Properties

Label 1575.4.a.bs.1.1
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 50x^{6} + 698x^{4} - 2653x^{2} + 2268 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.38335\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.38335 q^{2} +20.9805 q^{4} +7.00000 q^{7} -69.8783 q^{8} +15.8856 q^{11} -40.8573 q^{13} -37.6834 q^{14} +208.336 q^{16} +47.2555 q^{17} +141.113 q^{19} -85.5176 q^{22} -97.3015 q^{23} +219.949 q^{26} +146.863 q^{28} -236.682 q^{29} +95.7947 q^{31} -562.518 q^{32} -254.393 q^{34} +33.8738 q^{37} -759.663 q^{38} -197.295 q^{41} +437.132 q^{43} +333.287 q^{44} +523.808 q^{46} -256.598 q^{47} +49.0000 q^{49} -857.205 q^{52} +64.7048 q^{53} -489.148 q^{56} +1274.14 q^{58} +809.137 q^{59} +318.721 q^{61} -515.696 q^{62} +1361.55 q^{64} -726.284 q^{67} +991.443 q^{68} +68.6547 q^{71} -680.433 q^{73} -182.355 q^{74} +2960.62 q^{76} +111.199 q^{77} +1169.94 q^{79} +1062.11 q^{82} +642.901 q^{83} -2353.24 q^{86} -1110.06 q^{88} +1382.18 q^{89} -286.001 q^{91} -2041.43 q^{92} +1381.36 q^{94} -317.080 q^{97} -263.784 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 36 q^{4} + 56 q^{7} - 38 q^{13} + 320 q^{16} + 68 q^{19} + 110 q^{22} + 252 q^{28} + 534 q^{31} + 118 q^{34} + 14 q^{37} + 816 q^{43} + 1588 q^{46} + 392 q^{49} - 266 q^{52} + 716 q^{58} + 874 q^{61}+ \cdots + 428 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.38335 −1.90330 −0.951651 0.307182i \(-0.900614\pi\)
−0.951651 + 0.307182i \(0.900614\pi\)
\(3\) 0 0
\(4\) 20.9805 2.62256
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) −69.8783 −3.08822
\(9\) 0 0
\(10\) 0 0
\(11\) 15.8856 0.435426 0.217713 0.976013i \(-0.430140\pi\)
0.217713 + 0.976013i \(0.430140\pi\)
\(12\) 0 0
\(13\) −40.8573 −0.871676 −0.435838 0.900025i \(-0.643548\pi\)
−0.435838 + 0.900025i \(0.643548\pi\)
\(14\) −37.6834 −0.719380
\(15\) 0 0
\(16\) 208.336 3.25525
\(17\) 47.2555 0.674185 0.337093 0.941471i \(-0.390556\pi\)
0.337093 + 0.941471i \(0.390556\pi\)
\(18\) 0 0
\(19\) 141.113 1.70388 0.851938 0.523643i \(-0.175427\pi\)
0.851938 + 0.523643i \(0.175427\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −85.5176 −0.828746
\(23\) −97.3015 −0.882120 −0.441060 0.897478i \(-0.645397\pi\)
−0.441060 + 0.897478i \(0.645397\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 219.949 1.65906
\(27\) 0 0
\(28\) 146.863 0.991233
\(29\) −236.682 −1.51555 −0.757773 0.652519i \(-0.773712\pi\)
−0.757773 + 0.652519i \(0.773712\pi\)
\(30\) 0 0
\(31\) 95.7947 0.555008 0.277504 0.960725i \(-0.410493\pi\)
0.277504 + 0.960725i \(0.410493\pi\)
\(32\) −562.518 −3.10750
\(33\) 0 0
\(34\) −254.393 −1.28318
\(35\) 0 0
\(36\) 0 0
\(37\) 33.8738 0.150509 0.0752544 0.997164i \(-0.476023\pi\)
0.0752544 + 0.997164i \(0.476023\pi\)
\(38\) −759.663 −3.24299
\(39\) 0 0
\(40\) 0 0
\(41\) −197.295 −0.751520 −0.375760 0.926717i \(-0.622618\pi\)
−0.375760 + 0.926717i \(0.622618\pi\)
\(42\) 0 0
\(43\) 437.132 1.55028 0.775140 0.631790i \(-0.217679\pi\)
0.775140 + 0.631790i \(0.217679\pi\)
\(44\) 333.287 1.14193
\(45\) 0 0
\(46\) 523.808 1.67894
\(47\) −256.598 −0.796354 −0.398177 0.917309i \(-0.630357\pi\)
−0.398177 + 0.917309i \(0.630357\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −857.205 −2.28602
\(53\) 64.7048 0.167696 0.0838480 0.996479i \(-0.473279\pi\)
0.0838480 + 0.996479i \(0.473279\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −489.148 −1.16724
\(57\) 0 0
\(58\) 1274.14 2.88454
\(59\) 809.137 1.78543 0.892717 0.450618i \(-0.148796\pi\)
0.892717 + 0.450618i \(0.148796\pi\)
\(60\) 0 0
\(61\) 318.721 0.668985 0.334492 0.942398i \(-0.391435\pi\)
0.334492 + 0.942398i \(0.391435\pi\)
\(62\) −515.696 −1.05635
\(63\) 0 0
\(64\) 1361.55 2.65927
\(65\) 0 0
\(66\) 0 0
\(67\) −726.284 −1.32432 −0.662162 0.749361i \(-0.730361\pi\)
−0.662162 + 0.749361i \(0.730361\pi\)
\(68\) 991.443 1.76809
\(69\) 0 0
\(70\) 0 0
\(71\) 68.6547 0.114758 0.0573790 0.998352i \(-0.481726\pi\)
0.0573790 + 0.998352i \(0.481726\pi\)
\(72\) 0 0
\(73\) −680.433 −1.09094 −0.545471 0.838130i \(-0.683649\pi\)
−0.545471 + 0.838130i \(0.683649\pi\)
\(74\) −182.355 −0.286464
\(75\) 0 0
\(76\) 2960.62 4.46851
\(77\) 111.199 0.164575
\(78\) 0 0
\(79\) 1169.94 1.66619 0.833093 0.553132i \(-0.186568\pi\)
