[N,k,chi] = [1575,4,Mod(1,1575)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1575.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − x 4 − 18 x 3 + 7 x 2 + 30 x − 10 x^{5} - x^{4} - 18x^{3} + 7x^{2} + 30x - 10 x 5 − x 4 − 1 8 x 3 + 7 x 2 + 3 0 x − 1 0
x^5 - x^4 - 18*x^3 + 7*x^2 + 30*x - 10
:
β 1 \beta_{1} β 1 = = =
( − 2 ν 4 + 3 ν 3 + 27 ν 2 − 20 ν + 10 ) / 15 ( -2\nu^{4} + 3\nu^{3} + 27\nu^{2} - 20\nu + 10 ) / 15 ( − 2 ν 4 + 3 ν 3 + 2 7 ν 2 − 2 0 ν + 1 0 ) / 1 5
(-2*v^4 + 3*v^3 + 27*v^2 - 20*v + 10) / 15
β 2 \beta_{2} β 2 = = =
( 4 ν 4 + 24 ν 3 − 84 ν 2 − 320 ν + 70 ) / 15 ( 4\nu^{4} + 24\nu^{3} - 84\nu^{2} - 320\nu + 70 ) / 15 ( 4 ν 4 + 2 4 ν 3 − 8 4 ν 2 − 3 2 0 ν + 7 0 ) / 1 5
(4*v^4 + 24*v^3 - 84*v^2 - 320*v + 70) / 15
β 3 \beta_{3} β 3 = = =
( 8 ν 4 − 12 ν 3 − 138 ν 2 + 140 ν + 155 ) / 15 ( 8\nu^{4} - 12\nu^{3} - 138\nu^{2} + 140\nu + 155 ) / 15 ( 8 ν 4 − 1 2 ν 3 − 1 3 8 ν 2 + 1 4 0 ν + 1 5 5 ) / 1 5
(8*v^4 - 12*v^3 - 138*v^2 + 140*v + 155) / 15
β 4 \beta_{4} β 4 = = =
( − 32 ν 4 + 18 ν 3 + 582 ν 2 + 100 ν − 785 ) / 15 ( -32\nu^{4} + 18\nu^{3} + 582\nu^{2} + 100\nu - 785 ) / 15 ( − 3 2 ν 4 + 1 8 ν 3 + 5 8 2 ν 2 + 1 0 0 ν − 7 8 5 ) / 1 5
(-32*v^4 + 18*v^3 + 582*v^2 + 100*v - 785) / 15
ν \nu ν = = =
( β 4 + 4 β 3 + β 2 + 2 β 1 + 5 ) / 20 ( \beta_{4} + 4\beta_{3} + \beta_{2} + 2\beta _1 + 5 ) / 20 ( β 4 + 4 β 3 + β 2 + 2 β 1 + 5 ) / 2 0
(b4 + 4*b3 + b2 + 2*b1 + 5) / 20
ν 2 \nu^{2} ν 2 = = =
( β 4 − β 3 + β 2 − 18 β 1 + 70 ) / 10 ( \beta_{4} - \beta_{3} + \beta_{2} - 18\beta _1 + 70 ) / 10 ( β 4 − β 3 + β 2 − 1 8 β 1 + 7 0 ) / 1 0
(b4 - b3 + b2 - 18*b1 + 70) / 10
ν 3 \nu^{3} ν 3 = = =
( 7 β 4 + 23 β 3 + 12 β 2 + 4 β 1 + 70 ) / 10 ( 7\beta_{4} + 23\beta_{3} + 12\beta_{2} + 4\beta _1 + 70 ) / 10 ( 7 β 4 + 2 3 β 3 + 1 2 β 2 + 4 β 1 + 7 0 ) / 1 0
(7*b4 + 23*b3 + 12*b2 + 4*b1 + 70) / 10
ν 4 \nu^{4} ν 4 = = =
( 38 β 4 + 2 β 3 + 53 β 2 − 644 β 1 + 2150 ) / 20 ( 38\beta_{4} + 2\beta_{3} + 53\beta_{2} - 644\beta _1 + 2150 ) / 20 ( 3 8 β 4 + 2 β 3 + 5 3 β 2 − 6 4 4 β 1 + 2 1 5 0 ) / 2 0
(38*b4 + 2*b3 + 53*b2 - 644*b1 + 2150) / 20
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
5 5 5
− 1 -1 − 1
7 7 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 1575 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(1575)) S 4 n e w ( Γ 0 ( 1 5 7 5 ) ) :
