Properties

Label 1575.4.a.bt.1.5
Level $1575$
Weight $4$
Character 1575.1
Self dual yes
Analytic conductor $92.928$
Analytic rank $1$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.9280082590\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 67x^{8} + 1523x^{6} - 13569x^{4} + 36944x^{2} - 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 315)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.0833494\) of defining polynomial
Character \(\chi\) \(=\) 1575.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0833494 q^{2} -7.99305 q^{4} -7.00000 q^{7} +1.33301 q^{8} -48.7488 q^{11} -37.1435 q^{13} +0.583446 q^{14} +63.8333 q^{16} +94.0651 q^{17} +83.6312 q^{19} +4.06318 q^{22} +35.0715 q^{23} +3.09589 q^{26} +55.9514 q^{28} +86.8210 q^{29} -105.937 q^{31} -15.9846 q^{32} -7.84026 q^{34} +340.316 q^{37} -6.97061 q^{38} -194.735 q^{41} +201.903 q^{43} +389.652 q^{44} -2.92319 q^{46} +220.564 q^{47} +49.0000 q^{49} +296.890 q^{52} -593.630 q^{53} -9.33108 q^{56} -7.23648 q^{58} +172.639 q^{59} +271.931 q^{61} +8.82978 q^{62} -509.334 q^{64} -260.343 q^{67} -751.867 q^{68} -845.726 q^{71} -882.621 q^{73} -28.3651 q^{74} -668.469 q^{76} +341.242 q^{77} +641.065 q^{79} +16.2310 q^{82} +566.613 q^{83} -16.8285 q^{86} -64.9827 q^{88} -544.829 q^{89} +260.004 q^{91} -280.328 q^{92} -18.3839 q^{94} +148.663 q^{97} -4.08412 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 54 q^{4} - 70 q^{7} - 104 q^{13} + 310 q^{16} + 36 q^{19} - 644 q^{22} - 378 q^{28} - 24 q^{31} + 116 q^{34} - 732 q^{37} - 212 q^{43} - 184 q^{46} + 490 q^{49} - 2692 q^{52} - 3196 q^{58} + 1024 q^{61}+ \cdots - 4024 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0833494 −0.0294685 −0.0147342 0.999891i \(-0.504690\pi\)
−0.0147342 + 0.999891i \(0.504690\pi\)
\(3\) 0 0
\(4\) −7.99305 −0.999132
\(5\) 0 0
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 1.33301 0.0589113
\(9\) 0 0
\(10\) 0 0
\(11\) −48.7488 −1.33621 −0.668106 0.744066i \(-0.732895\pi\)
−0.668106 + 0.744066i \(0.732895\pi\)
\(12\) 0 0
\(13\) −37.1435 −0.792442 −0.396221 0.918155i \(-0.629679\pi\)
−0.396221 + 0.918155i \(0.629679\pi\)
\(14\) 0.583446 0.0111380
\(15\) 0 0
\(16\) 63.8333 0.997396
\(17\) 94.0651 1.34201 0.671004 0.741454i \(-0.265863\pi\)
0.671004 + 0.741454i \(0.265863\pi\)
\(18\) 0 0
\(19\) 83.6312 1.00981 0.504903 0.863176i \(-0.331528\pi\)
0.504903 + 0.863176i \(0.331528\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.06318 0.0393761
\(23\) 35.0715 0.317953 0.158976 0.987282i \(-0.449181\pi\)
0.158976 + 0.987282i \(0.449181\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 3.09589 0.0233521
\(27\) 0 0
\(28\) 55.9514 0.377636
\(29\) 86.8210 0.555940 0.277970 0.960590i \(-0.410338\pi\)
0.277970 + 0.960590i \(0.410338\pi\)
\(30\) 0 0
\(31\) −105.937 −0.613769 −0.306884 0.951747i \(-0.599287\pi\)