0.833093 + 0.553132i \(0.186568\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1062.11 1.43037
\(83\) 642.901 0.850211 0.425105 0.905144i \(-0.360237\pi\)
0.425105 + 0.905144i \(0.360237\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2353.24 −2.95065
\(87\) 0 0
\(88\) −1110.06 −1.34469
\(89\) 1382.18 1.64619 0.823096 0.567903i \(-0.192245\pi\)
0.823096 + 0.567903i \(0.192245\pi\)
\(90\) 0 0
\(91\) −286.001 −0.329462
\(92\) −2041.43 −2.31341
\(93\) 0 0
\(94\) 1381.36 1.51570
\(95\) 0 0
\(96\) 0 0
\(97\) −317.080 −0.331903 −0.165951 0.986134i \(-0.553070\pi\)
−0.165951 + 0.986134i \(0.553070\pi\)
\(98\) −263.784 −0.271900
\(99\) 0 0
\(100\) 0 0
\(101\) −1140.37 −1.12347 −0.561736 0.827316i \(-0.689866\pi\)
−0.561736 + 0.827316i \(0.689866\pi\)
\(102\) 0 0
\(103\) 970.893 0.928786 0.464393 0.885629i \(-0.346273\pi\)
0.464393 + 0.885629i \(0.346273\pi\)
\(104\) 2855.04 2.69192
\(105\) 0 0
\(106\) −348.329 −0.319176
\(107\) −707.342 −0.639078 −0.319539 0.947573i \(-0.603528\pi\)
−0.319539 + 0.947573i \(0.603528\pi\)
\(108\) 0 0
\(109\) −1538.49 −1.35193 −0.675967 0.736932i \(-0.736274\pi\)
−0.675967 + 0.736932i \(0.736274\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1458.35 1.23037
\(113\) 465.734 0.387722 0.193861 0.981029i \(-0.437899\pi\)
0.193861 + 0.981029i \(0.437899\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −4965.70 −3.97460
\(117\) 0 0
\(118\) −4355.87 −3.39822
\(119\) 330.789 0.254818
\(120\) 0 0
\(121\) −1078.65 −0.810405
\(122\) −1715.79 −1.27328
\(123\) 0 0
\(124\) 2009.82 1.45554
\(125\) 0 0
\(126\) 0 0
\(127\) 964.749 0.674076 0.337038 0.941491i \(-0.390575\pi\)
0.337038 + 0.941491i \(0.390575\pi\)
\(128\) −2829.53 −1.95389
\(129\) 0 0
\(130\) 0 0
\(131\) 2733.39 1.82303 0.911517 0.411262i \(-0.134912\pi\)
0.911517 + 0.411262i \(0.134912\pi\)
\(132\) 0 0
\(133\) 987.794 0.644005
\(134\) 3909.84 2.52059
\(135\) 0 0
\(136\) −3302.14 −2.08203
\(137\) 2707.00 1.68813 0.844067 0.536238i \(-0.180155\pi\)
0.844067 + 0.536238i \(0.180155\pi\)
\(138\) 0 0
\(139\) −2459.38 −1.50073 −0.750367 0.661021i \(-0.770123\pi\)
−0.750367 + 0.661021i \(0.770123\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −369.592 −0.218419
\(143\) −649.042 −0.379550
\(144\) 0 0
\(145\) 0 0
\(146\) 3663.01 2.07639
\(147\) 0 0
\(148\) 710.689 0.394718
\(149\) −3484.84 −1.91604 −0.958018 0.286707i \(-0.907439\pi\)
−0.958018 + 0.286707i \(0.907439\pi\)
\(150\) 0 0
\(151\) 444.052 0.239314 0.119657 0.992815i \(-0.461820\pi\)
0.119657 + 0.992815i \(0.461820\pi\)
\(152\) −9860.77 −5.26194
\(153\) 0 0
\(154\) −598.623 −0.313237
\(155\) 0 0
\(156\) 0 0
\(157\) −831.556 −0.422709 −0.211355 0.977409i \(-0.567788\pi\)
−0.211355 + 0.977409i \(0.567788\pi\)
\(158\) −6298.21 −3.17126
\(159\) 0 0
\(160\) 0 0
\(161\) −681.110 −0.333410
\(162\) 0 0
\(163\) −419.137 −0.201407 −0.100703 0.994916i \(-0.532109\pi\)
−0.100703 + 0.994916i \(0.532109\pi\)
\(164\) −4139.34 −1.97090
\(165\) 0 0
\(166\) −3460.96 −1.61821
\(167\) −2441.03 −1.13109 −0.565547 0.824716i \(-0.691335\pi\)
−0.565547 + 0.824716i \(0.691335\pi\)
\(168\) 0 0
\(169\) −527.678 −0.240181
\(170\) 0 0
\(171\) 0 0
\(172\) 9171.23 4.06570
\(173\) 2630.72 1.15613 0.578064 0.815991i \(-0.303808\pi\)
0.578064 + 0.815991i \(0.303808\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3309.54 1.41742
\(177\) 0 0
\(178\) −7440.77 −3.13320
\(179\) 739.987 0.308990 0.154495 0.987994i \(-0.450625\pi\)
0.154495 + 0.987994i \(0.450625\pi\)
\(180\) 0 0
\(181\) −2061.53 −0.846588 −0.423294 0.905992i \(-0.639126\pi\)
−0.423294 + 0.905992i \(0.639126\pi\)
\(182\) 1539.65 0.627066
\(183\) 0 0
\(184\) 6799.27 2.72418
\(185\) 0 0
\(186\) 0 0
\(187\) 750.681 0.293558
\(188\) −5383.54 −2.08848
\(189\) 0 0
\(190\) 0 0
\(191\) −4047.47 −1.53332 −0.766662 0.642051i \(-0.778084\pi\)
−0.766662 + 0.642051i \(0.778084\pi\)
\(192\) 0 0
\(193\) −2100.96 −0.783578 −0.391789 0.920055i \(-0.628144\pi\)
−0.391789 + 0.920055i \(0.628144\pi\)
\(194\) 1706.95 0.631711
\(195\) 0 0
\(196\) 1028.04 0.374651
\(197\) −3057.94 −1.10594 −0.552968 0.833202i \(-0.686505\pi\)
−0.552968 + 0.833202i \(0.686505\pi\)
\(198\) 0 0
\(199\) 2915.91 1.03871 0.519356 0.854558i \(-0.326172\pi\)
