.354842\pi\)
\(618\) 0 0
\(619\) 9.80175 + 5.65904i 0.393966 + 0.227456i 0.683877 0.729597i \(-0.260293\pi\)
−0.289911 + 0.957053i \(0.593626\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 19.3389i 0.775420i
\(623\) 2.59168 + 29.7139i 0.103833 + 1.19046i
\(624\) 0 0
\(625\) 0 0
\(626\) −22.4556 + 38.8942i −0.897506 + 1.55453i
\(627\) 0 0
\(628\) −3.57205 + 2.06233i −0.142540 + 0.0822957i
\(629\) −2.30801 −0.0920265
\(630\) 0 0
\(631\) −6.29394 −0.250558 −0.125279 0.992122i \(-0.539983\pi\)
−0.125279 + 0.992122i \(0.539983\pi\)
\(632\) 2.24142 1.29409i 0.0891589 0.0514759i
\(633\) 0 0
\(634\) −30.0662 + 52.0763i −1.19408 + 2.06821i
\(635\) 0 0
\(636\) 0 0
\(637\) −26.0803 + 21.8604i −1.03334 + 0.866139i
\(638\) 47.9114i 1.89683i
\(639\) 0 0
\(640\) 0 0
\(641\) −0.511044 0.295051i −0.0201850 0.0116538i 0.489874 0.871794i \(-0.337043\pi\)
−0.510059 + 0.860140i \(0.670376\pi\)
\(642\) 0 0
\(643\) 28.7107i 1.13224i 0.824323 + 0.566119i \(0.191556\pi\)
−0.824323 + 0.566119i \(0.808444\pi\)
\(644\) −9.04177 + 19.3767i −0.356296 + 0.763549i
\(645\) 0 0
\(646\) −5.49018 9.50928i −0.216008 0.374138i
\(647\) −5.96420 + 10.3303i −0.234477 + 0.406126i −0.959121 0.282998i \(-0.908671\pi\)
0.724644 + 0.689124i \(0.242004\pi\)
\(648\) 0 0
\(649\) 17.6131 10.1689i 0.691375 0.399166i
\(650\) 0 0
\(651\) 0 0
\(652\) 6.53708 0.256012
\(653\) 13.8503 7.99647i 0.542004 0.312926i −0.203887 0.978994i \(-0.565357\pi\)
0.745891 + 0.666068i \(0.232024\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.20100 + 5.54430i 0.124978 + 0.216468i
\(657\) 0 0
\(658\) −14.1350 20.1983i −0.551040 0.787412i
\(659\) 27.6958i 1.07887i 0.842026 + 0.539437i \(0.181363\pi\)
−0.842026 + 0.539437i \(0.818637\pi\)
\(660\) 0 0
\(661\) −36.1490 20.8706i −1.40603 0.811773i −0.411030 0.911622i \(-0.634831\pi\)
−0.995003 + 0.0998487i \(0.968164\pi\)
\(662\) −1.95246 1.12725i −0.0758844 0.0438119i
\(663\) 0 0
\(664\) 2.72583i 0.105783i
\(665\) 0 0
\(666\) 0 0
\(667\) 18.8876 + 32.7143i 0.731330 + 1.26670i
\(668\) −4.41453 + 7.64620i −0.170803 + 0.295840i
\(669\) 0 0
\(670\) 0 0
\(671\) −7.65618 −0.295564
\(672\) 0 0
\(673\) −7.91950 −0.305274 −0.152637 0.988282i \(-0.548777\pi\)
−0.152637 + 0.988282i \(0.548777\pi\)
\(674\) −6.50916 + 3.75807i −0.250724 + 0.144755i
\(675\) 0 0
\(676\) −8.82673 + 15.2883i −0.339489 + 0.588013i
\(677\) 5.33360 + 9.23807i 0.204987 + 0.355048i 0.950129 0.311858i \(-0.100951\pi\)
−0.745142 + 0.666906i \(0.767618\pi\)
\(678\) 0 0
\(679\) −2.47684 + 5.30792i −0.0950524 + 0.203699i
\(680\) 0 0
\(681\) 0 0
\(682\) 7.64100 + 4.41154i 0.292589 + 0.168926i
\(683\) 1.91327 + 1.10463i 0.0732093 + 0.0422674i 0.536158 0.844118i \(-0.319875\pi\)
−0.462948 + 0.886385i \(0.653209\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −25.0342 25.0741i −0.955810 0.957334i
