Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1575,4,Mod(1,1575)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1575.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1575.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 35) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−4.04851 | 0 | 8.39045 | 0 | 0 | −7.00000 | −1.58074 | 0 | 0 | |||||||||||||||||||||||||||||||||
1.2 | −1.67516 | 0 | −5.19383 | 0 | 0 | −7.00000 | 22.1018 | 0 | 0 | ||||||||||||||||||||||||||||||||||
1.3 | 1.55528 | 0 | −5.58112 | 0 | 0 | −7.00000 | −21.1224 | 0 | 0 | ||||||||||||||||||||||||||||||||||
1.4 | 2.85474 | 0 | 0.149548 | 0 | 0 | −7.00000 | −22.4110 | 0 | 0 | ||||||||||||||||||||||||||||||||||
1.5 | 5.31366 | 0 | 20.2350 | 0 | 0 | −7.00000 | 65.0123 | 0 | 0 | ||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1575.4.a.bq | 5 | |
3.b | odd | 2 | 1 | 175.4.a.i | 5 | ||
5.b | even | 2 | 1 | 1575.4.a.bn | 5 | ||
5.c | odd | 4 | 2 | 315.4.d.c | 10 | ||
15.d | odd | 2 | 1 | 175.4.a.j | 5 | ||
15.e | even | 4 | 2 | 35.4.b.a | ✓ | 10 | |
21.c | even | 2 | 1 | 1225.4.a.be | 5 | ||
60.l | odd | 4 | 2 | 560.4.g.f | 10 | ||
105.g | even | 2 | 1 | 1225.4.a.bh | 5 | ||
105.k | odd | 4 | 2 | 245.4.b.d | 10 | ||
105.w | odd | 12 | 4 | 245.4.j.f | 20 | ||
105.x | even | 12 | 4 | 245.4.j.e | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
35.4.b.a | ✓ | 10 | 15.e | even | 4 | 2 | |
175.4.a.i | 5 | 3.b | odd | 2 | 1 | ||
175.4.a.j | 5 | 15.d | odd | 2 | 1 | ||
245.4.b.d | 10 | 105.k | odd | 4 | 2 | ||
245.4.j.e | 20 | 105.x | even | 12 | 4 | ||
245.4.j.f | 20 | 105.w | odd | 12 | 4 | ||
315.4.d.c | 10 | 5.c | odd | 4 | 2 | ||
560.4.g.f | 10 | 60.l | odd | 4 | 2 | ||
1225.4.a.be | 5 | 21.c | even | 2 | 1 | ||
1225.4.a.bh | 5 | 105.g | even | 2 | 1 | ||
1575.4.a.bn | 5 | 5.b | even | 2 | 1 | ||
1575.4.a.bq | 5 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|