0.519356 + 0.854558i \(0.326172\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 6138.99 2.13831
\(203\) −1656.78 −0.572822
\(204\) 0 0
\(205\) 0 0
\(206\) −5226.66 −1.76776
\(207\) 0 0
\(208\) −8512.05 −2.83752
\(209\) 2241.67 0.741911
\(210\) 0 0
\(211\) 3626.89 1.18334 0.591671 0.806179i \(-0.298468\pi\)
0.591671 + 0.806179i \(0.298468\pi\)
\(212\) 1357.54 0.439792
\(213\) 0 0
\(214\) 3807.87 1.21636
\(215\) 0 0
\(216\) 0 0
\(217\) 670.563 0.209773
\(218\) 8282.24 2.57314
\(219\) 0 0
\(220\) 0 0
\(221\) −1930.74 −0.587671
\(222\) 0 0
\(223\) 5661.60 1.70013 0.850064 0.526679i \(-0.176563\pi\)
0.850064 + 0.526679i \(0.176563\pi\)
\(224\) −3937.63 −1.17453
\(225\) 0 0
\(226\) −2507.21 −0.737951
\(227\) 5746.85 1.68032 0.840158 0.542342i \(-0.182462\pi\)
0.840158 + 0.542342i \(0.182462\pi\)
\(228\) 0 0
\(229\) −1702.78 −0.491367 −0.245684 0.969350i \(-0.579012\pi\)
−0.245684 + 0.969350i \(0.579012\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 16539.0 4.68033
\(233\) 988.387 0.277903 0.138951 0.990299i \(-0.455627\pi\)
0.138951 + 0.990299i \(0.455627\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 16976.1 4.68240
\(237\) 0 0
\(238\) −1780.75 −0.484996
\(239\) −301.963 −0.0817255 −0.0408627 0.999165i \(-0.513011\pi\)
−0.0408627 + 0.999165i \(0.513011\pi\)
\(240\) 0 0
\(241\) −4054.29 −1.08365 −0.541826 0.840491i \(-0.682267\pi\)
−0.541826 + 0.840491i \(0.682267\pi\)
\(242\) 5806.74 1.54244
\(243\) 0 0
\(244\) 6686.92 1.75445
\(245\) 0 0
\(246\) 0 0
\(247\) −5765.52 −1.48523
\(248\) −6693.97 −1.71398
\(249\) 0 0
\(250\) 0 0
\(251\) −6426.79 −1.61616 −0.808079 0.589074i \(-0.799493\pi\)
−0.808079 + 0.589074i \(0.799493\pi\)
\(252\) 0 0
\(253\) −1545.69 −0.384098
\(254\) −5193.58 −1.28297
\(255\) 0 0
\(256\) 4339.98 1.05957
\(257\) −991.869 −0.240744 −0.120372 0.992729i \(-0.538409\pi\)
−0.120372 + 0.992729i \(0.538409\pi\)
\(258\) 0 0
\(259\) 237.117 0.0568870
\(260\) 0 0
\(261\) 0 0
\(262\) −14714.8 −3.46978
\(263\) 5394.91 1.26488 0.632442 0.774608i \(-0.282053\pi\)
0.632442 + 0.774608i \(0.282053\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −5317.64 −1.22573
\(267\) 0 0
\(268\) −15237.8 −3.47311
\(269\) 7111.53 1.61189 0.805944 0.591992i \(-0.201658\pi\)
0.805944 + 0.591992i \(0.201658\pi\)
\(270\) 0 0
\(271\) 609.090 0.136530 0.0682649 0.997667i \(-0.478254\pi\)
0.0682649 + 0.997667i \(0.478254\pi\)
\(272\) 9845.02 2.19464
\(273\) 0 0
\(274\) −14572.7 −3.21303
\(275\) 0 0
\(276\) 0 0
\(277\) 3015.06 0.653998 0.326999 0.945025i \(-0.393963\pi\)
0.326999 + 0.945025i \(0.393963\pi\)
\(278\) 13239.7 2.85635
\(279\) 0 0
\(280\) 0 0
\(281\) −416.706 −0.0884648 −0.0442324 0.999021i \(-0.514084\pi\)
−0.0442324 + 0.999021i \(0.514084\pi\)
\(282\) 0 0
\(283\) 4483.54 0.941763 0.470882 0.882196i \(-0.343936\pi\)
0.470882 + 0.882196i \(0.343936\pi\)
\(284\) 1440.41 0.300959
\(285\) 0 0
\(286\) 3494.02 0.722398
\(287\) −1381.07 −0.284048
\(288\) 0 0
\(289\) −2679.91 −0.545474
\(290\) 0 0
\(291\) 0 0
\(292\) −14275.8 −2.86106
\(293\) 8198.32 1.63464 0.817322 0.576181i \(-0.195458\pi\)
0.817322 + 0.576181i \(0.195458\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2367.05 −0.464804
\(297\) 0 0
\(298\) 18760.1 3.64680
\(299\) 3975.48 0.768923
\(300\) 0 0
\(301\) 3059.93 0.585951
\(302\) −2390.49 −0.455487
\(303\) 0 0
\(304\) 29399.0 5.54654
\(305\) 0 0
\(306\) 0 0
\(307\) 5568.07 1.03514 0.517568 0.855642i \(-0.326837\pi\)
0.517568 + 0.855642i \(0.326837\pi\)
\(308\) 2333.01 0.431608
\(309\) 0 0
\(310\) 0 0
\(311\) 979.150 0.178529 0.0892645 0.996008i \(-0.471548\pi\)
0.0892645 + 0.996008i \(0.471548\pi\)
\(312\) 0 0
\(313\) −1466.51 −0.264831 −0.132415 0.991194i \(-0.542273\pi\)
−0.132415 + 0.991194i \(0.542273\pi\)
\(314\) 4476.56 0.804544
\(315\) 0 0
\(316\) 24545.9 4.36967
\(317\) 9413.22 1.66782 0.833910 0.551900i \(-0.186097\pi\)
0.833910 + 0.551900i \(0.186097\pi\)
\(318\) 0 0
\(319\) −3759.84 −0.659907
\(320\) 0 0
\(321\) 0 0
\(322\) 3666.66 0.634580
\(323\) 6668.39 1.14873
\(324\) 0 0
\(325\) 0 0
\(326\) 2256.36 0.383338
\(327\) 0 0
\(328\) 13786.6 2.32085
\(329\) −1796.18 −0.300993
\(330\) 0 0
\(331\) 6614.38 1.09837 0.549183 0.835702i \(-0.314939\pi\)
0.549183 + 0.835702i \(0.314939\pi\)
\(332\) 13488.3 2.22973
\(333\) 0 0
\(334\) 13140.9 2.15281
