Properties

Label 1575.4.a.bq
Level 15751575
Weight 44
Character orbit 1575.a
Self dual yes
Analytic conductor 92.92892.928
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 92.928008259092.9280082590
Analytic rank: 00
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x5x427x3+7x2+120x+60 x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 35)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q2+(β3+β2β1+4)q47q7+(2β4+β3++10)q8+(3β4+4β3+9)q11+(6β4+β3+2β2+4)q13++(49β1+49)q98+O(q100) q + ( - \beta_1 + 1) q^{2} + ( - \beta_{3} + \beta_{2} - \beta_1 + 4) q^{4} - 7 q^{7} + ( - 2 \beta_{4} + \beta_{3} + \cdots + 10) q^{8} + ( - 3 \beta_{4} + 4 \beta_{3} + \cdots - 9) q^{11} + ( - 6 \beta_{4} + \beta_{3} + 2 \beta_{2} + \cdots - 4) q^{13}+ \cdots + ( - 49 \beta_1 + 49) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q+4q2+18q435q7+42q842q1134q1328q14+74q16+238q1736q19358q22+152q23+310q26126q28+44q29+60q31+710q32++196q98+O(q100) 5 q + 4 q^{2} + 18 q^{4} - 35 q^{7} + 42 q^{8} - 42 q^{11} - 34 q^{13} - 28 q^{14} + 74 q^{16} + 238 q^{17} - 36 q^{19} - 358 q^{22} + 152 q^{23} + 310 q^{26} - 126 q^{28} + 44 q^{29} + 60 q^{31} + 710 q^{32}+ \cdots + 196 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x5x427x3+7x2+120x+60 x^{5} - x^{4} - 27x^{3} + 7x^{2} + 120x + 60 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν43ν317ν2+41ν+2)/8 ( \nu^{4} - 3\nu^{3} - 17\nu^{2} + 41\nu + 2 ) / 8 Copy content Toggle raw display
β3\beta_{3}== (ν43ν325ν2+49ν+90)/8 ( \nu^{4} - 3\nu^{3} - 25\nu^{2} + 49\nu + 90 ) / 8 Copy content Toggle raw display
β4\beta_{4}== (ν4ν325ν2+11ν+74)/4 ( \nu^{4} - \nu^{3} - 25\nu^{2} + 11\nu + 74 ) / 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β2+β1+11 -\beta_{3} + \beta_{2} + \beta _1 + 11 Copy content Toggle raw display
ν3\nu^{3}== 2β44β3+19β1+8 2\beta_{4} - 4\beta_{3} + 19\beta _1 + 8 Copy content Toggle raw display
ν4\nu^{4}== 6β429β3+25β2+33β1+209 6\beta_{4} - 29\beta_{3} + 25\beta_{2} + 33\beta _1 + 209 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
5.04851
2.67516
−0.555276
−1.85474
−4.31366
−4.04851 0 8.39045 0 0 −7.00000 −1.58074 0 0
1.2 −1.67516 0 −5.19383 0 0 −7.00000 22.1018 0 0
1.3 1.55528 0 −5.58112 0 0 −7.00000 −21.1224 0 0
1.4 2.85474 0 0.149548 0 0 −7.00000 −22.4110 0 0
1.5 5.31366 0 20.2350 0 0 −7.00000 65.0123 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.4.a.bq 5
3.b odd 2 1 175.4.a.i 5
5.b even 2 1 1575.4.a.bn 5
5.c odd 4 2 315.4.d.c 10
15.d odd 2 1 175.4.a.j 5
15.e even 4 2 35.4.b.a 10
21.c even 2 1 1225.4.a.be 5
60.l odd 4 2 560.4.g.f 10
105.g even 2 1 1225.4.a.bh 5
105.k odd 4 2 245.4.b.d 10
105.w odd 12 4 245.4.j.f 20
105.x even 12 4 245.4.j.e 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.b.a 10 15.e even 4 2
175.4.a.i 5 3.b odd 2 1
175.4.a.j 5 15.d odd 2 1
245.4.b.d 10 105.k odd 4 2
