Properties

Label 1575.4.a.bj
Level 15751575
Weight 44
Character orbit 1575.a
Self dual yes
Analytic conductor 92.92892.928
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 92.928008259092.9280082590
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x424x23x+46 x^{4} - 24x^{2} - 3x + 46 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 525)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β2+4)q47q7+(β3+4β1+2)q8+(β3+3β25β15)q11+(3β3β23β12)q137β1q14++49β1q98+O(q100) q + \beta_1 q^{2} + (\beta_{2} + 4) q^{4} - 7 q^{7} + (\beta_{3} + 4 \beta_1 + 2) q^{8} + ( - \beta_{3} + 3 \beta_{2} - 5 \beta_1 - 5) q^{11} + (3 \beta_{3} - \beta_{2} - 3 \beta_1 - 2) q^{13} - 7 \beta_1 q^{14}+ \cdots + 49 \beta_1 q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+16q428q7+9q821q115q13+72q16+99q17+72q19221q22+102q23129q26112q28+240q29+351q31+72q32285q34399q37++372q97+O(q100) 4 q + 16 q^{4} - 28 q^{7} + 9 q^{8} - 21 q^{11} - 5 q^{13} + 72 q^{16} + 99 q^{17} + 72 q^{19} - 221 q^{22} + 102 q^{23} - 129 q^{26} - 112 q^{28} + 240 q^{29} + 351 q^{31} + 72 q^{32} - 285 q^{34} - 399 q^{37}+ \cdots + 372 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x424x23x+46 x^{4} - 24x^{2} - 3x + 46 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν212 \nu^{2} - 12 Copy content Toggle raw display
β3\beta_{3}== ν320ν2 \nu^{3} - 20\nu - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+12 \beta_{2} + 12 Copy content Toggle raw display
ν3\nu^{3}== β3+20β1+2 \beta_{3} + 20\beta _1 + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−4.60171
−1.52801
1.37627
4.75345
−4.60171 0 13.1758 0 0 −7.00000 −23.8174 0 0
1.2 −1.52801 0 −5.66519 0 0 −7.00000 20.8805 0 0
1.3 1.37627 0 −6.10588 0 0 −7.00000 −19.4135 0 0
1.4 4.75345 0 14.5953 0 0 −7.00000 31.3504 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.4.a.bj 4
3.b odd 2 1 525.4.a.t 4
5.b even 2 1 1575.4.a.bk 4
15.d odd 2 1 525.4.a.u yes 4
15.e even 4 2 525.4.d.n 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.4.a.t 4 3.b odd 2 1
525.4.a.u yes 4 15.d odd 2 1
525.4.d.n 8 15.e even 4 2
1575.4.a.bj 4 1.a even 1 1 trivial
1575.4.a.bk 4 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1575))S_{4}^{\mathrm{new}}(\Gamma_0(1575)):

T2424T223T2+46 T_{2}^{4} - 24T_{2}^{2} - 3T_{2} + 46 Copy content Toggle raw display
T114+21T1132643T11261617T11304010 T_{11}^{4} + 21T_{11}^{3} - 2643T_{11}^{2} - 61617T_{11} - 304010 Copy content Toggle raw display
T134+5T1336940T132102608T13+545368 T_{13}^{4} + 5T_{13}^{3} - 6940T_{13}^{2} - 102608T_{13} + 545368 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T424T2++46 T^{4} - 24 T^{2} + \cdots + 46 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T+7)4 (T + 7)^{4} Copy content Toggle raw display
1111 T4+21T3+304010 T^{4} + 21 T^{3} + \cdots - 304010 Copy content Toggle raw display
1313 T4+5T3++545368 T^{4} + 5 T^{3} + \cdots + 545368 Copy content Toggle raw display
1717 T499T3+25684592 T^{4} - 99 T^{3} + \cdots - 25684592 Copy content Toggle raw display
1919 T472T3++1017760 T^{4} - 72 T^{3} + \cdots + 1017760 Copy content Toggle raw display
2323 T4102T3+390917 T^{4} - 102 T^{3} + \cdots - 390917 Copy content Toggle raw display
2929 T4240T3++130344085 T^{4} - 240 T^{3} + \cdots + 130344085 Copy content Toggle raw display
3131 T4351T3++137611224 T^{4} - 351 T^{3} + \cdots + 137611224 Copy content Toggle raw display
3737 T4+399T3+476873082 T^{4} + 399 T^{3} + \cdots - 476873082 Copy content Toggle raw display
4141 T4+381T3+91750400 T^{4} + 381 T^{3} + \cdots - 91750400 Copy content Toggle raw display
4343 T4++3696646993 T^{4} + \cdots + 3696646993 Copy content Toggle raw display
4747 T4++11323563904 T^{4} + \cdots + 11323563904 Copy content Toggle raw display
5353 T4+2685647720 T^{4} + \cdots - 2685647720 Copy content Toggle raw display
5959 T4+35121553400 T^{4} + \cdots - 35121553400 Copy content Toggle raw display
6161 T4++13537528704 T^{4} + \cdots + 13537528704 Copy content Toggle raw display
6767 T4++120089209012 T^{4} + \cdots + 120089209012 Copy content Toggle raw display
7171 T4+3046275956 T^{4} + \cdots - 3046275956 Copy content Toggle raw display
7373 T4+498004222688 T^{4} + \cdots - 498004222688 Copy content Toggle raw display
7979 T4+14999641370 T^{4} + \cdots - 14999641370 Copy content Toggle raw display
8383 T4+374122465304 T^{4} + \cdots - 374122465304 Copy content Toggle raw display
8989 T4+25670269520 T^{4} + \cdots - 25670269520 Copy content Toggle raw display
9797 T4++190440971632 T^{4} + \cdots + 190440971632 Copy content Toggle raw display
show more
show less