\(335\) 0 0
\(336\) 0 0
\(337\) 717.673 0.116006 0.0580032 0.998316i \(-0.481527\pi\)
0.0580032 + 0.998316i \(0.481527\pi\)
\(338\) 2840.68 0.457137
\(339\) 0 0
\(340\) 0 0
\(341\) 1521.75 0.241665
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) −30546.1 −4.78760
\(345\) 0 0
\(346\) −14162.1 −2.20046
\(347\) 6994.59 1.08210 0.541051 0.840990i \(-0.318027\pi\)
0.541051 + 0.840990i \(0.318027\pi\)
\(348\) 0 0
\(349\) 9941.33 1.52478 0.762388 0.647120i \(-0.224027\pi\)
0.762388 + 0.647120i \(0.224027\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8935.93 −1.35309
\(353\) 1997.26 0.301143 0.150572 0.988599i \(-0.451889\pi\)
0.150572 + 0.988599i \(0.451889\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 28998.8 4.31723
\(357\) 0 0
\(358\) −3983.61 −0.588101
\(359\) 3272.07 0.481040 0.240520 0.970644i \(-0.422682\pi\)
0.240520 + 0.970644i \(0.422682\pi\)
\(360\) 0 0
\(361\) 13054.0 1.90319
\(362\) 11098.0 1.61131
\(363\) 0 0
\(364\) −6000.44 −0.864034
\(365\) 0 0
\(366\) 0 0
\(367\) −12744.7 −1.81272 −0.906359 0.422509i \(-0.861150\pi\)
−0.906359 + 0.422509i \(0.861150\pi\)
\(368\) −20271.4 −2.87152
\(369\) 0 0
\(370\) 0 0
\(371\) 452.934 0.0633831
\(372\) 0 0
\(373\) 1849.96 0.256803 0.128401 0.991722i \(-0.459015\pi\)
0.128401 + 0.991722i \(0.459015\pi\)
\(374\) −4041.18 −0.558729
\(375\) 0 0
\(376\) 17930.6 2.45931
\(377\) 9670.21 1.32106
\(378\) 0 0
\(379\) 4832.69 0.654983 0.327491 0.944854i \(-0.393797\pi\)
0.327491 + 0.944854i \(0.393797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 21789.0 2.91838
\(383\) 3561.98 0.475218 0.237609 0.971361i \(-0.423636\pi\)
0.237609 + 0.971361i \(0.423636\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 11310.2 1.49139
\(387\) 0 0
\(388\) −6652.48 −0.870434
\(389\) −5095.14 −0.664097 −0.332048 0.943262i \(-0.607740\pi\)
−0.332048 + 0.943262i \(0.607740\pi\)
\(390\) 0 0
\(391\) −4598.03 −0.594712
\(392\) −3424.04 −0.441174
\(393\) 0 0
\(394\) 16462.0 2.10493
\(395\) 0 0
\(396\) 0 0
\(397\) −14511.4 −1.83453 −0.917263 0.398283i \(-0.869606\pi\)
−0.917263 + 0.398283i \(0.869606\pi\)
\(398\) −15697.4 −1.97698
\(399\) 0 0
\(400\) 0 0
\(401\) −4973.55 −0.619370 −0.309685 0.950839i \(-0.600224\pi\)
−0.309685 + 0.950839i \(0.600224\pi\)
\(402\) 0 0
\(403\) −3913.92 −0.483787
\(404\) −23925.4 −2.94637
\(405\) 0 0
\(406\) 8919.01 1.09025
\(407\) 538.106 0.0655354
\(408\) 0 0
\(409\) 2841.63 0.343545 0.171772 0.985137i \(-0.445051\pi\)
0.171772 + 0.985137i \(0.445051\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 20369.8 2.43579
\(413\) 5663.96 0.674831
\(414\) 0 0
\(415\) 0 0
\(416\) 22983.0 2.70874
\(417\) 0 0
\(418\) −12067.7 −1.41208
\(419\) 12983.2 1.51377 0.756886 0.653547i \(-0.226720\pi\)
0.756886 + 0.653547i \(0.226720\pi\)
\(420\) 0 0
\(421\) 6323.41 0.732029 0.366015 0.930609i \(-0.380722\pi\)
0.366015 + 0.930609i \(0.380722\pi\)
\(422\) −19524.8 −2.25226
\(423\) 0 0
\(424\) −4521.46 −0.517881
\(425\) 0 0
\(426\) 0 0
\(427\) 2231.05 0.252852
\(428\) −14840.4 −1.67602
\(429\) 0 0
\(430\) 0 0
\(431\) 2421.08 0.270579 0.135289 0.990806i \(-0.456804\pi\)
0.135289 + 0.990806i \(0.456804\pi\)
\(432\) 0 0
\(433\) 3187.12 0.353726 0.176863 0.984235i \(-0.443405\pi\)
0.176863 + 0.984235i \(0.443405\pi\)
\(434\) −3609.87 −0.399262
\(435\) 0 0
\(436\) −32278.3 −3.54553
\(437\) −13730.5 −1.50302
\(438\) 0 0
\(439\) −2492.32 −0.270961 −0.135480 0.990780i \(-0.543258\pi\)
−0.135480 + 0.990780i \(0.543258\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 10393.8 1.11852
\(443\) 5862.02 0.628698 0.314349 0.949308i \(-0.398214\pi\)
0.314349 + 0.949308i \(0.398214\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −30478.4 −3.23586
\(447\) 0 0
\(448\) 9530.82 1.00511
\(449\) 9655.80 1.01489 0.507445 0.861684i \(-0.330590\pi\)
0.507445 + 0.861684i \(0.330590\pi\)
\(450\) 0 0
\(451\) −3134.15 −0.327231
\(452\) 9771.31 1.01682
\(453\) 0 0
\(454\) −30937.3 −3.19815
\(455\) 0 0
\(456\) 0 0
\(457\) −12608.4 −1.29059 −0.645293 0.763935i \(-0.723265\pi\)
−0.645293 + 0.763935i \(0.723265\pi\)
\(458\) 9166.68 0.935220
\(459\) 0 0
\(460\) 0 0
\(461\) 4611.99 0.465947 0.232974 0.972483i \(-0.425154\pi\)
0.232974 + 0.972483i \(0.425154\pi\)
\(462\) 0 0