\(687\) 0 0
\(688\) 14.6624 + 25.3960i 0.558997 + 0.968212i
\(689\) 3.69828 6.40560i 0.140893 0.244034i
\(690\) 0 0
\(691\) −8.02498 + 4.63322i −0.305284 + 0.176256i −0.644814 0.764339i \(-0.723065\pi\)
0.339530 + 0.940595i \(0.389732\pi\)
\(692\) 12.3762 0.470474
\(693\) 0 0
\(694\) −9.24172 −0.350811
\(695\) 0 0
\(696\) 0 0
\(697\) −0.511363 + 0.885707i −0.0193693 + 0.0335486i
\(698\) 15.3492 + 26.5857i 0.580977 + 1.00628i
\(699\) 0 0
\(700\) 0 0
\(701\) 6.99882i 0.264342i 0.991227 + 0.132171i \(0.0421948\pi\)
−0.991227 + 0.132171i \(0.957805\pi\)
\(702\) 0 0
\(703\) 21.5781 + 12.4581i 0.813834 + 0.469867i
\(704\) 14.2244 + 8.21247i 0.536103 + 0.309519i
\(705\) 0 0
\(706\) 11.2511i 0.423441i
\(707\) 25.3663 17.7517i 0.953999 0.667620i
\(708\) 0 0
\(709\) −15.5805 26.9863i −0.585139 1.01349i −0.994858 0.101279i \(-0.967707\pi\)
0.409719 0.912212i \(-0.365627\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.34829 3.66519i 0.237912 0.137359i
\(713\) 6.95644 0.260521
\(714\) 0 0
\(715\) 0 0
\(716\) 19.1316 11.0456i 0.714980 0.412794i
\(717\) 0 0
\(718\) −7.73514 + 13.3976i −0.288673 + 0.499996i
\(719\) −4.53080 7.84758i −0.168970 0.292665i 0.769088 0.639143i \(-0.220711\pi\)
−0.938058 + 0.346478i \(0.887378\pi\)
\(720\) 0 0
\(721\) 1.54260 0.134547i 0.0574493 0.00501079i
\(722\) 82.1894i 3.05877i
\(723\) 0 0
\(724\) 14.3169 + 8.26587i 0.532084 + 0.307199i
\(725\) 0 0
\(726\) 0 0
\(727\) 17.0567i 0.632599i −0.948659 0.316300i \(-0.897559\pi\)
0.948659 0.316300i \(-0.102441\pi\)
\(728\) 7.57892 + 3.53656i 0.280893 + 0.131074i
\(729\) 0 0
\(730\) 0 0
\(731\) −2.34233 + 4.05703i −0.0866342 + 0.150055i
\(732\) 0 0
\(733\) 13.8270 7.98301i 0.510711 0.294859i −0.222415 0.974952i \(-0.571394\pi\)
0.733126 + 0.680093i \(0.238061\pi\)
\(734\) 35.5265 1.31131
\(735\) 0 0
\(736\) 36.1784 1.33355
\(737\) 31.0970 17.9539i 1.14547 0.661340i
\(738\) 0 0
\(739\) −6.92575 + 11.9958i −0.254768 + 0.441271i −0.964832 0.262866i \(-0.915332\pi\)
0.710064 + 0.704137i \(0.248666\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.97881 + 3.25653i 0.256200 + 0.119551i
\(743\) 27.6801i 1.01548i −0.861510 0.507741i \(-0.830481\pi\)
0.861510 0.507741i \(-0.169519\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 4.37976 + 2.52866i 0.160355 + 0.0925807i
\(747\) 0 0
\(748\) 3.90666i 0.142842i
\(749\) −4.46006 + 0.389011i −0.162967 + 0.0142142i
\(750\) 0 0
\(751\) −16.6666 28.8674i −0.608173 1.05339i −0.991541 0.129791i \(-0.958569\pi\)
0.383368 0.923596i \(-0.374764\pi\)
\(752\) −11.1150 + 19.2518i −0.405324 + 0.702041i
\(753\) 0 0
\(754\) −62.5005 + 36.0847i −2.27613 + 1.31413i
\(755\) 0 0
\(756\) 0 0
\(757\) 10.1442 0.368697 0.184348 0.982861i \(-0.440983\pi\)
0.184348 + 0.982861i \(0.440983\pi\)
\(758\) −39.5290 + 22.8221i −1.43576 + 0.828935i
