Properties

Label 1575.4.a.bg.1.2
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 32x^{2} - 35x + 120 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.53510\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.53510 q^{2} +12.5671 q^{4} +7.00000 q^{7} -20.7124 q^{8} +54.0684 q^{11} +75.2159 q^{13} -31.7457 q^{14} -6.60441 q^{16} +71.2538 q^{17} -65.5100 q^{19} -245.206 q^{22} -125.688 q^{23} -341.111 q^{26} +87.9699 q^{28} -190.405 q^{29} -193.105 q^{31} +195.650 q^{32} -323.143 q^{34} +114.673 q^{37} +297.094 q^{38} -216.896 q^{41} -413.032 q^{43} +679.484 q^{44} +570.007 q^{46} +113.555 q^{47} +49.0000 q^{49} +945.247 q^{52} -584.366 q^{53} -144.986 q^{56} +863.504 q^{58} -203.748 q^{59} -162.539 q^{61} +875.749 q^{62} -834.459 q^{64} +477.534 q^{67} +895.456 q^{68} -822.294 q^{71} -798.993 q^{73} -520.052 q^{74} -823.273 q^{76} +378.479 q^{77} -468.087 q^{79} +983.643 q^{82} +310.333 q^{83} +1873.14 q^{86} -1119.88 q^{88} -1314.90 q^{89} +526.511 q^{91} -1579.53 q^{92} -514.985 q^{94} -1314.66 q^{97} -222.220 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 36 q^{4} + 28 q^{7} - 27 q^{8} - 100 q^{11} + 44 q^{13} - 28 q^{14} + 160 q^{16} + 53 q^{17} - 29 q^{19} - 152 q^{22} - 295 q^{23} - 700 q^{26} + 252 q^{28} - 129 q^{29} + 114 q^{31} + 310 q^{32}+ \cdots - 196 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.53510 −1.60340 −0.801700 0.597727i \(-0.796071\pi\)
−0.801700 + 0.597727i \(0.796071\pi\)
\(3\) 0 0
\(4\) 12.5671 1.57089
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −20.7124 −0.915365
\(9\) 0 0
\(10\) 0 0
\(11\) 54.0684 1.48202 0.741011 0.671493i \(-0.234347\pi\)
0.741011 + 0.671493i \(0.234347\pi\)
\(12\) 0 0
\(13\) 75.2159 1.60470 0.802351 0.596853i \(-0.203582\pi\)
0.802351 + 0.596853i \(0.203582\pi\)
\(14\) −31.7457 −0.606028
\(15\) 0 0
\(16\) −6.60441 −0.103194
\(17\) 71.2538 1.01656 0.508282 0.861191i \(-0.330281\pi\)
0.508282 + 0.861191i \(0.330281\pi\)
\(18\) 0 0
\(19\) −65.5100 −0.791002 −0.395501 0.918466i \(-0.629429\pi\)
−0.395501 + 0.918466i \(0.629429\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −245.206 −2.37627
\(23\) −125.688 −1.13947 −0.569733 0.821830i \(-0.692953\pi\)
−0.569733 + 0.821830i \(0.692953\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −341.111 −2.57298
\(27\) 0 0
\(28\) 87.9699 0.593741
\(29\) −190.405 −1.21922 −0.609608 0.792703i \(-0.708673\pi\)
−0.609608 + 0.792703i \(0.708673\pi\)
\(30\) 0 0
\(31\) −193.105 −1.11879 −0.559397 0.828900i \(-0.688967\pi\)
−0.559397 + 0.828900i \(0.688967\pi\)
\(32\) 195.650 1.08083
\(33\) 0 0
\(34\) −323.143 −1.62996
\(35\) 0 0
\(36\) 0 0
\(37\) 114.673 0.509516 0.254758 0.967005i \(-0.418004\pi\)
0.254758 + 0.967005i \(0.418004\pi\)
\(38\) 297.094 1.26829
\(39\) 0 0
\(40\) 0 0
\(41\) −216.896 −0.826180 −0.413090 0.910690i \(-0.635551\pi\)
−0.413090 + 0.910690i \(0.635551\pi\)
\(42\) 0 0
\(43\) −413.032 −1.46481 −0.732405 0.680870i \(-0.761602\pi\)
−0.732405 + 0.680870i \(0.761602\pi\)
\(44\) 679.484 2.32809
\(45\) 0 0
\(46\) 570.007 1.82702
\(47\) 113.555 0.352421 0.176210 0.984353i \(-0.443616\pi\)
0.176210 + 0.984353i \(0.443616\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 945.247 2.52081
\(53\) −584.366 −1.51451 −0.757253 0.653122i \(-0.773459\pi\)
−0.757253 + 0.653122i \(0.773459\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −144.986 −0.345976
\(57\) 0 0
\(58\) 863.504 1.95489
\(59\) −203.748 −0.449589 −0.224795 0.974406i \(-0.572171\pi\)
−0.224795 + 0.974406i \(0.572171\pi\)
\(60\) 0 0
\(61\) −162.539 −0.341163 −0.170581 0.985344i \(-0.554565\pi\)
−0.170581 + 0.985344i \(0.554565\pi\)
\(62\) 875.749 1.79387
\(63\) 0 0
\(64\) −834.459 −1.62980
\(65\) 0 0
\(66\) 0 0
\(67\) 477.534 0.870747 0.435374 0.900250i \(-0.356616\pi\)
0.435374 + 0.900250i \(0.356616\pi\)
\(68\) 895.456 1.59691
\(69\) 0 0
\(70\) 0 0
\(71\) −822.294 −1.37448 −0.687242 0.726429i \(-0.741179\pi\)
−0.687242 + 0.726429i \(0.741179\pi\)
\(72\) 0 0
\(73\) −798.993 −1.28103 −0.640514 0.767947i \(-0.721279\pi\)
−0.640514 + 0.767947i \(0.721279\pi\)
\(74\) −520.052 −0.816957
\(75\) 0 0
\(76\) −823.273 −1.24258
\(77\) 378.479 0.560152
\(78\) 0 0
\(79\) −468.087 −0.666632 −0.333316 0.942815i \(-0.608168\pi\)
−0.333316 + 0.942815i \(0.608168\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 983.643 1.32470