\(463\) 11150.2 1.11921 0.559603 0.828761i \(-0.310954\pi\)
0.559603 + 0.828761i \(0.310954\pi\)
\(464\) −49309.4 −4.93348
\(465\) 0 0
\(466\) −5320.83 −0.528933
\(467\) 4106.72 0.406930 0.203465 0.979082i \(-0.434780\pi\)
0.203465 + 0.979082i \(0.434780\pi\)
\(468\) 0 0
\(469\) −5083.99 −0.500547
\(470\) 0 0
\(471\) 0 0
\(472\) −56541.1 −5.51380
\(473\) 6944.10 0.675032
\(474\) 0 0
\(475\) 0 0
\(476\) 6940.10 0.668275
\(477\) 0 0
\(478\) 1625.57 0.155548
\(479\) −4559.73 −0.434947 −0.217473 0.976066i \(-0.569782\pi\)
−0.217473 + 0.976066i \(0.569782\pi\)
\(480\) 0 0
\(481\) −1383.99 −0.131195
\(482\) 21825.7 2.06252
\(483\) 0 0
\(484\) −22630.5 −2.12533
\(485\) 0 0
\(486\) 0 0
\(487\) 3854.56 0.358659 0.179329 0.983789i \(-0.442607\pi\)
0.179329 + 0.983789i \(0.442607\pi\)
\(488\) −22271.7 −2.06597
\(489\) 0 0
\(490\) 0 0
\(491\) −10619.9 −0.976110 −0.488055 0.872813i \(-0.662293\pi\)
−0.488055 + 0.872813i \(0.662293\pi\)
\(492\) 0 0
\(493\) −11184.6 −1.02176
\(494\) 31037.8 2.82684
\(495\) 0 0
\(496\) 19957.5 1.80669
\(497\) 480.583 0.0433744
\(498\) 0 0
\(499\) −4544.53 −0.407698 −0.203849 0.979002i \(-0.565345\pi\)
−0.203849 + 0.979002i \(0.565345\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 34597.7 3.07604
\(503\) −8793.98 −0.779531 −0.389766 0.920914i \(-0.627444\pi\)
−0.389766 + 0.920914i \(0.627444\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 8320.99 0.731054
\(507\) 0 0
\(508\) 20240.9 1.76780
\(509\) −10573.9 −0.920782 −0.460391 0.887716i \(-0.652291\pi\)
−0.460391 + 0.887716i \(0.652291\pi\)
\(510\) 0 0
\(511\) −4763.03 −0.412337
\(512\) −727.414 −0.0627880
\(513\) 0 0
\(514\) 5339.58 0.458208
\(515\) 0 0
\(516\) 0 0
\(517\) −4076.20 −0.346753
\(518\) −1276.48 −0.108273
\(519\) 0 0
\(520\) 0 0
\(521\) −15708.4 −1.32092 −0.660458 0.750863i \(-0.729638\pi\)
−0.660458 + 0.750863i \(0.729638\pi\)
\(522\) 0 0
\(523\) 2656.84 0.222133 0.111067 0.993813i \(-0.464573\pi\)
0.111067 + 0.993813i \(0.464573\pi\)
\(524\) 57347.8 4.78101
\(525\) 0 0
\(526\) −29042.7 −2.40745
\(527\) 4526.83 0.374178
\(528\) 0 0
\(529\) −2699.42 −0.221864
\(530\) 0 0
\(531\) 0 0
\(532\) 20724.4 1.68894
\(533\) 8060.95 0.655081
\(534\) 0 0
\(535\) 0 0
\(536\) 50751.5 4.08980
\(537\) 0 0
\(538\) −38283.9 −3.06791
\(539\) 778.393 0.0622037
\(540\) 0 0
\(541\) −6340.08 −0.503847 −0.251924 0.967747i \(-0.581063\pi\)
−0.251924 + 0.967747i \(0.581063\pi\)
\(542\) −3278.94 −0.259857
\(543\) 0 0
\(544\) −26582.1 −2.09503
\(545\) 0 0
\(546\) 0 0
\(547\) 22317.5 1.74447 0.872235 0.489087i \(-0.162670\pi\)
0.872235 + 0.489087i \(0.162670\pi\)
\(548\) 56794.0 4.42723
\(549\) 0 0
\(550\) 0 0
\(551\) −33399.1 −2.58230
\(552\) 0 0
\(553\) 8189.59 0.629759
\(554\) −16231.1 −1.24476
\(555\) 0 0
\(556\) −51599.0 −3.93576
\(557\) −9476.86 −0.720911 −0.360455 0.932776i \(-0.617379\pi\)
−0.360455 + 0.932776i \(0.617379\pi\)
\(558\) 0 0
\(559\) −17860.1 −1.35134
\(560\) 0 0
\(561\) 0 0
\(562\) 2243.28 0.168375
\(563\) 21003.7 1.57229 0.786144 0.618043i \(-0.212074\pi\)
0.786144 + 0.618043i \(0.212074\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −24136.5 −1.79246
\(567\) 0 0
\(568\) −4797.48 −0.354397
\(569\) 22905.7 1.68762 0.843811 0.536640i \(-0.180307\pi\)
0.843811 + 0.536640i \(0.180307\pi\)
\(570\) 0 0
\(571\) 5035.60 0.369060 0.184530 0.982827i \(-0.440924\pi\)
0.184530 + 0.982827i \(0.440924\pi\)
\(572\) −13617.2 −0.995392
\(573\) 0 0
\(574\) 7434.76 0.540628
\(575\) 0 0
\(576\) 0 0
\(577\) 7692.81 0.555036 0.277518 0.960720i \(-0.410488\pi\)
0.277518 + 0.960720i \(0.410488\pi\)
\(578\) 14426.9 1.03820
\(579\) 0 0
\(580\) 0 0
\(581\) 4500.30 0.321350
\(582\) 0 0
\(583\) 1027.87 0.0730191
\(584\) 47547.6 3.36906
\(585\) 0 0
\(586\) −44134.4 −3.11122
\(587\) 4219.62 0.296699 0.148350 0.988935i \(-0.452604\pi\)
0.148350 + 0.988935i \(0.452604\pi\)
\(588\) 0 0
\(589\) 13517.9 0.945664
\(590\) 0 0
\(591\) 0 0
\(592\) 7057.14 0.489943
\(593\) 10710.9 0.741730 0.370865 0.928687i \(-0.379061\pi\)
0.370865 + 0.928687i \(0.379061\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −73113.6 −5.02492
\(597\) 0 0
\(598\) −21401.4 −1.46349
\(599\) 25086.1 1.71117 0.855584 0.517663i \(-0.173198\pi\)
0.855584 + 0.517663i \(0.173198\pi\)
\(600\) 0 0