\(759\) 0 0
\(760\) 0 0
\(761\) −7.35057 12.7316i −0.266458 0.461519i 0.701487 0.712683i \(-0.252520\pi\)
−0.967945 + 0.251164i \(0.919187\pi\)
\(762\) 0 0
\(763\) −29.0529 + 20.3316i −1.05179 + 0.736052i
\(764\) 40.8577i 1.47818i
\(765\) 0 0
\(766\) 18.4157 + 10.6323i 0.665388 + 0.384162i
\(767\) 26.5308 + 15.3176i 0.957971 + 0.553085i
\(768\) 0 0
\(769\) 22.4992i 0.811340i 0.914020 + 0.405670i \(0.132962\pi\)
−0.914020 + 0.405670i \(0.867038\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.3876 17.9919i −0.373859 0.647542i
\(773\) −10.6266 + 18.4057i −0.382211 + 0.662008i −0.991378 0.131034i \(-0.958170\pi\)
0.609167 + 0.793042i \(0.291504\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.43954 0.0516764
\(777\) 0 0
\(778\) 24.0698 0.862945
\(779\) 9.56170 5.52045i 0.342583 0.197791i
\(780\) 0 0
\(781\) −16.3550 + 28.3278i −0.585229 + 1.01365i
\(782\) 3.39546 + 5.88111i 0.121421 + 0.210308i
\(783\) 0 0
\(784\) −10.9434 + 30.0171i −0.390835 + 1.07204i
\(785\) 0 0
\(786\) 0 0
\(787\) 13.6131 + 7.85952i 0.485254 + 0.280162i 0.722603 0.691263i \(-0.242945\pi\)
−0.237349 + 0.971424i \(0.576279\pi\)
\(788\) 22.5675 + 13.0293i 0.803933 + 0.464151i
\(789\) 0 0
\(790\) 0 0
\(791\) −15.9011 + 34.0765i −0.565379 + 1.21162i
\(792\) 0 0
\(793\) −5.76628 9.98750i −0.204767 0.354666i
\(794\) −27.3875 + 47.4366i −0.971946 + 1.68346i
\(795\) 0 0
\(796\) −28.4605 + 16.4317i −1.00876 + 0.582406i
\(797\) −39.5812 −1.40204 −0.701019 0.713143i \(-0.747271\pi\)
−0.701019 + 0.713143i \(0.747271\pi\)
\(798\) 0 0
\(799\) −3.55128 −0.125635
\(800\) 0 0
\(801\) 0 0
\(802\) 11.3763 19.7043i 0.401711 0.695784i
\(803\) −22.3076 38.6380i −0.787220 1.36350i
\(804\) 0 0
\(805\) 0 0
\(806\) 13.2903i 0.468130i
\(807\) 0 0
\(808\) −6.58967 3.80455i −0.231824 0.133843i
\(809\) 38.1053 + 22.0001i 1.33971 + 0.773483i 0.986764 0.162160i \(-0.0518462\pi\)
0.352947 + 0.935643i \(0.385180\pi\)
\(810\) 0 0
\(811\) 44.9306i 1.57773i −0.614567 0.788864i \(-0.710669\pi\)
0.614567 0.788864i \(-0.289331\pi\)
\(812\) −19.5413 27.9237i −0.685766 0.979929i
\(813\) 0 0
\(814\) −9.77230 16.9261i −0.342519 0.593260i
\(815\) 0 0
\(816\) 0 0
\(817\) 43.7979 25.2867i 1.53229 0.884671i
\(818\) −27.5819 −0.964378
\(819\) 0 0
\(820\) 0 0
\(821\) −13.1026 + 7.56481i −0.457285 + 0.264014i −0.710902 0.703291i \(-0.751713\pi\)
0.253617 + 0.967305i \(0.418380\pi\)
\(822\) 0 0
\(823\) −15.7898 + 27.3487i −0.550397 + 0.953316i 0.447848 + 0.894109i \(0.352190\pi\)
−0.998246 + 0.0592066i \(0.981143\pi\)
\(824\) −0.190278 0.329571i −0.00662865 0.0114812i
\(825\) 0 0
\(826\) −13.4879 + 28.9049i −0.469305 + 1.00573i
\(827\) 48.6368i 1.69127i 0.533765 + 0.845633i \(0.320777\pi\)
−0.533765 + 0.845633i \(0.679223\pi\)
\(828\) 0 0
\(829\) −40.4900 23.3769i −1.40628 0.811914i −0.411249 0.911523i \(-0.634907\pi\)