\(83\) 310.333 0.410403 0.205202 0.978720i \(-0.434215\pi\)
0.205202 + 0.978720i \(0.434215\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1873.14 2.34867
\(87\) 0 0
\(88\) −1119.88 −1.35659
\(89\) −1314.90 −1.56606 −0.783029 0.621985i \(-0.786326\pi\)
−0.783029 + 0.621985i \(0.786326\pi\)
\(90\) 0 0
\(91\) 526.511 0.606520
\(92\) −1579.53 −1.78998
\(93\) 0 0
\(94\) −514.985 −0.565071
\(95\) 0 0
\(96\) 0 0
\(97\) −1314.66 −1.37612 −0.688058 0.725656i \(-0.741537\pi\)
−0.688058 + 0.725656i \(0.741537\pi\)
\(98\) −222.220 −0.229057
\(99\) 0 0
\(100\) 0 0
\(101\) 401.240 0.395296 0.197648 0.980273i \(-0.436670\pi\)
0.197648 + 0.980273i \(0.436670\pi\)
\(102\) 0 0
\(103\) 291.844 0.279187 0.139594 0.990209i \(-0.455420\pi\)
0.139594 + 0.990209i \(0.455420\pi\)
\(104\) −1557.90 −1.46889
\(105\) 0 0
\(106\) 2650.16 2.42836
\(107\) 21.9594 0.0198402 0.00992009 0.999951i \(-0.496842\pi\)
0.00992009 + 0.999951i \(0.496842\pi\)
\(108\) 0 0
\(109\) −17.3019 −0.0152039 −0.00760194 0.999971i \(-0.502420\pi\)
−0.00760194 + 0.999971i \(0.502420\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −46.2308 −0.0390036
\(113\) −58.8182 −0.0489660 −0.0244830 0.999700i \(-0.507794\pi\)
−0.0244830 + 0.999700i \(0.507794\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2392.84 −1.91526
\(117\) 0 0
\(118\) 924.018 0.720871
\(119\) 498.777 0.384225
\(120\) 0 0
\(121\) 1592.39 1.19639
\(122\) 737.129 0.547020
\(123\) 0 0
\(124\) −2426.77 −1.75750
\(125\) 0 0
\(126\) 0 0
\(127\) 1862.03 1.30101 0.650507 0.759501i \(-0.274557\pi\)
0.650507 + 0.759501i \(0.274557\pi\)
\(128\) 2219.15 1.53240
\(129\) 0 0
\(130\) 0 0
\(131\) −775.161 −0.516994 −0.258497 0.966012i \(-0.583227\pi\)
−0.258497 + 0.966012i \(0.583227\pi\)
\(132\) 0 0
\(133\) −458.570 −0.298971
\(134\) −2165.66 −1.39616
\(135\) 0 0
\(136\) −1475.83 −0.930528
\(137\) 1027.95 0.641051 0.320525 0.947240i \(-0.396141\pi\)
0.320525 + 0.947240i \(0.396141\pi\)
\(138\) 0 0
\(139\) −1029.66 −0.628309 −0.314154 0.949372i \(-0.601721\pi\)
−0.314154 + 0.949372i \(0.601721\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3729.18 2.20385
\(143\) 4066.80 2.37820
\(144\) 0 0
\(145\) 0 0
\(146\) 3623.51 2.05400
\(147\) 0 0
\(148\) 1441.11 0.800393
\(149\) −1414.67 −0.777814 −0.388907 0.921277i \(-0.627147\pi\)
−0.388907 + 0.921277i \(0.627147\pi\)
\(150\) 0 0
\(151\) 2094.96 1.12904 0.564522 0.825418i \(-0.309060\pi\)
0.564522 + 0.825418i \(0.309060\pi\)
\(152\) 1356.87 0.724056
\(153\) 0 0
\(154\) −1716.44 −0.898147
\(155\) 0 0
\(156\) 0 0
\(157\) −709.495 −0.360662 −0.180331 0.983606i \(-0.557717\pi\)
−0.180331 + 0.983606i \(0.557717\pi\)
\(158\) 2122.82 1.06888
\(159\) 0 0
\(160\) 0 0
\(161\) −879.815 −0.430678
\(162\) 0 0
\(163\) 3276.23 1.57432 0.787160 0.616749i \(-0.211551\pi\)
0.787160 + 0.616749i \(0.211551\pi\)
\(164\) −2725.75 −1.29784
\(165\) 0 0
\(166\) −1407.39 −0.658040
\(167\) −2860.69 −1.32555 −0.662775 0.748819i \(-0.730621\pi\)
−0.662775 + 0.748819i \(0.730621\pi\)
\(168\) 0 0
\(169\) 3460.42 1.57507
\(170\) 0 0
\(171\) 0 0
\(172\) −5190.62 −2.30105
\(173\) −2803.44 −1.23203 −0.616015 0.787734i \(-0.711254\pi\)
−0.616015 + 0.787734i \(0.711254\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −357.090 −0.152936
\(177\) 0 0
\(178\) 5963.20 2.51102
\(179\) −248.617 −0.103813 −0.0519064 0.998652i \(-0.516530\pi\)
−0.0519064 + 0.998652i \(0.516530\pi\)
\(180\) 0 0
\(181\) 2075.56 0.852347 0.426174 0.904641i \(-0.359861\pi\)
0.426174 + 0.904641i \(0.359861\pi\)
\(182\) −2387.78 −0.972494
\(183\) 0 0
\(184\) 2603.29 1.04303
\(185\) 0 0
\(186\) 0 0
\(187\) 3852.58 1.50657
\(188\) 1427.07 0.553614
\(189\) 0 0
\(190\) 0 0
\(191\) 1252.95 0.474663 0.237331 0.971429i \(-0.423727\pi\)
0.237331 + 0.971429i \(0.423727\pi\)
\(192\) 0 0
\(193\) 1602.12 0.597527 0.298764 0.954327i \(-0.403426\pi\)
0.298764 + 0.954327i \(0.403426\pi\)
\(194\) 5962.10 2.20646
\(195\) 0 0
\(196\) 615.789 0.224413
\(197\) −2346.38 −0.848593 −0.424296 0.905523i \(-0.639479\pi\)
−0.424296 + 0.905523i \(0.639479\pi\)
\(198\) 0 0
\(199\) −1993.53 −0.710140 −0.355070 0.934840i \(-0.615543\pi\)
−0.355070 + 0.934840i \(0.615543\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1819.67 −0.633818