\(601\) 25399.6 1.72391 0.861957 0.506982i \(-0.169239\pi\)
0.861957 + 0.506982i \(0.169239\pi\)
\(602\) −16472.6 −1.11524
\(603\) 0 0
\(604\) 9316.42 0.627616
\(605\) 0 0
\(606\) 0 0
\(607\) −14501.2 −0.969665 −0.484833 0.874607i \(-0.661119\pi\)
−0.484833 + 0.874607i \(0.661119\pi\)
\(608\) −79378.9 −5.29480
\(609\) 0 0
\(610\) 0 0
\(611\) 10483.9 0.694162
\(612\) 0 0
\(613\) −3673.43 −0.242036 −0.121018 0.992650i \(-0.538616\pi\)
−0.121018 + 0.992650i \(0.538616\pi\)
\(614\) −29974.9 −1.97018
\(615\) 0 0
\(616\) −7770.40 −0.508244
\(617\) 9857.06 0.643161 0.321581 0.946882i \(-0.395786\pi\)
0.321581 + 0.946882i \(0.395786\pi\)
\(618\) 0 0
\(619\) 29100.2 1.88956 0.944778 0.327712i \(-0.106277\pi\)
0.944778 + 0.327712i \(0.106277\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −5271.11 −0.339794
\(623\) 9675.28 0.622202
\(624\) 0 0
\(625\) 0 0
\(626\) 7894.74 0.504053
\(627\) 0 0
\(628\) −17446.4 −1.10858
\(629\) 1600.73 0.101471
\(630\) 0 0
\(631\) −5707.06 −0.360055 −0.180027 0.983662i \(-0.557619\pi\)
−0.180027 + 0.983662i \(0.557619\pi\)
\(632\) −81753.6 −5.14554
\(633\) 0 0
\(634\) −50674.7 −3.17437
\(635\) 0 0
\(636\) 0 0
\(637\) −2002.01 −0.124525
\(638\) 20240.5 1.25600
\(639\) 0 0
\(640\) 0 0
\(641\) 7664.18 0.472257 0.236129 0.971722i \(-0.424121\pi\)
0.236129 + 0.971722i \(0.424121\pi\)
\(642\) 0 0
\(643\) −15108.9 −0.926653 −0.463326 0.886188i \(-0.653344\pi\)
−0.463326 + 0.886188i \(0.653344\pi\)
\(644\) −14290.0 −0.874387
\(645\) 0 0
\(646\) −35898.3 −2.18638
\(647\) 26190.4 1.59142 0.795712 0.605675i \(-0.207097\pi\)
0.795712 + 0.605675i \(0.207097\pi\)
\(648\) 0 0
\(649\) 12853.6 0.777424
\(650\) 0 0
\(651\) 0 0
\(652\) −8793.68 −0.528201
\(653\) −609.867 −0.0365482 −0.0182741 0.999833i \(-0.505817\pi\)
−0.0182741 + 0.999833i \(0.505817\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −41103.6 −2.44638
\(657\) 0 0
\(658\) 9669.49 0.572881
\(659\) −8456.98 −0.499905 −0.249952 0.968258i \(-0.580415\pi\)
−0.249952 + 0.968258i \(0.580415\pi\)
\(660\) 0 0
\(661\) 11260.1 0.662582 0.331291 0.943529i \(-0.392516\pi\)
0.331291 + 0.943529i \(0.392516\pi\)
\(662\) −35607.5 −2.09052
\(663\) 0 0
\(664\) −44924.8 −2.62563
\(665\) 0 0
\(666\) 0 0
\(667\) 23029.5 1.33689
\(668\) −51213.9 −2.96636
\(669\) 0 0
\(670\) 0 0
\(671\) 5063.07 0.291293
\(672\) 0 0
\(673\) 21034.3 1.20477 0.602386 0.798205i \(-0.294217\pi\)
0.602386 + 0.798205i \(0.294217\pi\)
\(674\) −3863.48 −0.220795
\(675\) 0 0
\(676\) −11070.9 −0.629889
\(677\) −6576.39 −0.373340 −0.186670 0.982423i \(-0.559770\pi\)
−0.186670 + 0.982423i \(0.559770\pi\)
\(678\) 0 0
\(679\) −2219.56 −0.125448
\(680\) 0 0
\(681\) 0 0
\(682\) −8192.14 −0.459961
\(683\) 19573.4 1.09657 0.548283 0.836293i \(-0.315282\pi\)
0.548283 + 0.836293i \(0.315282\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1846.49 −0.102769
\(687\) 0 0
\(688\) 91070.3 5.04655
\(689\) −2643.67 −0.146177
\(690\) 0 0
\(691\) 10921.3 0.601251 0.300626 0.953742i \(-0.402805\pi\)
0.300626 + 0.953742i \(0.402805\pi\)
\(692\) 55193.8 3.03201
\(693\) 0 0
\(694\) −37654.3 −2.05957
\(695\) 0 0
\(696\) 0 0
\(697\) −9323.28 −0.506663
\(698\) −53517.6 −2.90211
\(699\) 0 0
\(700\) 0 0
\(701\) −15067.7 −0.811839 −0.405920 0.913909i \(-0.633049\pi\)
−0.405920 + 0.913909i \(0.633049\pi\)
\(702\) 0 0
\(703\) 4780.05 0.256448
\(704\) 21628.9 1.15791
\(705\) 0 0
\(706\) −10752.0 −0.573166
\(707\) −7982.57 −0.424633
\(708\) 0 0
\(709\) 27173.9 1.43940 0.719702 0.694283i \(-0.244279\pi\)
0.719702 + 0.694283i \(0.244279\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −96584.6 −5.08379
\(713\) −9320.97 −0.489583
\(714\) 0 0
\(715\) 0 0
\(716\) 15525.3 0.810344
\(717\) 0 0
\(718\) −17614.7 −0.915564
\(719\) 11572.1 0.600233 0.300117 0.953902i \(-0.402974\pi\)
0.300117 + 0.953902i \(0.402974\pi\)
\(720\) 0 0
\(721\) 6796.25 0.351048
\(722\) −70274.2 −3.62235
\(723\) 0 0
\(724\) −43251.9 −2.22023
\(725\) 0 0
\(726\) 0 0
\(727\) −10390.6 −0.530075 −0.265038 0.964238i \(-0.585384\pi\)
−0.265038 + 0.964238i \(0.585384\pi\)
\(728\) 19985.3 1.01745
\(729\) 0 0
\(730\) 0 0
\(731\) 20656.9 1.04518
\(732\) 0 0
\(733\) 20807.9 1.04851 0.524255 0.851562i \(-0.324344\pi\)
0.524255 + 0.851562i \(0.324344\pi\)
\(734\) 68609.1 3.45015
\(735\) 0 0