T 2 5 − T 2 4 − 33 T 2 3 + 17 T 2 2 + 200 T 2 + 80 T_{2}^{5} - T_{2}^{4} - 33T_{2}^{3} + 17T_{2}^{2} + 200T_{2} + 80 T 2 5 − T 2 4 − 3 3 T 2 3 + 1 7 T 2 2 + 2 0 0 T 2 + 8 0
T2^5 - T2^4 - 33*T2^3 + 17*T2^2 + 200*T2 + 80
T 11 5 + 66 T 11 4 − 2100 T 11 3 − 140456 T 11 2 + 1472448 T 11 + 55852416 T_{11}^{5} + 66T_{11}^{4} - 2100T_{11}^{3} - 140456T_{11}^{2} + 1472448T_{11} + 55852416 T 1 1 5 + 6 6 T 1 1 4 − 2 1 0 0 T 1 1 3 − 1 4 0 4 5 6 T 1 1 2 + 1 4 7 2 4 4 8 T 1 1 + 5 5 8 5 2 4 1 6
T11^5 + 66*T11^4 - 2100*T11^3 - 140456*T11^2 + 1472448*T11 + 55852416
T 13 5 − 2 T 13 4 − 4152 T 13 3 − 15504 T 13 2 + 4336080 T 13 + 41380960 T_{13}^{5} - 2T_{13}^{4} - 4152T_{13}^{3} - 15504T_{13}^{2} + 4336080T_{13} + 41380960 T 1 3 5 − 2 T 1 3 4 − 4 1 5 2 T 1 3 3 − 1 5 5 0 4 T 1 3 2 + 4 3 3 6 0 8 0 T 1 3 + 4 1 3 8 0 9 6 0
T13^5 - 2*T13^4 - 4152*T13^3 - 15504*T13^2 + 4336080*T13 + 41380960
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 − T 4 + ⋯ + 80 T^{5} - T^{4} + \cdots + 80 T 5 − T 4 + ⋯ + 8 0
T^5 - T^4 - 33*T^3 + 17*T^2 + 200*T + 80
3 3 3
T 5 T^{5} T 5
T^5
5 5 5
T 5 T^{5} T 5
T^5
7 7 7
( T + 7 ) 5 (T + 7)^{5} ( T + 7 ) 5
(T + 7)^5
11 11 1 1
T 5 + 66 T 4 + ⋯ + 55852416 T^{5} + 66 T^{4} + \cdots + 55852416 T 5 + 6 6 T 4 + ⋯ + 5 5 8 5 2 4 1 6
T^5 + 66*T^4 - 2100*T^3 - 140456*T^2 + 1472448*T + 55852416
13 13 1 3
T 5 − 2 T 4 + ⋯ + 41380960 T^{5} - 2 T^{4} + \cdots + 41380960 T 5 − 2 T 4 + ⋯ + 4 1 3 8 0 9 6 0
T^5 - 2*T^4 - 4152*T^3 - 15504*T^2 + 4336080*T + 41380960
17 17 1 7
T 5 − 108 T 4 + ⋯ − 232018688 T^{5} - 108 T^{4} + \cdots - 232018688 T 5 − 1 0 8 T 4 + ⋯ − 2 3 2 0 1 8 6 8 8
T^5 - 108*T^4 - 16940*T^3 + 1541792*T^2 + 37019968*T - 232018688
19 19 1 9
T 5 − 174 T 4 + ⋯ − 784374624 T^{5} - 174 T^{4} + \cdots - 784374624 T 5 − 1 7 4 T 4 + ⋯ − 7 8 4 3 7 4 6 2 4
T^5 - 174*T^4 - 3640*T^3 + 1513744*T^2 - 40426032*T - 784374624
23 23 2 3
T 5 + 116 T 4 + ⋯ + 488160000 T^{5} + 116 T^{4} + \cdots + 488160000 T 5 + 1 1 6 T 4 + ⋯ + 4 8 8 1 6 0 0 0 0
T^5 + 116*T^4 - 19676*T^3 - 2700320*T^2 - 45825600*T + 488160000
29 29 2 9
T 5 + 370 T 4 + ⋯ − 1150048 T^{5} + 370 T^{4} + \cdots - 1150048 T 5 + 3 7 0 T 4 + ⋯ − 1 1 5 0 0 4 8
T^5 + 370*T^4 + 38440*T^3 + 1029840*T^2 - 14986160*T - 1150048
31 31 3 1
T 5 + ⋯ + 52737095200 T^{5} + \cdots + 52737095200 T 5 + ⋯ + 5 2 7 3 7 0 9 5 2 0 0
T^5 - 342*T^4 - 6904*T^3 + 13826640*T^2 - 1618226480*T + 52737095200
37 37 3 7
T 5 + ⋯ − 315202167808 T^{5} + \cdots - 315202167808 T 5 + ⋯ − 3 1 5 2 0 2 1 6 7 8 0 8