\(203\) −1332.83 −0.460820
\(204\) 0 0
\(205\) 0 0
\(206\) −1323.54 −0.447649
\(207\) 0 0
\(208\) −496.756 −0.165595
\(209\) −3542.02 −1.17228
\(210\) 0 0
\(211\) −5852.55 −1.90951 −0.954754 0.297396i \(-0.903882\pi\)
−0.954754 + 0.297396i \(0.903882\pi\)
\(212\) −7343.80 −2.37912
\(213\) 0 0
\(214\) −99.5883 −0.0318117
\(215\) 0 0
\(216\) 0 0
\(217\) −1351.73 −0.422864
\(218\) 78.4659 0.0243779
\(219\) 0 0
\(220\) 0 0
\(221\) 5359.42 1.63128
\(222\) 0 0
\(223\) −1719.58 −0.516374 −0.258187 0.966095i \(-0.583125\pi\)
−0.258187 + 0.966095i \(0.583125\pi\)
\(224\) 1369.55 0.408514
\(225\) 0 0
\(226\) 266.747 0.0785120
\(227\) 5686.00 1.66252 0.831262 0.555881i \(-0.187619\pi\)
0.831262 + 0.555881i \(0.187619\pi\)
\(228\) 0 0
\(229\) −3087.40 −0.890923 −0.445461 0.895301i \(-0.646960\pi\)
−0.445461 + 0.895301i \(0.646960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3943.73 1.11603
\(233\) −3997.55 −1.12398 −0.561991 0.827143i \(-0.689965\pi\)
−0.561991 + 0.827143i \(0.689965\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2560.53 −0.706255
\(237\) 0 0
\(238\) −2262.00 −0.616067
\(239\) 4499.79 1.21786 0.608928 0.793226i \(-0.291600\pi\)
0.608928 + 0.793226i \(0.291600\pi\)
\(240\) 0 0
\(241\) 3633.26 0.971115 0.485557 0.874205i \(-0.338617\pi\)
0.485557 + 0.874205i \(0.338617\pi\)
\(242\) −7221.66 −1.91829
\(243\) 0 0
\(244\) −2042.64 −0.535929
\(245\) 0 0
\(246\) 0 0
\(247\) −4927.39 −1.26932
\(248\) 3999.65 1.02411
\(249\) 0 0
\(250\) 0 0
\(251\) 1211.21 0.304585 0.152292 0.988335i \(-0.451334\pi\)
0.152292 + 0.988335i \(0.451334\pi\)
\(252\) 0 0
\(253\) −6795.74 −1.68871
\(254\) −8444.50 −2.08604
\(255\) 0 0
\(256\) −3388.39 −0.827245
\(257\) 6225.81 1.51111 0.755556 0.655085i \(-0.227367\pi\)
0.755556 + 0.655085i \(0.227367\pi\)
\(258\) 0 0
\(259\) 802.709 0.192579
\(260\) 0 0
\(261\) 0 0
\(262\) 3515.43 0.828947
\(263\) 757.377 0.177574 0.0887869 0.996051i \(-0.471701\pi\)
0.0887869 + 0.996051i \(0.471701\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2079.66 0.479369
\(267\) 0 0
\(268\) 6001.23 1.36785
\(269\) −1750.59 −0.396786 −0.198393 0.980123i \(-0.563572\pi\)
−0.198393 + 0.980123i \(0.563572\pi\)
\(270\) 0 0
\(271\) 4451.86 0.997902 0.498951 0.866630i \(-0.333719\pi\)
0.498951 + 0.866630i \(0.333719\pi\)
\(272\) −470.589 −0.104903
\(273\) 0 0
\(274\) −4661.87 −1.02786
\(275\) 0 0
\(276\) 0 0
\(277\) −7691.69 −1.66841 −0.834204 0.551456i \(-0.814072\pi\)
−0.834204 + 0.551456i \(0.814072\pi\)
\(278\) 4669.62 1.00743
\(279\) 0 0
\(280\) 0 0
\(281\) 199.034 0.0422540 0.0211270 0.999777i \(-0.493275\pi\)
0.0211270 + 0.999777i \(0.493275\pi\)
\(282\) 0 0
\(283\) −799.307 −0.167893 −0.0839467 0.996470i \(-0.526753\pi\)
−0.0839467 + 0.996470i \(0.526753\pi\)
\(284\) −10333.9 −2.15916
\(285\) 0 0
\(286\) −18443.3 −3.81321
\(287\) −1518.27 −0.312267
\(288\) 0 0
\(289\) 164.110 0.0334031
\(290\) 0 0
\(291\) 0 0
\(292\) −10041.0 −2.01235
\(293\) −3302.75 −0.658528 −0.329264 0.944238i \(-0.606801\pi\)
−0.329264 + 0.944238i \(0.606801\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2375.14 −0.466393
\(297\) 0 0
\(298\) 6415.67 1.24715
\(299\) −9453.72 −1.82850
\(300\) 0 0
\(301\) −2891.22 −0.553646
\(302\) −9500.87 −1.81031
\(303\) 0 0
\(304\) 432.655 0.0816265
\(305\) 0 0
\(306\) 0 0
\(307\) −8628.17 −1.60402 −0.802012 0.597308i \(-0.796237\pi\)
−0.802012 + 0.597308i \(0.796237\pi\)
\(308\) 4756.39 0.879937
\(309\) 0 0
\(310\) 0 0
\(311\) 4900.60 0.893530 0.446765 0.894651i \(-0.352576\pi\)
0.446765 + 0.894651i \(0.352576\pi\)
\(312\) 0 0
\(313\) −9114.26 −1.64590 −0.822952 0.568110i \(-0.807675\pi\)
−0.822952 + 0.568110i \(0.807675\pi\)
\(314\) 3217.63 0.578285
\(315\) 0 0
\(316\) −5882.51 −1.04721
\(317\) 8022.82 1.42147 0.710736 0.703459i \(-0.248362\pi\)
0.710736 + 0.703459i \(0.248362\pi\)
\(318\) 0 0
\(319\) −10294.9 −1.80691
\(320\) 0 0
\(321\) 0 0
\(322\) 3990.05 0.690549
\(323\) −4667.84 −0.804104
\(324\) 0 0
\(325\) 0 0
\(326\) −14858.0 −2.52426
\(327\) 0 0
\(328\) 4492.42 0.756257
\(329\) 794.888 0.133202
\(330\) 0 0
\(331\) −1333.58 −0.221451 −0.110725 0.993851i \(-0.535317\pi\)
−0.110725 + 0.993851i \(0.535317\pi\)
\(332\) 3899.99 0.644698
\(333\) 0 0
\(334\) 12973.5 2.12539
\(335\) 0 0
\(336\) 0 0
\(337\) −1687.33 −0.272744 −0.136372 0.990658i \(-0.543544\pi\)