\(736\) 54733.9 2.74119
\(737\) −11537.4 −0.576644
\(738\) 0 0
\(739\) 8201.89 0.408270 0.204135 0.978943i \(-0.434562\pi\)
0.204135 + 0.978943i \(0.434562\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2438.30 −0.120637
\(743\) −6711.14 −0.331370 −0.165685 0.986179i \(-0.552983\pi\)
−0.165685 + 0.986179i \(0.552983\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −9958.99 −0.488773
\(747\) 0 0
\(748\) 15749.6 0.769871
\(749\) −4951.39 −0.241549
\(750\) 0 0
\(751\) 28845.5 1.40158 0.700789 0.713368i \(-0.252831\pi\)
0.700789 + 0.713368i \(0.252831\pi\)
\(752\) −53458.5 −2.59233
\(753\) 0 0
\(754\) −52058.1 −2.51438
\(755\) 0 0
\(756\) 0 0
\(757\) −18678.9 −0.896822 −0.448411 0.893827i \(-0.648010\pi\)
−0.448411 + 0.893827i \(0.648010\pi\)
\(758\) −26016.0 −1.24663
\(759\) 0 0
\(760\) 0 0
\(761\) −22486.7 −1.07115 −0.535573 0.844489i \(-0.679904\pi\)
−0.535573 + 0.844489i \(0.679904\pi\)
\(762\) 0 0
\(763\) −10769.4 −0.510983
\(764\) −84917.8 −4.02123
\(765\) 0 0
\(766\) −19175.4 −0.904483
\(767\) −33059.2 −1.55632
\(768\) 0 0
\(769\) 3982.98 0.186775 0.0933874 0.995630i \(-0.470230\pi\)
0.0933874 + 0.995630i \(0.470230\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −44079.1 −2.05498
\(773\) −8594.11 −0.399882 −0.199941 0.979808i \(-0.564075\pi\)
−0.199941 + 0.979808i \(0.564075\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 22157.0 1.02499
\(777\) 0 0
\(778\) 27428.9 1.26398
\(779\) −27841.0 −1.28050
\(780\) 0 0
\(781\) 1090.62 0.0499685
\(782\) 24752.8 1.13192
\(783\) 0 0
\(784\) 10208.5 0.465035
\(785\) 0 0
\(786\) 0 0
\(787\) −21490.9 −0.973403 −0.486702 0.873568i \(-0.661800\pi\)
−0.486702 + 0.873568i \(0.661800\pi\)
\(788\) −64157.0 −2.90038
\(789\) 0 0
\(790\) 0 0
\(791\) 3260.14 0.146545
\(792\) 0 0
\(793\) −13022.1 −0.583138
\(794\) 78120.0 3.49165
\(795\) 0 0
\(796\) 61177.2 2.72408
\(797\) 2703.13 0.120138 0.0600688 0.998194i \(-0.480868\pi\)
0.0600688 + 0.998194i \(0.480868\pi\)
\(798\) 0 0
\(799\) −12125.7 −0.536890
\(800\) 0 0
\(801\) 0 0
\(802\) 26774.4 1.17885
\(803\) −10809.1 −0.475024
\(804\) 0 0
\(805\) 0 0
\(806\) 21070.0 0.920792
\(807\) 0 0
\(808\) 79686.9 3.46952
\(809\) 16331.3 0.709738 0.354869 0.934916i \(-0.384526\pi\)
0.354869 + 0.934916i \(0.384526\pi\)
\(810\) 0 0
\(811\) 14503.0 0.627953 0.313977 0.949431i \(-0.398339\pi\)
0.313977 + 0.949431i \(0.398339\pi\)
\(812\) −34759.9 −1.50226
\(813\) 0 0
\(814\) −2896.81 −0.124734
\(815\) 0 0
\(816\) 0 0
\(817\) 61685.2 2.64148
\(818\) −15297.5 −0.653869
\(819\) 0 0
\(820\) 0 0
\(821\) −27641.5 −1.17503 −0.587513 0.809215i \(-0.699893\pi\)
−0.587513 + 0.809215i \(0.699893\pi\)
\(822\) 0 0
\(823\) 20193.2 0.855273 0.427636 0.903951i \(-0.359346\pi\)
0.427636 + 0.903951i \(0.359346\pi\)
\(824\) −67844.4 −2.86829
\(825\) 0 0
\(826\) −30491.1 −1.28441
\(827\) −14333.6 −0.602696 −0.301348 0.953514i \(-0.597437\pi\)
−0.301348 + 0.953514i \(0.597437\pi\)
\(828\) 0 0
\(829\) 3214.10 0.134657 0.0673283 0.997731i \(-0.478553\pi\)
0.0673283 + 0.997731i \(0.478553\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −55629.1 −2.31802
\(833\) 2315.52 0.0963122
\(834\) 0 0
\(835\) 0 0
\(836\) 47031.2 1.94570
\(837\) 0 0
\(838\) −69893.1 −2.88117
\(839\) −729.209 −0.0300061 −0.0150030 0.999887i \(-0.504776\pi\)
−0.0150030 + 0.999887i \(0.504776\pi\)
\(840\) 0 0
\(841\) 31629.5 1.29688
\(842\) −34041.1 −1.39327
\(843\) 0 0
\(844\) 76093.8 3.10338
\(845\) 0 0
\(846\) 0 0
\(847\) −7550.54 −0.306304
\(848\) 13480.3 0.545892
\(849\) 0 0
\(850\) 0 0
\(851\) −3295.98 −0.132767
\(852\) 0 0
\(853\) 41938.2 1.68340 0.841698 0.539949i \(-0.181557\pi\)
0.841698 + 0.539949i \(0.181557\pi\)
\(854\) −12010.5 −0.481254
\(855\) 0 0
\(856\) 49427.9 1.97361
\(857\) 19103.8 0.761464 0.380732 0.924685i \(-0.375672\pi\)
0.380732 + 0.924685i \(0.375672\pi\)
\(858\) 0 0
\(859\) 13341.8 0.529936 0.264968 0.964257i \(-0.414639\pi\)
0.264968 + 0.964257i \(0.414639\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −13033.5 −0.514993
\(863\) 38561.8 1.52104 0.760522 0.649313i \(-0.224943\pi\)
0.760522 + 0.649313i \(0.224943\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −17157.4 −0.673247
\(867\) 0 0
\(868\) 14068.7 0.550142
\(869\) 18585.2 0.725500
\(870\) 0 0