T^5 - 408*T^4 - 89600*T^3 + 30738752*T^2 + 3074210048*T - 315202167808
41 41 4 1
T 5 + ⋯ − 531402107648 T^{5} + \cdots - 531402107648 T 5 + ⋯ − 5 3 1 4 0 2 1 0 7 6 4 8
T^5 + 802*T^4 + 47852*T^3 - 74825096*T^2 - 12602553024*T - 531402107648
43 43 4 3
T 5 + ⋯ + 132088069120 T^{5} + \cdots + 132088069120 T 5 + ⋯ + 1 3 2 0 8 8 0 6 9 1 2 0
T^5 - 584*T^4 + 15872*T^3 + 36399168*T^2 - 5499585280*T + 132088069120
47 47 4 7
T 5 + ⋯ + 65728742400 T^{5} + \cdots + 65728742400 T 5 + ⋯ + 6 5 7 2 8 7 4 2 4 0 0
T^5 - 716*T^4 - 11696*T^3 + 87933440*T^2 - 13646008320*T + 65728742400
53 53 5 3
T 5 + ⋯ + 462468251232 T^{5} + \cdots + 462468251232 T 5 + ⋯ + 4 6 2 4 6 8 2 5 1 2 3 2
T^5 - 98*T^4 - 241080*T^3 - 12761488*T^2 + 8691280848*T + 462468251232
59 59 5 9
T 5 + ⋯ + 33724261457920 T^{5} + \cdots + 33724261457920 T 5 + ⋯ + 3 3 7 2 4 2 6 1 4 5 7 9 2 0
T^5 + 704*T^4 - 599408*T^3 - 380481408*T^2 + 47252515840*T + 33724261457920
61 61 6 1
T 5 + ⋯ + 1105143174112 T^{5} + \cdots + 1105143174112 T 5 + ⋯ + 1 1 0 5 1 4 3 1 7 4 1 1 2
T^5 - 650*T^4 - 445560*T^3 + 214899120*T^2 + 47217562320*T + 1105143174112
67 67 6 7
T 5 + ⋯ − 1579424171008 T^{5} + \cdots - 1579424171008 T 5 + ⋯ − 1 5 7 9 4 2 4 1 7 1 0 0 8
T^5 + 180*T^4 - 479120*T^3 - 233215360*T^2 - 34615928320*T - 1579424171008
71 71 7 1
T 5 + ⋯ − 237519904000 T^{5} + \cdots - 237519904000 T 5 + ⋯ − 2 3 7 5 1 9 9 0 4 0 0 0
T^5 + 1470*T^4 + 92060*T^3 - 376607000*T^2 - 40906747200*T - 237519904000
73 73 7 3
T 5 + ⋯ + 1941655936032 T^{5} + \cdots + 1941655936032 T 5 + ⋯ + 1 9 4 1 6 5 5 9 3 6 0 3 2
T^5 - 534*T^4 - 603064*T^3 - 99791920*T^2 + 8346269136*T + 1941655936032
79 79 7 9
T 5 + ⋯ + 43229481181184 T^{5} + \cdots + 43229481181184 T 5 + ⋯ + 4 3 2 2 9 4 8 1 1 8 1 1 8 4
T^5 + 820*T^4 - 728400*T^3 - 590031680*T^2 + 35855795200*T + 43229481181184
83 83 8 3
T 5 + ⋯ + 128527499264 T^{5} + \cdots + 128527499264 T 5 + ⋯ + 1 2 8 5 2 7 4 9 9 2 6 4
T^5 - 1520*T^4 + 667840*T^3 - 59036160*T^2 - 9802956800*T + 128527499264
89 89 8 9
T 5 + ⋯ − 1125486676224 T^{5} + \cdots - 1125486676224 T 5 + ⋯ − 1 1 2 5 4 8 6 6 7 6 2 2 4
T^5 + 286*T^4 - 1347380*T^3 - 206349496*T^2 + 41779572288*T - 1125486676224
97 97 9 7
T 5 + ⋯ + 19868737339616 T^{5} + \cdots + 19868737339616 T 5 + ⋯ + 1 9 8 6 8 7 3 7 3 3 9 6 1 6
T^5 + 278*T^4 - 1133656*T^3 - 6097680*T^2 + 145383131216*T + 19868737339616
show more
show less