−0.995027 + 0.0996095i \(0.968241\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 24.7410i 0.857741i
\(833\) −5.02692 + 0.883629i −0.174173 + 0.0306159i
\(834\) 0 0
\(835\) 0 0
\(836\) 21.0873 36.5242i 0.729319 1.26322i
\(837\) 0 0
\(838\) 57.8898 33.4227i 1.99977 1.15457i
\(839\) −29.1067 −1.00488 −0.502438 0.864613i \(-0.667563\pi\)
−0.502438 + 0.864613i \(0.667563\pi\)
\(840\) 0 0
\(841\) −31.2110 −1.07624
\(842\) −39.5179 + 22.8157i −1.36188 + 0.786281i
\(843\) 0 0
\(844\) 9.61532 16.6542i 0.330973 0.573262i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.134227 1.53893i −0.00461209 0.0528782i
\(848\) 6.94434i 0.238469i
\(849\) 0 0
\(850\) 0 0
\(851\) −13.3452 7.70485i −0.457467 0.264119i
\(852\) 0 0
\(853\) 28.4915i 0.975531i −0.872975 0.487766i \(-0.837812\pi\)
0.872975 0.487766i \(-0.162188\pi\)
\(854\) 9.83787 6.88466i 0.336645 0.235588i
\(855\) 0 0
\(856\) 0.550145 + 0.952879i 0.0188036 + 0.0325687i
\(857\) 20.2776 35.1219i 0.692670 1.19974i −0.278290 0.960497i \(-0.589768\pi\)
0.970960 0.239243i \(-0.0768991\pi\)
\(858\) 0 0
\(859\) −32.6686 + 18.8612i −1.11464 + 0.643537i −0.940027 0.341100i \(-0.889200\pi\)
−0.174612 + 0.984637i \(0.555867\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −15.6085 −0.531627
\(863\) −22.2387 + 12.8395i −0.757014 + 0.437062i −0.828223 0.560399i \(-0.810648\pi\)
0.0712087 + 0.997461i \(0.477314\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 24.1695 + 41.8627i 0.821311 + 1.42255i
\(867\) 0 0
\(868\) −6.25262 + 0.545360i −0.212228 + 0.0185107i
\(869\) 12.8463i 0.435779i
\(870\) 0 0
\(871\) 46.8417 + 27.0441i 1.58717 + 0.916353i
\(872\) 7.54736 + 4.35747i 0.255586 + 0.147563i
\(873\) 0 0
\(874\) 73.3117i 2.47981i
\(875\) 0 0
\(876\) 0 0
\(877\) −9.52270 16.4938i −0.321559 0.556956i 0.659251 0.751923i \(-0.270873\pi\)
−0.980810 + 0.194967i \(0.937540\pi\)
\(878\) −0.760202 + 1.31671i −0.0256556 + 0.0444367i
\(879\) 0 0
\(880\) 0 0
\(881\) 30.7115 1.03470 0.517349 0.855774i \(-0.326919\pi\)
0.517349 + 0.855774i \(0.326919\pi\)
\(882\) 0 0
\(883\) 36.8466 1.23999 0.619993 0.784607i \(-0.287135\pi\)
0.619993 + 0.784607i \(0.287135\pi\)
\(884\) −5.09624 + 2.94232i −0.171405 + 0.0989608i
\(885\) 0 0
\(886\) 21.6653 37.5254i 0.727859 1.26069i
\(887\) −16.9386 29.3385i −0.568742 0.985090i −0.996691 0.0812870i \(-0.974097\pi\)
0.427949 0.903803i \(-0.359236\pi\)
\(888\) 0 0
\(889\) 5.00982 + 2.33774i 0.168024 + 0.0784051i
\(890\) 0 0
\(891\) 0 0
\(892\) 34.6949 + 20.0311i 1.16167 + 0.670691i
\(893\) 33.2017 + 19.1690i 1.11105 + 0.641466i
\(894\) 0 0
\(895\) 0 0
\(896\) 13.5128 1.17860i 0.451432 0.0393743i
\(897\) 0 0
\(898\) −2.06298 3.57319i −0.0688427 0.119239i
\(899\) −5.54404 + 9.60257i −0.184904 + 0.320264i
\(900\) 0 0
\(901\) 0.960739 0.554683i 0.0320068 0.0184792i
