Properties

Label 1575.4.a.bp
Level 15751575
Weight 44
Character orbit 1575.a
Self dual yes
Analytic conductor 92.92892.928
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 92.928008259092.9280082590
Analytic rank: 00
Dimension: 55
Coefficient field: 5.5.78066700.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x5x418x3+7x2+30x10 x^{5} - x^{4} - 18x^{3} + 7x^{2} + 30x - 10 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 255 2^{5}\cdot 5
Twist minimal: no (minimal twist has level 105)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β3β1+5)q47q7+(β25β1+6)q8+(β48β115)q11+(β4+β2+6β1+1)q13+7β1q14+49β1q98+O(q100) q - \beta_1 q^{2} + ( - \beta_{3} - \beta_1 + 5) q^{4} - 7 q^{7} + ( - \beta_{2} - 5 \beta_1 + 6) q^{8} + ( - \beta_{4} - 8 \beta_1 - 15) q^{11} + ( - \beta_{4} + \beta_{2} + 6 \beta_1 + 1) q^{13} + 7 \beta_1 q^{14}+ \cdots - 49 \beta_1 q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+q2+27q435q7+33q866q11+2q137q14+155q16+108q17+174q19+506q22116q23446q26189q28370q29+342q3155q32++49q98+O(q100) 5 q + q^{2} + 27 q^{4} - 35 q^{7} + 33 q^{8} - 66 q^{11} + 2 q^{13} - 7 q^{14} + 155 q^{16} + 108 q^{17} + 174 q^{19} + 506 q^{22} - 116 q^{23} - 446 q^{26} - 189 q^{28} - 370 q^{29} + 342 q^{31} - 55 q^{32}+ \cdots + 49 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x5x418x3+7x2+30x10 x^{5} - x^{4} - 18x^{3} + 7x^{2} + 30x - 10 : Copy content Toggle raw display

β1\beta_{1}== (2ν4+3ν3+27ν220ν+10)/15 ( -2\nu^{4} + 3\nu^{3} + 27\nu^{2} - 20\nu + 10 ) / 15 Copy content Toggle raw display
β2\beta_{2}== (4ν4+24ν384ν2320ν+70)/15 ( 4\nu^{4} + 24\nu^{3} - 84\nu^{2} - 320\nu + 70 ) / 15 Copy content Toggle raw display
β3\beta_{3}== (8ν412ν3138ν2+140ν+155)/15 ( 8\nu^{4} - 12\nu^{3} - 138\nu^{2} + 140\nu + 155 ) / 15 Copy content Toggle raw display
β4\beta_{4}== (32ν4+18ν3+582ν2+100ν785)/15 ( -32\nu^{4} + 18\nu^{3} + 582\nu^{2} + 100\nu - 785 ) / 15 Copy content Toggle raw display
ν\nu== (β4+4β3+β2+2β1+5)/20 ( \beta_{4} + 4\beta_{3} + \beta_{2} + 2\beta _1 + 5 ) / 20 Copy content Toggle raw display
ν2\nu^{2}== (β4β3+β218β1+70)/10 ( \beta_{4} - \beta_{3} + \beta_{2} - 18\beta _1 + 70 ) / 10 Copy content Toggle raw display
ν3\nu^{3}== (7β4+23β3+12β2+4β1+70)/10 ( 7\beta_{4} + 23\beta_{3} + 12\beta_{2} + 4\beta _1 + 70 ) / 10 Copy content Toggle raw display
ν4\nu^{4}== (38β4+2β3+53β2644β1+2150)/20 ( 38\beta_{4} + 2\beta_{3} + 53\beta_{2} - 644\beta _1 + 2150 ) / 20 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.37042
1.35311
0.329739
4.40248
−3.71490
−4.88936 0 15.9059 0 0 −7.00000 −38.6546 0 0
1.2 −2.20666 0 −3.13065 0 0 −7.00000 24.5616 0 0
1.3 −0.428319 0 −7.81654 0 0 −7.00000 6.77452 0 0
1.4 3.33774 0 3.14050 0 0 −7.00000 −16.2197 0 0
1.5 5.18660 0 18.9008 0 0 −7.00000 56.5383 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.4.a.bp 5
3.b odd 2 1 525.4.a.w 5
5.b even 2 1 1575.4.a.bo 5
5.c odd 4 2 315.4.d.b 10
15.d odd 2 1 525.4.a.x 5
15.e even 4 2 105.4.d.b 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.d.b 10 15.e even 4 2
315.4.d.b 10 5.c odd 4 2
525.4.a.w 5 3.b odd 2 1
525.4.a.x 5 15.d odd 2 1
1575.4.a.bo 5 5.b even 2 1
1575.4.a.bp 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1575))S_{4}^{\mathrm{new}}(\Gamma_0(1575)):