−0.136372 + 0.990658i \(0.543544\pi\)
\(338\) −15693.4 −2.52546
\(339\) 0 0
\(340\) 0 0
\(341\) −10440.9 −1.65808
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 8554.87 1.34084
\(345\) 0 0
\(346\) 12713.9 1.97544
\(347\) −5955.18 −0.921299 −0.460649 0.887582i \(-0.652383\pi\)
−0.460649 + 0.887582i \(0.652383\pi\)
\(348\) 0 0
\(349\) 6876.59 1.05471 0.527357 0.849644i \(-0.323183\pi\)
0.527357 + 0.849644i \(0.323183\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10578.5 1.60181
\(353\) −1395.95 −0.210479 −0.105239 0.994447i \(-0.533561\pi\)
−0.105239 + 0.994447i \(0.533561\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −16524.5 −2.46011
\(357\) 0 0
\(358\) 1127.50 0.166453
\(359\) 382.988 0.0563046 0.0281523 0.999604i \(-0.491038\pi\)
0.0281523 + 0.999604i \(0.491038\pi\)
\(360\) 0 0
\(361\) −2567.44 −0.374316
\(362\) −9412.85 −1.36665
\(363\) 0 0
\(364\) 6616.73 0.952777
\(365\) 0 0
\(366\) 0 0
\(367\) −10178.4 −1.44771 −0.723856 0.689951i \(-0.757632\pi\)
−0.723856 + 0.689951i \(0.757632\pi\)
\(368\) 830.094 0.117586
\(369\) 0 0
\(370\) 0 0
\(371\) −4090.56 −0.572430
\(372\) 0 0
\(373\) −2991.00 −0.415196 −0.207598 0.978214i \(-0.566565\pi\)
−0.207598 + 0.978214i \(0.566565\pi\)
\(374\) −17471.8 −2.41563
\(375\) 0 0
\(376\) −2352.00 −0.322594
\(377\) −14321.5 −1.95648
\(378\) 0 0
\(379\) 7400.66 1.00302 0.501512 0.865150i \(-0.332777\pi\)
0.501512 + 0.865150i \(0.332777\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −5682.27 −0.761074
\(383\) 10769.6 1.43682 0.718408 0.695622i \(-0.244871\pi\)
0.718408 + 0.695622i \(0.244871\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −7265.75 −0.958075
\(387\) 0 0
\(388\) −16521.5 −2.16173
\(389\) 11193.3 1.45893 0.729466 0.684017i \(-0.239769\pi\)
0.729466 + 0.684017i \(0.239769\pi\)
\(390\) 0 0
\(391\) −8955.74 −1.15834
\(392\) −1014.91 −0.130766
\(393\) 0 0
\(394\) 10641.1 1.36063
\(395\) 0 0
\(396\) 0 0
\(397\) 10371.9 1.31121 0.655605 0.755104i \(-0.272414\pi\)
0.655605 + 0.755104i \(0.272414\pi\)
\(398\) 9040.88 1.13864
\(399\) 0 0
\(400\) 0 0
\(401\) −5402.20 −0.672751 −0.336375 0.941728i \(-0.609201\pi\)
−0.336375 + 0.941728i \(0.609201\pi\)
\(402\) 0 0
\(403\) −14524.5 −1.79533
\(404\) 5042.44 0.620967
\(405\) 0 0
\(406\) 6044.53 0.738879
\(407\) 6200.17 0.755113
\(408\) 0 0
\(409\) −12829.9 −1.55110 −0.775549 0.631288i \(-0.782527\pi\)
−0.775549 + 0.631288i \(0.782527\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 3667.64 0.438572
\(413\) −1426.24 −0.169929
\(414\) 0 0
\(415\) 0 0
\(416\) 14716.0 1.73440
\(417\) 0 0
\(418\) 16063.4 1.87964
\(419\) −5620.85 −0.655362 −0.327681 0.944788i \(-0.606267\pi\)
−0.327681 + 0.944788i \(0.606267\pi\)
\(420\) 0 0
\(421\) −2177.11 −0.252033 −0.126017 0.992028i \(-0.540219\pi\)
−0.126017 + 0.992028i \(0.540219\pi\)
\(422\) 26541.9 3.06171
\(423\) 0 0
\(424\) 12103.6 1.38633
\(425\) 0 0
\(426\) 0 0
\(427\) −1137.77 −0.128947
\(428\) 275.967 0.0311668
\(429\) 0 0
\(430\) 0 0
\(431\) −10396.4 −1.16190 −0.580950 0.813939i \(-0.697319\pi\)
−0.580950 + 0.813939i \(0.697319\pi\)
\(432\) 0 0
\(433\) 11875.6 1.31803 0.659015 0.752129i \(-0.270973\pi\)
0.659015 + 0.752129i \(0.270973\pi\)
\(434\) 6130.24 0.678021
\(435\) 0 0
\(436\) −217.435 −0.0238836
\(437\) 8233.81 0.901320
\(438\) 0 0
\(439\) 640.369 0.0696200 0.0348100 0.999394i \(-0.488917\pi\)
0.0348100 + 0.999394i \(0.488917\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −24305.5 −2.61560
\(443\) 854.852 0.0916823 0.0458411 0.998949i \(-0.485403\pi\)
0.0458411 + 0.998949i \(0.485403\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 7798.46 0.827954
\(447\) 0 0
\(448\) −5841.21 −0.616008
\(449\) −3427.44 −0.360247 −0.180123 0.983644i \(-0.557650\pi\)
−0.180123 + 0.983644i \(0.557650\pi\)
\(450\) 0 0
\(451\) −11727.2 −1.22442
\(452\) −739.176 −0.0769202
\(453\) 0 0
\(454\) −25786.6 −2.66569
\(455\) 0 0
\(456\) 0 0
\(457\) 1709.31 0.174963 0.0874814 0.996166i \(-0.472118\pi\)
0.0874814 + 0.996166i \(0.472118\pi\)
\(458\) 14001.7 1.42851
\(459\) 0 0
\(460\) 0 0
\(461\) −2251.18 −0.227436 −0.113718 0.993513i \(-0.536276\pi\)
−0.113718 + 0.993513i \(0.536276\pi\)
\(462\) 0 0
\(463\) −3200.80 −0.321282 −0.160641 0.987013i \(-0.551356\pi\)
−0.160641 + 0.987013i \(0.551356\pi\)