\(902\) −8.66061 −0.288367
\(903\) 0 0
\(904\) 9.24172 0.307375
\(905\) 0 0
\(906\) 0 0
\(907\) 0.533407 0.923888i 0.0177115 0.0306772i −0.857034 0.515260i \(-0.827695\pi\)
0.874745 + 0.484583i \(0.161029\pi\)
\(908\) 8.45734 + 14.6485i 0.280667 + 0.486129i
\(909\) 0 0
\(910\) 0 0
\(911\) 9.61157i 0.318445i −0.987243 0.159223i \(-0.949101\pi\)
0.987243 0.159223i \(-0.0508988\pi\)
\(912\) 0 0
\(913\) 11.7169 + 6.76477i 0.387774 + 0.223881i
\(914\) −9.06839 5.23564i −0.299956 0.173179i
\(915\) 0 0
\(916\) 43.5862i 1.44013i
\(917\) 2.57590 + 29.5330i 0.0850637 + 0.975266i
\(918\) 0 0
\(919\) −3.41594 5.91658i −0.112681 0.195170i 0.804169 0.594401i \(-0.202611\pi\)
−0.916851 + 0.399231i \(0.869277\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −16.7480 + 9.66946i −0.551566 + 0.318447i
\(923\) −49.2714 −1.62179
\(924\) 0 0
\(925\) 0 0
\(926\) 19.9573 11.5224i 0.655838 0.378648i
\(927\) 0 0
\(928\) −28.8330 + 49.9401i −0.946488 + 1.63937i
\(929\) −26.9383 46.6585i −0.883818 1.53082i −0.847063 0.531493i \(-0.821631\pi\)
−0.0367547 0.999324i \(-0.511702\pi\)
\(930\) 0 0
\(931\) 51.7674 + 18.8730i 1.69661 + 0.618536i
\(932\) 30.5352i 1.00021i
\(933\) 0 0
\(934\) 33.0252 + 19.0671i 1.08062 + 0.623894i
\(935\) 0 0
\(936\) 0 0
\(937\) 21.6036i 0.705759i −0.935669 0.352880i \(-0.885203\pi\)
0.935669 0.352880i \(-0.114797\pi\)
\(938\) −23.8137 + 51.0333i −0.777546 + 1.66630i
\(939\) 0 0
\(940\) 0 0
\(941\) 29.1006 50.4038i 0.948654 1.64312i 0.200389 0.979716i \(-0.435779\pi\)
0.748265 0.663400i \(-0.230887\pi\)
\(942\) 0 0
\(943\) −5.91353 + 3.41418i −0.192571 + 0.111181i
\(944\) 28.7621 0.936127
\(945\) 0 0
\(946\) −39.6704 −1.28980
\(947\) 17.7271 10.2347i 0.576053 0.332584i −0.183510 0.983018i \(-0.558746\pi\)
0.759563 + 0.650434i \(0.225413\pi\)
\(948\) 0 0
\(949\) 33.6022 58.2007i 1.09077 1.88927i
\(950\) 0 0
\(951\) 0 0
\(952\) 0.719212 + 1.02772i 0.0233098 + 0.0333087i
\(953\) 10.4745i 0.339303i 0.985504 + 0.169651i \(0.0542642\pi\)
−0.985504 + 0.169651i \(0.945736\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.38209 0.797952i −0.0447001 0.0258076i
\(957\) 0 0
\(958\) 37.0879i 1.19825i
\(959\) −10.6793 15.2602i −0.344852 0.492778i
\(960\) 0 0
\(961\) −14.4790 25.0784i −0.467066 0.808982i
\(962\) 14.7201 25.4960i 0.474595 0.822023i
\(963\) 0 0
\(964\) −9.36026 + 5.40415i −0.301474 + 0.174056i
\(965\) 0 0
\(966\) 0 0
\(967\) −43.1242 −1.38678 −0.693391 0.720562i \(-0.743884\pi\)
−0.693391 + 0.720562i \(0.743884\pi\)
\(968\) −0.328787 + 0.189825i −0.0105676 + 0.00610122i
\(969\) 0 0
\(970\) 0 0
\(971\) 4.17572 + 7.23256i 0.134005 + 0.232104i 0.925217 0.379438i \(-0.123883\pi\)
−0.791212 + 0.611542i \(0.790549\pi\)
\(972\) 0 0
\(973\) 7.22623 15.4860i 0.231662 0.496457i
\(974\) 3.53581i 0.113295i
\(975\) 0 0
\(976\) −9.37687 5.41374i −0.300146 0.173290i