T25T2433T23+17T22+200T2+80 T_{2}^{5} - T_{2}^{4} - 33T_{2}^{3} + 17T_{2}^{2} + 200T_{2} + 80 Copy content Toggle raw display
T115+66T1142100T113140456T112+1472448T11+55852416 T_{11}^{5} + 66T_{11}^{4} - 2100T_{11}^{3} - 140456T_{11}^{2} + 1472448T_{11} + 55852416 Copy content Toggle raw display
T1352T1344152T13315504T132+4336080T13+41380960 T_{13}^{5} - 2T_{13}^{4} - 4152T_{13}^{3} - 15504T_{13}^{2} + 4336080T_{13} + 41380960 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T5T4++80 T^{5} - T^{4} + \cdots + 80 Copy content Toggle raw display
33 T5 T^{5} Copy content Toggle raw display
55 T5 T^{5} Copy content Toggle raw display
77 (T+7)5 (T + 7)^{5} Copy content Toggle raw display
1111 T5+66T4++55852416 T^{5} + 66 T^{4} + \cdots + 55852416 Copy content Toggle raw display
1313 T52T4++41380960 T^{5} - 2 T^{4} + \cdots + 41380960 Copy content Toggle raw display
1717 T5108T4+232018688 T^{5} - 108 T^{4} + \cdots - 232018688 Copy content Toggle raw display
1919 T5174T4+784374624 T^{5} - 174 T^{4} + \cdots - 784374624 Copy content Toggle raw display
2323 T5+116T4++488160000 T^{5} + 116 T^{4} + \cdots + 488160000 Copy content Toggle raw display
2929 T5+370T4+1150048 T^{5} + 370 T^{4} + \cdots - 1150048 Copy content Toggle raw display
3131 T5++52737095200 T^{5} + \cdots + 52737095200 Copy content Toggle raw display
3737 T5+315202167808 T^{5} + \cdots - 315202167808 Copy content Toggle raw display
4141 T5+531402107648 T^{5} + \cdots - 531402107648 Copy content Toggle raw display
4343 T5++132088069120 T^{5} + \cdots + 132088069120 Copy content Toggle raw display
4747 T5++65728742400 T^{5} + \cdots + 65728742400 Copy content Toggle raw display
5353 T5++462468251232 T^{5} + \cdots + 462468251232 Copy content Toggle raw display
5959 T5++33724261457920 T^{5} + \cdots + 33724261457920 Copy content Toggle raw display
6161 T5++1105143174112 T^{5} + \cdots + 1105143174112 Copy content Toggle raw display
6767 T5+1579424171008 T^{5} + \cdots - 1579424171008 Copy content Toggle raw display
7171 T5+237519904000 T^{5} + \cdots - 237519904000 Copy content Toggle raw display
7373 T5++1941655936032 T^{5} + \cdots + 1941655936032 Copy content Toggle raw display
7979 T5++43229481181184 T^{5} + \cdots + 43229481181184 Copy content Toggle raw display
8383 T5++128527499264 T^{5} + \cdots + 128527499264 Copy content Toggle raw display
8989 T5+1125486676224 T^{5} + \cdots - 1125486676224 Copy content Toggle raw display
9797 T5++19868737339616 T^{5} + \cdots + 19868737339616 Copy content Toggle raw display
show more
show less