\(464\) 1257.51 0.125816
\(465\) 0 0
\(466\) 18129.3 1.80219
\(467\) −5477.39 −0.542748 −0.271374 0.962474i \(-0.587478\pi\)
−0.271374 + 0.962474i \(0.587478\pi\)
\(468\) 0 0
\(469\) 3342.74 0.329112
\(470\) 0 0
\(471\) 0 0
\(472\) 4220.11 0.411538
\(473\) −22332.0 −2.17088
\(474\) 0 0
\(475\) 0 0
\(476\) 6268.19 0.603576
\(477\) 0 0
\(478\) −20407.0 −1.95271
\(479\) 14182.0 1.35280 0.676399 0.736535i \(-0.263539\pi\)
0.676399 + 0.736535i \(0.263539\pi\)
\(480\) 0 0
\(481\) 8625.20 0.817620
\(482\) −16477.2 −1.55709
\(483\) 0 0
\(484\) 20011.8 1.87940
\(485\) 0 0
\(486\) 0 0
\(487\) −5320.83 −0.495092 −0.247546 0.968876i \(-0.579624\pi\)
−0.247546 + 0.968876i \(0.579624\pi\)
\(488\) 3366.56 0.312289
\(489\) 0 0
\(490\) 0 0
\(491\) 6574.80 0.604311 0.302155 0.953259i \(-0.402294\pi\)
0.302155 + 0.953259i \(0.402294\pi\)
\(492\) 0 0
\(493\) −13567.1 −1.23941
\(494\) 22346.2 2.03523
\(495\) 0 0
\(496\) 1275.34 0.115453
\(497\) −5756.06 −0.519506
\(498\) 0 0
\(499\) −1507.68 −0.135256 −0.0676282 0.997711i \(-0.521543\pi\)
−0.0676282 + 0.997711i \(0.521543\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −5492.95 −0.488371
\(503\) 8782.24 0.778491 0.389245 0.921134i \(-0.372736\pi\)
0.389245 + 0.921134i \(0.372736\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 30819.4 2.70768
\(507\) 0 0
\(508\) 23400.4 2.04375
\(509\) −12696.6 −1.10563 −0.552815 0.833304i \(-0.686447\pi\)
−0.552815 + 0.833304i \(0.686447\pi\)
\(510\) 0 0
\(511\) −5592.95 −0.484183
\(512\) −2386.50 −0.205995
\(513\) 0 0
\(514\) −28234.7 −2.42291
\(515\) 0 0
\(516\) 0 0
\(517\) 6139.76 0.522295
\(518\) −3640.36 −0.308781
\(519\) 0 0
\(520\) 0 0
\(521\) 10434.7 0.877455 0.438727 0.898620i \(-0.355429\pi\)
0.438727 + 0.898620i \(0.355429\pi\)
\(522\) 0 0
\(523\) −8403.03 −0.702560 −0.351280 0.936270i \(-0.614254\pi\)
−0.351280 + 0.936270i \(0.614254\pi\)
\(524\) −9741.55 −0.812140
\(525\) 0 0
\(526\) −3434.78 −0.284722
\(527\) −13759.4 −1.13733
\(528\) 0 0
\(529\) 3630.43 0.298384
\(530\) 0 0
\(531\) 0 0
\(532\) −5762.91 −0.469650
\(533\) −16314.0 −1.32577
\(534\) 0 0
\(535\) 0 0
\(536\) −9890.85 −0.797052
\(537\) 0 0
\(538\) 7939.11 0.636207
\(539\) 2649.35 0.211717
\(540\) 0 0
\(541\) 8349.66 0.663549 0.331775 0.943359i \(-0.392353\pi\)
0.331775 + 0.943359i \(0.392353\pi\)
\(542\) −20189.6 −1.60004
\(543\) 0 0
\(544\) 13940.8 1.09873
\(545\) 0 0
\(546\) 0 0
\(547\) 12185.7 0.952509 0.476254 0.879308i \(-0.341994\pi\)
0.476254 + 0.879308i \(0.341994\pi\)
\(548\) 12918.4 1.00702
\(549\) 0 0
\(550\) 0 0
\(551\) 12473.4 0.964402
\(552\) 0 0
\(553\) −3276.61 −0.251963
\(554\) 34882.6 2.67512
\(555\) 0 0
\(556\) −12939.9 −0.987004
\(557\) 540.209 0.0410940 0.0205470 0.999789i \(-0.493459\pi\)
0.0205470 + 0.999789i \(0.493459\pi\)
\(558\) 0 0
\(559\) −31066.6 −2.35058
\(560\) 0 0
\(561\) 0 0
\(562\) −902.639 −0.0677501
\(563\) 1949.26 0.145917 0.0729587 0.997335i \(-0.476756\pi\)
0.0729587 + 0.997335i \(0.476756\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 3624.94 0.269200
\(567\) 0 0
\(568\) 17031.6 1.25815
\(569\) −9487.28 −0.698994 −0.349497 0.936938i \(-0.613647\pi\)
−0.349497 + 0.936938i \(0.613647\pi\)
\(570\) 0 0
\(571\) −20172.3 −1.47843 −0.739215 0.673470i \(-0.764803\pi\)
−0.739215 + 0.673470i \(0.764803\pi\)
\(572\) 51108.0 3.73590
\(573\) 0 0
\(574\) 6885.50 0.500689
\(575\) 0 0
\(576\) 0 0
\(577\) 12937.3 0.933423 0.466712 0.884410i \(-0.345439\pi\)
0.466712 + 0.884410i \(0.345439\pi\)
\(578\) −744.254 −0.0535586
\(579\) 0 0
\(580\) 0 0
\(581\) 2172.33 0.155118
\(582\) 0 0
\(583\) −31595.7 −2.24453
\(584\) 16549.0 1.17261
\(585\) 0 0
\(586\) 14978.3 1.05588
\(587\) 6489.43 0.456299 0.228149 0.973626i \(-0.426733\pi\)
0.228149 + 0.973626i \(0.426733\pi\)
\(588\) 0 0
\(589\) 12650.3 0.884968
\(590\) 0 0
\(591\) 0 0
\(592\) −757.345 −0.0525789
\(593\) 16803.6 1.16364 0.581821 0.813317i \(-0.302340\pi\)
0.581821 + 0.813317i \(0.302340\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −17778.3 −1.22186
\(597\) 0 0
\(598\) 42873.5 2.93182
\(599\) −19139.6 −1.30554 −0.652772 0.757554i \(-0.726394\pi\)
−0.652772 + 0.757554i \(0.726394\pi\)
\(600\) 0 0
\(601\) 14304.0 0.970838 0.485419 0.874282i \(-0.338667\pi\)
0.485419 + 0.874282i \(0.338667\pi\)
\(602\) 13112.0 0.887715