245.4.j.e 20 105.x even 12 4
245.4.j.f 20 105.w odd 12 4
315.4.d.c 10 5.c odd 4 2
560.4.g.f 10 60.l odd 4 2
1225.4.a.be 5 21.c even 2 1
1225.4.a.bh 5 105.g even 2 1
1575.4.a.bn 5 5.b even 2 1
1575.4.a.bq 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1575))S_{4}^{\mathrm{new}}(\Gamma_0(1575)):

T254T2421T23+70T22+54T2160 T_{2}^{5} - 4T_{2}^{4} - 21T_{2}^{3} + 70T_{2}^{2} + 54T_{2} - 160 Copy content Toggle raw display
T115+42T1142271T113151744T1122556120T1111139072 T_{11}^{5} + 42T_{11}^{4} - 2271T_{11}^{3} - 151744T_{11}^{2} - 2556120T_{11} - 11139072 Copy content Toggle raw display
T135+34T1347833T133110628T132+12637182T13+51332920 T_{13}^{5} + 34T_{13}^{4} - 7833T_{13}^{3} - 110628T_{13}^{2} + 12637182T_{13} + 51332920 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T54T4+160 T^{5} - 4 T^{4} + \cdots - 160 Copy content Toggle raw display
33 T5 T^{5} Copy content Toggle raw display
55 T5 T^{5} Copy content Toggle raw display
77 (T+7)5 (T + 7)^{5} Copy content Toggle raw display
1111 T5+42T4+11139072 T^{5} + 42 T^{4} + \cdots - 11139072 Copy content Toggle raw display
1313 T5+34T4++51332920 T^{5} + 34 T^{4} + \cdots + 51332920 Copy content Toggle raw display
1717 T5238T4++359983792 T^{5} - 238 T^{4} + \cdots + 359983792 Copy content Toggle raw display
1919 T5+36T4+20133120 T^{5} + 36 T^{4} + \cdots - 20133120 Copy content Toggle raw display
2323 T5+8730849408 T^{5} + \cdots - 8730849408 Copy content Toggle raw display
2929 T5+126081243400 T^{5} + \cdots - 126081243400 Copy content Toggle raw display
3131 T5+34433580800 T^{5} + \cdots - 34433580800 Copy content Toggle raw display
3737 T5+43388412544 T^{5} + \cdots - 43388412544 Copy content Toggle raw display
4141 T5+109849343072 T^{5} + \cdots - 109849343072 Copy content Toggle raw display
4343 T5++49627325440 T^{5} + \cdots + 49627325440 Copy content Toggle raw display
4747 T5++32437777344 T^{5} + \cdots + 32437777344 Copy content Toggle raw display
5353 T5976T4+744413184 T^{5} - 976 T^{4} + \cdots - 744413184 Copy content Toggle raw display
5959 T5+5009454255200 T^{5} + \cdots - 5009454255200 Copy content Toggle raw display
6161 T5+650238065792 T^{5} + \cdots - 650238065792 Copy content Toggle raw display
6767 T5+15885557727232 T^{5} + \cdots - 15885557727232 Copy content Toggle raw display
7171 T5++7767441797120 T^{5} + \cdots + 7767441797120 Copy content Toggle raw display
7373 T5++9409174483008 T^{5} + \cdots + 9409174483008 Copy content Toggle raw display
7979 T5++201540544400 T^{5} + \cdots + 201540544400 Copy content Toggle raw display
8383 T5+2803375323136 T^{5} + \cdots - 2803375323136 Copy content Toggle raw display
8989 T5+68855772276480 T^{5} + \cdots - 68855772276480 Copy content Toggle raw display
9797 T5+12547593502192 T^{5} + \cdots - 12547593502192 Copy content Toggle raw display
show more
show less