\(871\) 29674.0 1.15438
\(872\) 107507. 4.17507
\(873\) 0 0
\(874\) 73916.3 2.86071
\(875\) 0 0
\(876\) 0 0
\(877\) −28097.0 −1.08183 −0.540917 0.841076i \(-0.681923\pi\)
−0.540917 + 0.841076i \(0.681923\pi\)
\(878\) 13417.0 0.515720
\(879\) 0 0
\(880\) 0 0
\(881\) 12677.3 0.484801 0.242400 0.970176i \(-0.422065\pi\)
0.242400 + 0.970176i \(0.422065\pi\)
\(882\) 0 0
\(883\) −26590.0 −1.01339 −0.506695 0.862125i \(-0.669133\pi\)
−0.506695 + 0.862125i \(0.669133\pi\)
\(884\) −40507.7 −1.54120
\(885\) 0 0
\(886\) −31557.3 −1.19660
\(887\) 10754.1 0.407090 0.203545 0.979066i \(-0.434754\pi\)
0.203545 + 0.979066i \(0.434754\pi\)
\(888\) 0 0
\(889\) 6753.24 0.254777
\(890\) 0 0
\(891\) 0 0
\(892\) 118783. 4.45868
\(893\) −36209.4 −1.35689
\(894\) 0 0
\(895\) 0 0
\(896\) −19806.7 −0.738500
\(897\) 0 0
\(898\) −51980.5 −1.93164
\(899\) −22672.9 −0.841139
\(900\) 0 0
\(901\) 3057.66 0.113058
\(902\) 16872.2 0.622819
\(903\) 0 0
\(904\) −32544.7 −1.19737
\(905\) 0 0
\(906\) 0 0
\(907\) −40275.4 −1.47445 −0.737224 0.675649i \(-0.763864\pi\)
−0.737224 + 0.675649i \(0.763864\pi\)
\(908\) 120572. 4.40672
\(909\) 0 0
\(910\) 0 0
\(911\) 19797.9 0.720015 0.360007 0.932949i \(-0.382774\pi\)
0.360007 + 0.932949i \(0.382774\pi\)
\(912\) 0 0
\(913\) 10212.8 0.370204
\(914\) 67875.7 2.45638
\(915\) 0 0
\(916\) −35725.2 −1.28864
\(917\) 19133.7 0.689042
\(918\) 0 0
\(919\) −40237.3 −1.44429 −0.722146 0.691740i \(-0.756844\pi\)
−0.722146 + 0.691740i \(0.756844\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −24827.9 −0.886838
\(923\) −2805.05 −0.100032
\(924\) 0 0
\(925\) 0 0
\(926\) −60025.3 −2.13019
\(927\) 0 0
\(928\) 133138. 4.70956
\(929\) 13545.9 0.478391 0.239195 0.970971i \(-0.423116\pi\)
0.239195 + 0.970971i \(0.423116\pi\)
\(930\) 0 0
\(931\) 6914.56 0.243411
\(932\) 20736.8 0.728816
\(933\) 0 0
\(934\) −22107.9 −0.774511
\(935\) 0 0
\(936\) 0 0
\(937\) −32849.2 −1.14529 −0.572645 0.819803i \(-0.694083\pi\)
−0.572645 + 0.819803i \(0.694083\pi\)
\(938\) 27368.9 0.952692
\(939\) 0 0
\(940\) 0 0
\(941\) −44538.0 −1.54293 −0.771464 0.636272i \(-0.780475\pi\)
−0.771464 + 0.636272i \(0.780475\pi\)
\(942\) 0 0
\(943\) 19197.1 0.662931
\(944\) 168572. 5.81203
\(945\) 0 0
\(946\) −37382.5 −1.28479
\(947\) −1052.01 −0.0360991 −0.0180496 0.999837i \(-0.505746\pi\)
−0.0180496 + 0.999837i \(0.505746\pi\)
\(948\) 0 0
\(949\) 27800.7 0.950947
\(950\) 0 0
\(951\) 0 0
\(952\) −23115.0 −0.786933
\(953\) 35657.1 1.21201 0.606005 0.795461i \(-0.292771\pi\)
0.606005 + 0.795461i \(0.292771\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −6335.33 −0.214330
\(957\) 0 0
\(958\) 24546.6 0.827835
\(959\) 18949.0 0.638055
\(960\) 0 0
\(961\) −20614.4 −0.691967
\(962\) 7450.53 0.249703
\(963\) 0 0
\(964\) −85060.9 −2.84194
\(965\) 0 0
\(966\) 0 0
\(967\) −3425.21 −0.113906 −0.0569531 0.998377i \(-0.518139\pi\)
−0.0569531 + 0.998377i \(0.518139\pi\)
\(968\) 75374.2 2.50270
\(969\) 0 0
\(970\) 0 0
\(971\) 15544.8 0.513754 0.256877 0.966444i \(-0.417306\pi\)
0.256877 + 0.966444i \(0.417306\pi\)
\(972\) 0 0
\(973\) −17215.7 −0.567224
\(974\) −20750.5 −0.682636
\(975\) 0 0
\(976\) 66401.1 2.17771
\(977\) 48799.1 1.59798 0.798988 0.601347i \(-0.205369\pi\)
0.798988 + 0.601347i \(0.205369\pi\)
\(978\) 0 0
\(979\) 21956.8 0.716794
\(980\) 0 0
\(981\) 0 0
\(982\) 57170.7 1.85783
\(983\) −39839.1 −1.29264 −0.646322 0.763065i \(-0.723694\pi\)
−0.646322 + 0.763065i \(0.723694\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 60210.4 1.94471
\(987\) 0 0
\(988\) −120963. −3.89509
\(989\) −42533.6 −1.36753
\(990\) 0 0
\(991\) 4833.44 0.154934 0.0774668 0.996995i \(-0.475317\pi\)
0.0774668 + 0.996995i \(0.475317\pi\)
\(992\) −53886.3 −1.72469
\(993\) 0 0
\(994\) −2587.15 −0.0825546
\(995\) 0 0
\(996\) 0 0
\(997\) 2299.66 0.0730502 0.0365251 0.999333i \(-0.488371\pi\)
0.0365251 + 0.999333i \(0.488371\pi\)
\(998\) 24464.8 0.775971
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bs.1.1 yes 8
3.2 odd 2 inner 1575.4.a.bs.1.8 yes 8
5.4 even 2 1575.4.a.br.1.8 yes 8
15.14 odd 2 1575.4.a.br.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1575.4.a.br.1.1 8 15.14 odd 2
1575.4.a.br.1.8 yes 8 5.4 even 2
1575.4.a.bs.1.1 yes 8 1.1 even 1 trivial
1575.4.a.bs.1.8 yes 8 3.2 odd 2 inner