\(603\) 0 0
\(604\) 26327.7 1.77361
\(605\) 0 0
\(606\) 0 0
\(607\) −2018.10 −0.134946 −0.0674730 0.997721i \(-0.521494\pi\)
−0.0674730 + 0.997721i \(0.521494\pi\)
\(608\) −12817.1 −0.854935
\(609\) 0 0
\(610\) 0 0
\(611\) 8541.17 0.565530
\(612\) 0 0
\(613\) 21479.4 1.41524 0.707621 0.706592i \(-0.249768\pi\)
0.707621 + 0.706592i \(0.249768\pi\)
\(614\) 39129.6 2.57189
\(615\) 0 0
\(616\) −7839.19 −0.512743
\(617\) 5856.83 0.382151 0.191075 0.981575i \(-0.438803\pi\)
0.191075 + 0.981575i \(0.438803\pi\)
\(618\) 0 0
\(619\) −17619.3 −1.14407 −0.572035 0.820229i \(-0.693846\pi\)
−0.572035 + 0.820229i \(0.693846\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −22224.7 −1.43269
\(623\) −9204.30 −0.591914
\(624\) 0 0
\(625\) 0 0
\(626\) 41334.1 2.63904
\(627\) 0 0
\(628\) −8916.31 −0.566560
\(629\) 8170.87 0.517955
\(630\) 0 0
\(631\) 26395.7 1.66529 0.832643 0.553810i \(-0.186827\pi\)
0.832643 + 0.553810i \(0.186827\pi\)
\(632\) 9695.19 0.610212
\(633\) 0 0
\(634\) −36384.3 −2.27919
\(635\) 0 0
\(636\) 0 0
\(637\) 3685.58 0.229243
\(638\) 46688.3 2.89719
\(639\) 0 0
\(640\) 0 0
\(641\) −3209.30 −0.197753 −0.0988764 0.995100i \(-0.531525\pi\)
−0.0988764 + 0.995100i \(0.531525\pi\)
\(642\) 0 0
\(643\) −1762.48 −0.108096 −0.0540478 0.998538i \(-0.517212\pi\)
−0.0540478 + 0.998538i \(0.517212\pi\)
\(644\) −11056.7 −0.676548
\(645\) 0 0
\(646\) 21169.1 1.28930
\(647\) 24372.7 1.48098 0.740488 0.672070i \(-0.234595\pi\)
0.740488 + 0.672070i \(0.234595\pi\)
\(648\) 0 0
\(649\) −11016.3 −0.666301
\(650\) 0 0
\(651\) 0 0
\(652\) 41172.8 2.47308
\(653\) −6389.97 −0.382938 −0.191469 0.981499i \(-0.561325\pi\)
−0.191469 + 0.981499i \(0.561325\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1432.47 0.0852567
\(657\) 0 0
\(658\) −3604.90 −0.213577
\(659\) 6111.68 0.361270 0.180635 0.983550i \(-0.442185\pi\)
0.180635 + 0.983550i \(0.442185\pi\)
\(660\) 0 0
\(661\) 16391.1 0.964510 0.482255 0.876031i \(-0.339818\pi\)
0.482255 + 0.876031i \(0.339818\pi\)
\(662\) 6047.92 0.355074
\(663\) 0 0
\(664\) −6427.72 −0.375669
\(665\) 0 0
\(666\) 0 0
\(667\) 23931.6 1.38926
\(668\) −35950.6 −2.08229
\(669\) 0 0
\(670\) 0 0
\(671\) −8788.20 −0.505611
\(672\) 0 0
\(673\) −13055.9 −0.747799 −0.373900 0.927469i \(-0.621980\pi\)
−0.373900 + 0.927469i \(0.621980\pi\)
\(674\) 7652.20 0.437317
\(675\) 0 0
\(676\) 43487.6 2.47426
\(677\) 3154.53 0.179082 0.0895410 0.995983i \(-0.471460\pi\)
0.0895410 + 0.995983i \(0.471460\pi\)
\(678\) 0 0
\(679\) −9202.60 −0.520123
\(680\) 0 0
\(681\) 0 0
\(682\) 47350.4 2.65856
\(683\) −17282.7 −0.968233 −0.484117 0.875004i \(-0.660859\pi\)
−0.484117 + 0.875004i \(0.660859\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1555.54 −0.0865754
\(687\) 0 0
\(688\) 2727.83 0.151159
\(689\) −43953.6 −2.43033
\(690\) 0 0
\(691\) 26838.3 1.47753 0.738766 0.673961i \(-0.235409\pi\)
0.738766 + 0.673961i \(0.235409\pi\)
\(692\) −35231.1 −1.93538
\(693\) 0 0
\(694\) 27007.3 1.47721
\(695\) 0 0
\(696\) 0 0
\(697\) −15454.6 −0.839866
\(698\) −31186.0 −1.69113
\(699\) 0 0
\(700\) 0 0
\(701\) 8374.52 0.451214 0.225607 0.974218i \(-0.427563\pi\)
0.225607 + 0.974218i \(0.427563\pi\)
\(702\) 0 0
\(703\) −7512.21 −0.403028
\(704\) −45117.9 −2.41540
\(705\) 0 0
\(706\) 6330.79 0.337482
\(707\) 2808.68 0.149408
\(708\) 0 0
\(709\) 11929.4 0.631902 0.315951 0.948775i \(-0.397676\pi\)
0.315951 + 0.948775i \(0.397676\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 27234.7 1.43352
\(713\) 24270.9 1.27483
\(714\) 0 0
\(715\) 0 0
\(716\) −3124.40 −0.163078
\(717\) 0 0
\(718\) −1736.89 −0.0902788
\(719\) 23392.3 1.21333 0.606666 0.794957i \(-0.292507\pi\)
0.606666 + 0.794957i \(0.292507\pi\)
\(720\) 0 0
\(721\) 2042.91 0.105523
\(722\) 11643.6 0.600179
\(723\) 0 0
\(724\) 26083.8 1.33894
\(725\) 0 0
\(726\) 0 0
\(727\) 10659.8 0.543810 0.271905 0.962324i \(-0.412346\pi\)
0.271905 + 0.962324i \(0.412346\pi\)
\(728\) −10905.3 −0.555188
\(729\) 0 0
\(730\) 0 0
\(731\) −29430.1 −1.48907
\(732\) 0 0
\(733\) 23919.1 1.20528 0.602642 0.798011i \(-0.294115\pi\)
0.602642 + 0.798011i \(0.294115\pi\)
\(734\) 46160.2 2.32126
\(735\) 0 0
\(736\) −24590.9 −1.23157
\(737\) 25819.5 1.29047
\(738\) 0 0
\(739\) 34535.1 1.71907 0.859536 0.511074i \(-0.170752\pi\)