\(977\) 23.2171 + 13.4044i 0.742781 + 0.428845i 0.823080 0.567926i \(-0.192254\pi\)
−0.0802983 + 0.996771i \(0.525587\pi\)
\(978\) 0 0
\(979\) 36.3840i 1.16284i
\(980\) 0 0
\(981\) 0 0
\(982\) −24.3769 42.2221i −0.777899 1.34736i
\(983\) 14.7287 25.5109i 0.469773 0.813671i −0.529630 0.848229i \(-0.677669\pi\)
0.999403 + 0.0345581i \(0.0110024\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −10.8243 −0.344714
\(987\) 0 0
\(988\) 63.5279 2.02109
\(989\) −27.0873 + 15.6388i −0.861325 + 0.497286i
\(990\) 0 0
\(991\) 2.50334 4.33591i 0.0795211 0.137735i −0.823522 0.567284i \(-0.807994\pi\)
0.903043 + 0.429549i \(0.141328\pi\)
\(992\) 5.30970 + 9.19667i 0.168583 + 0.291995i
\(993\) 0 0
\(994\) −4.45760 51.1069i −0.141386 1.62101i
\(995\) 0 0
\(996\) 0 0
\(997\) −7.68960 4.43960i −0.243532 0.140603i 0.373267 0.927724i \(-0.378238\pi\)
−0.616799 + 0.787121i \(0.711571\pi\)
\(998\) 43.4560 + 25.0893i 1.37558 + 0.794189i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.2.bk.i.1151.3 24
3.2 odd 2 inner 1575.2.bk.i.1151.10 24
5.2 odd 4 315.2.bb.b.269.3 yes 24
5.3 odd 4 315.2.bb.b.269.9 yes 24
5.4 even 2 inner 1575.2.bk.i.1151.9 24
7.5 odd 6 inner 1575.2.bk.i.26.10 24
15.2 even 4 315.2.bb.b.269.10 yes 24
15.8 even 4 315.2.bb.b.269.4 yes 24
15.14 odd 2 inner 1575.2.bk.i.1151.4 24
21.5 even 6 inner 1575.2.bk.i.26.3 24
35.3 even 12 2205.2.g.b.2204.5 24
35.12 even 12 315.2.bb.b.89.4 yes 24
35.17 even 12 2205.2.g.b.2204.17 24
35.18 odd 12 2205.2.g.b.2204.6 24
35.19 odd 6 inner 1575.2.bk.i.26.4 24
35.32 odd 12 2205.2.g.b.2204.18 24
35.33 even 12 315.2.bb.b.89.10 yes 24
105.17 odd 12 2205.2.g.b.2204.7 24
105.32 even 12 2205.2.g.b.2204.8 24
105.38 odd 12 2205.2.g.b.2204.19 24
105.47 odd 12 315.2.bb.b.89.9 yes 24
105.53 even 12 2205.2.g.b.2204.20 24
105.68 odd 12 315.2.bb.b.89.3 24
105.89 even 6 inner 1575.2.bk.i.26.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.bb.b.89.3 24 105.68 odd 12
315.2.bb.b.89.4 yes 24 35.12 even 12
315.2.bb.b.89.9 yes 24 105.47 odd 12
315.2.bb.b.89.10 yes 24 35.33 even 12
315.2.bb.b.269.3 yes 24 5.2 odd 4
315.2.bb.b.269.4 yes 24 15.8 even 4
315.2.bb.b.269.9 yes 24 5.3 odd 4
315.2.bb.b.269.10 yes 24 15.2 even 4
1575.2.bk.i.26.3 24 21.5 even 6 inner
1575.2.bk.i.26.4 24 35.19 odd 6 inner
1575.2.bk.i.26.9 24 105.89 even 6 inner
1575.2.bk.i.26.10 24 7.5 odd 6 inner
1575.2.bk.i.1151.3 24 1.1 even 1 trivial
1575.2.bk.i.1151.4 24 15.14 odd 2 inner
1575.2.bk.i.1151.9 24 5.4 even 2 inner
1575.2.bk.i.1151.10 24 3.2 odd 2 inner
2205.2.g.b.2204.5 24 35.3 even 12
2205.2.g.b.2204.6 24 35.18 odd 12
2205.2.g.b.2204.7 24 105.17 odd 12
2205.2.g.b.2204.8 24 105.32 even 12
2205.2.g.b.2204.17 24 35.17 even 12
2205.2.g.b.2204.18 24 35.32 odd 12
2205.2.g.b.2204.19 24 105.38 odd 12
2205.2.g.b.2204.20 24 105.53 even 12