0.859536 + 0.511074i \(0.170752\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 18551.1 0.917833
\(743\) −17526.8 −0.865403 −0.432702 0.901537i \(-0.642440\pi\)
−0.432702 + 0.901537i \(0.642440\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 13564.5 0.665725
\(747\) 0 0
\(748\) 48415.9 2.36666
\(749\) 153.716 0.00749889
\(750\) 0 0
\(751\) 18534.3 0.900565 0.450283 0.892886i \(-0.351323\pi\)
0.450283 + 0.892886i \(0.351323\pi\)
\(752\) −749.966 −0.0363676
\(753\) 0 0
\(754\) 64949.2 3.13702
\(755\) 0 0
\(756\) 0 0
\(757\) −9309.64 −0.446981 −0.223491 0.974706i \(-0.571745\pi\)
−0.223491 + 0.974706i \(0.571745\pi\)
\(758\) −33562.7 −1.60825
\(759\) 0 0
\(760\) 0 0
\(761\) 2968.41 0.141399 0.0706996 0.997498i \(-0.477477\pi\)
0.0706996 + 0.997498i \(0.477477\pi\)
\(762\) 0 0
\(763\) −121.113 −0.00574653
\(764\) 15746.0 0.745643
\(765\) 0 0
\(766\) −48841.1 −2.30379
\(767\) −15325.1 −0.721457
\(768\) 0 0
\(769\) −34932.9 −1.63812 −0.819060 0.573708i \(-0.805505\pi\)
−0.819060 + 0.573708i \(0.805505\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 20134.0 0.938650
\(773\) 13595.4 0.632591 0.316295 0.948661i \(-0.397561\pi\)
0.316295 + 0.948661i \(0.397561\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 27229.7 1.25965
\(777\) 0 0
\(778\) −50762.9 −2.33925
\(779\) 14208.8 0.653510
\(780\) 0 0
\(781\) −44460.1 −2.03701
\(782\) 40615.2 1.85728
\(783\) 0 0
\(784\) −323.616 −0.0147420
\(785\) 0 0
\(786\) 0 0
\(787\) −14228.1 −0.644444 −0.322222 0.946664i \(-0.604430\pi\)
−0.322222 + 0.946664i \(0.604430\pi\)
\(788\) −29487.3 −1.33305
\(789\) 0 0
\(790\) 0 0
\(791\) −411.728 −0.0185074
\(792\) 0 0
\(793\) −12225.5 −0.547465
\(794\) −47037.5 −2.10239
\(795\) 0 0
\(796\) −25053.0 −1.11555
\(797\) −11442.3 −0.508539 −0.254270 0.967133i \(-0.581835\pi\)
−0.254270 + 0.967133i \(0.581835\pi\)
\(798\) 0 0
\(799\) 8091.26 0.358258
\(800\) 0 0
\(801\) 0 0
\(802\) 24499.5 1.07869
\(803\) −43200.3 −1.89851
\(804\) 0 0
\(805\) 0 0
\(806\) 65870.2 2.87863
\(807\) 0 0
\(808\) −8310.63 −0.361840
\(809\) −22732.9 −0.987944 −0.493972 0.869478i \(-0.664455\pi\)
−0.493972 + 0.869478i \(0.664455\pi\)
\(810\) 0 0
\(811\) −29768.2 −1.28890 −0.644452 0.764644i \(-0.722915\pi\)
−0.644452 + 0.764644i \(0.722915\pi\)
\(812\) −16749.9 −0.723898
\(813\) 0 0
\(814\) −28118.4 −1.21075
\(815\) 0 0
\(816\) 0 0
\(817\) 27057.7 1.15867
\(818\) 58185.0 2.48703
\(819\) 0 0
\(820\) 0 0
\(821\) −6408.35 −0.272416 −0.136208 0.990680i \(-0.543491\pi\)
−0.136208 + 0.990680i \(0.543491\pi\)
\(822\) 0 0
\(823\) −20876.0 −0.884194 −0.442097 0.896967i \(-0.645765\pi\)
−0.442097 + 0.896967i \(0.645765\pi\)
\(824\) −6044.78 −0.255558
\(825\) 0 0
\(826\) 6468.13 0.272464
\(827\) 41650.1 1.75129 0.875645 0.482955i \(-0.160437\pi\)
0.875645 + 0.482955i \(0.160437\pi\)
\(828\) 0 0
\(829\) 17194.7 0.720380 0.360190 0.932879i \(-0.382712\pi\)
0.360190 + 0.932879i \(0.382712\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −62764.5 −2.61535
\(833\) 3491.44 0.145223
\(834\) 0 0
\(835\) 0 0
\(836\) −44513.0 −1.84153
\(837\) 0 0
\(838\) 25491.1 1.05081
\(839\) −40583.7 −1.66997 −0.834985 0.550273i \(-0.814524\pi\)
−0.834985 + 0.550273i \(0.814524\pi\)
\(840\) 0 0
\(841\) 11865.0 0.486489
\(842\) 9873.42 0.404110
\(843\) 0 0
\(844\) −73549.7 −2.99963
\(845\) 0 0
\(846\) 0 0
\(847\) 11146.8 0.452192
\(848\) 3859.39 0.156288
\(849\) 0 0
\(850\) 0 0
\(851\) −14413.0 −0.580576
\(852\) 0 0
\(853\) 23020.1 0.924023 0.462012 0.886874i \(-0.347128\pi\)
0.462012 + 0.886874i \(0.347128\pi\)
\(854\) 5159.90 0.206754
\(855\) 0 0
\(856\) −454.832 −0.0181610
\(857\) 18075.5 0.720476 0.360238 0.932861i \(-0.382696\pi\)
0.360238 + 0.932861i \(0.382696\pi\)
\(858\) 0 0
\(859\) 20308.2 0.806643 0.403321 0.915058i \(-0.367856\pi\)
0.403321 + 0.915058i \(0.367856\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 47148.9 1.86299
\(863\) 31023.5 1.22370 0.611849 0.790975i \(-0.290426\pi\)
0.611849 + 0.790975i \(0.290426\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −53857.2 −2.11333
\(867\) 0 0
\(868\) −16987.4 −0.664274
\(869\) −25308.7 −0.987963
\(870\) 0 0
\(871\) 35918.1 1.39729
\(872\) 358.363 0.0139171
\(873\) 0 0
\(874\) −37341.2 −1.44518
\(875\) 0 0
\(876\) 0 0
\(877\) −28344.1 −1.09135 −0.545674 0.837997i \(-0.683726\pi\)
−0.545674 + 0.837997i \(0.683726\pi\)
\(878\) −2904.14 −0.111629
\(879\) 0 0
\(880\) 0 0
\(881\) −41264.5 −1.57802 −0.789010 0.614380i \(-0.789406\pi\)
−0.789010 + 0.614380i \(0.789406\pi\)
\(882\) 0 0
\(883\) −7995.59 −0.304726 −0.152363 0.988325i \(-0.548688\pi\)
−0.152363 + 0.988325i \(0.548688\pi\)
\(884\) 67352.5 2.56257
\(885\) 0 0
\(886\) −3876.84 −0.147003
\(887\) −24438.3 −0.925093 −0.462547 0.886595i \(-0.653064\pi\)
−0.462547 + 0.886595i \(0.653064\pi\)
\(888\) 0 0
\(889\) 13034.2 0.491737
\(890\) 0 0
\(891\) 0 0
\(892\) −21610.1 −0.811167
\(893\) −7439.02 −0.278765
\(894\) 0 0
\(895\) 0 0
\(896\) 15534.1 0.579192
\(897\) 0 0
\(898\) 15543.8 0.577620
\(899\) 36768.0 1.36405
\(900\) 0 0
\(901\) −41638.3 −1.53959
\(902\) 53184.0 1.96323
\(903\) 0 0
\(904\) 1218.26 0.0448218
\(905\) 0 0
\(906\) 0 0
\(907\) 17241.6 0.631201 0.315601 0.948892i \(-0.397794\pi\)
0.315601 + 0.948892i \(0.397794\pi\)
\(908\) 71456.6 2.61164
\(909\) 0 0
\(910\) 0 0
\(911\) −17407.8 −0.633092 −0.316546 0.948577i \(-0.602523\pi\)
−0.316546 + 0.948577i \(0.602523\pi\)
\(912\) 0 0
\(913\) 16779.2 0.608226
\(914\) −7751.87 −0.280535
\(915\) 0 0
\(916\) −38799.8 −1.39954
\(917\) −5426.13 −0.195405
\(918\) 0 0
\(919\) 7704.64 0.276553 0.138277 0.990394i \(-0.455844\pi\)
0.138277 + 0.990394i \(0.455844\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 10209.3 0.364671
\(923\) −61849.5 −2.20564
\(924\) 0 0
\(925\) 0 0
\(926\) 14515.9 0.515144
\(927\) 0 0
\(928\) −37252.8 −1.31776
\(929\) 48184.3 1.70170 0.850849 0.525411i \(-0.176088\pi\)
0.850849 + 0.525411i \(0.176088\pi\)
\(930\) 0 0
\(931\) −3209.99 −0.113000
\(932\) −50237.7 −1.76565
\(933\) 0 0
\(934\) 24840.5 0.870242
\(935\) 0 0
\(936\) 0 0
\(937\) 23371.6 0.814853 0.407427 0.913238i \(-0.366426\pi\)
0.407427 + 0.913238i \(0.366426\pi\)
\(938\) −15159.7 −0.527697
\(939\) 0 0
\(940\) 0 0
\(941\) −18048.6 −0.625258 −0.312629 0.949875i \(-0.601210\pi\)
−0.312629 + 0.949875i \(0.601210\pi\)
\(942\) 0 0
\(943\) 27261.1 0.941405
\(944\) 1345.64 0.0463948
\(945\) 0 0
\(946\) 101278. 3.48079
\(947\) −10346.2 −0.355022 −0.177511 0.984119i \(-0.556805\pi\)
−0.177511 + 0.984119i \(0.556805\pi\)
\(948\) 0 0
\(949\) −60096.9 −2.05567
\(950\) 0 0
\(951\) 0 0
\(952\) −10330.8 −0.351706
\(953\) −8691.77 −0.295440 −0.147720 0.989029i \(-0.547193\pi\)
−0.147720 + 0.989029i \(0.547193\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 56549.5 1.91312
\(957\) 0 0
\(958\) −64316.6 −2.16908
\(959\) 7195.67 0.242294
\(960\) 0 0
\(961\) 7498.41 0.251701
\(962\) −39116.2 −1.31097
\(963\) 0 0
\(964\) 45659.6 1.52552
\(965\) 0 0
\(966\) 0 0
\(967\) 8971.58 0.298352 0.149176 0.988811i \(-0.452338\pi\)
0.149176 + 0.988811i \(0.452338\pi\)
\(968\) −32982.2 −1.09513
\(969\) 0 0
\(970\) 0 0
\(971\) −29275.1 −0.967541 −0.483771 0.875195i \(-0.660733\pi\)
−0.483771 + 0.875195i \(0.660733\pi\)
\(972\) 0 0
\(973\) −7207.64 −0.237478
\(974\) 24130.5 0.793831
\(975\) 0 0
\(976\) 1073.47 0.0352059
\(977\) 16477.5 0.539572 0.269786 0.962920i \(-0.413047\pi\)
0.269786 + 0.962920i \(0.413047\pi\)
\(978\) 0 0
\(979\) −71094.6 −2.32093
\(980\) 0 0
\(981\) 0 0
\(982\) −29817.4 −0.968952
\(983\) −45912.9 −1.48972 −0.744859 0.667222i \(-0.767483\pi\)
−0.744859 + 0.667222i \(0.767483\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 61528.0 1.98727
\(987\) 0 0
\(988\) −61923.2 −1.99397
\(989\) 51913.1 1.66910
\(990\) 0 0
\(991\) 46124.8 1.47851 0.739255 0.673426i \(-0.235178\pi\)
0.739255 + 0.673426i \(0.235178\pi\)
\(992\) −37781.0 −1.20922
\(993\) 0 0
\(994\) 26104.3 0.832975
\(995\) 0 0
\(996\) 0 0
\(997\) −30984.5 −0.984240 −0.492120 0.870527i \(-0.663778\pi\)
−0.492120 + 0.870527i \(0.663778\pi\)
\(998\) 6837.47 0.216870
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bg.1.2 4
3.2 odd 2 175.4.a.h.1.3 yes 4
5.4 even 2 1575.4.a.bl.1.3 4
15.2 even 4 175.4.b.f.99.6 8
15.8 even 4 175.4.b.f.99.3 8
15.14 odd 2 175.4.a.g.1.2 4
21.20 even 2 1225.4.a.bd.1.3 4
105.104 even 2 1225.4.a.z.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.a.g.1.2 4 15.14 odd 2
175.4.a.h.1.3 yes 4 3.2 odd 2
175.4.b.f.99.3 8 15.8 even 4
175.4.b.f.99.6 8 15.2 even 4
1225.4.a.z.1.2 4 105.104 even 2
1225.4.a.bd.1.3 4 21.20 even 2
1575.4.a.bg.1.2 4 1.1 even 1 trivial
1575.4.a.bl.1.3 4 5.4 even 2