−0.306884 + 0.951747i \(0.599287\pi\)
\(32\) −15.9846 −0.0883030
\(33\) 0 0
\(34\) −7.84026 −0.0395469
\(35\) 0 0
\(36\) 0 0
\(37\) 340.316 1.51210 0.756049 0.654515i \(-0.227127\pi\)
0.756049 + 0.654515i \(0.227127\pi\)
\(38\) −6.97061 −0.0297574
\(39\) 0 0
\(40\) 0 0
\(41\) −194.735 −0.741767 −0.370883 0.928679i \(-0.620945\pi\)
−0.370883 + 0.928679i \(0.620945\pi\)
\(42\) 0 0
\(43\) 201.903 0.716044 0.358022 0.933713i \(-0.383451\pi\)
0.358022 + 0.933713i \(0.383451\pi\)
\(44\) 389.652 1.33505
\(45\) 0 0
\(46\) −2.92319 −0.00936958
\(47\) 220.564 0.684522 0.342261 0.939605i \(-0.388807\pi\)
0.342261 + 0.939605i \(0.388807\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 296.890 0.791754
\(53\) −593.630 −1.53852 −0.769258 0.638939i \(-0.779374\pi\)
−0.769258 + 0.638939i \(0.779374\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −9.33108 −0.0222664
\(57\) 0 0
\(58\) −7.23648 −0.0163827
\(59\) 172.639 0.380944 0.190472 0.981693i \(-0.438998\pi\)
0.190472 + 0.981693i \(0.438998\pi\)
\(60\) 0 0
\(61\) 271.931 0.570773 0.285387 0.958412i \(-0.407878\pi\)
0.285387 + 0.958412i \(0.407878\pi\)
\(62\) 8.82978 0.0180868
\(63\) 0 0
\(64\) −509.334 −0.994793
\(65\) 0 0
\(66\) 0 0
\(67\) −260.343 −0.474716 −0.237358 0.971422i \(-0.576281\pi\)
−0.237358 + 0.971422i \(0.576281\pi\)
\(68\) −751.867 −1.34084
\(69\) 0 0
\(70\) 0 0
\(71\) −845.726 −1.41365 −0.706825 0.707388i \(-0.749873\pi\)
−0.706825 + 0.707388i \(0.749873\pi\)
\(72\) 0 0
\(73\) −882.621 −1.41511 −0.707555 0.706659i \(-0.750202\pi\)
−0.707555 + 0.706659i \(0.750202\pi\)
\(74\) −28.3651 −0.0445592
\(75\) 0 0
\(76\) −668.469 −1.00893
\(77\) 341.242 0.505040
\(78\) 0 0
\(79\) 641.065 0.912980 0.456490 0.889729i \(-0.349106\pi\)
0.456490 + 0.889729i \(0.349106\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 16.2310 0.0218587
\(83\) 566.613 0.749324 0.374662 0.927162i \(-0.377759\pi\)
0.374662 + 0.927162i \(0.377759\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −16.8285 −0.0211007
\(87\) 0 0
\(88\) −64.9827 −0.0787180
\(89\) −544.829 −0.648896 −0.324448 0.945903i \(-0.605179\pi\)
−0.324448 + 0.945903i \(0.605179\pi\)
\(90\) 0 0
\(91\) 260.004 0.299515
\(92\) −280.328 −0.317677
\(93\) 0 0
\(94\) −18.3839 −0.0201718
\(95\) 0 0
\(96\) 0 0
\(97\) 148.663 0.155613 0.0778066 0.996968i \(-0.475208\pi\)
0.0778066 + 0.996968i \(0.475208\pi\)
\(98\) −4.08412 −0.00420978
\(99\) 0 0
\(100\) 0 0
\(101\) 1846.72 1.81936 0.909682 0.415306i \(-0.136325\pi\)
0.909682 + 0.415306i \(0.136325\pi\)
\(102\) 0 0
\(103\) −971.408 −0.929278 −0.464639 0.885500i \(-0.653816\pi\)
−0.464639 + 0.885500i \(0.653816\pi\)
\(104\) −49.5127 −0.0466838
\(105\) 0 0
\(106\) 49.4787 0.0453377
\(107\) −764.765 −0.690959 −0.345479 0.938426i \(-0.612284\pi\)
−0.345479 + 0.938426i \(0.612284\pi\)
\(108\) 0 0
\(109\) −969.755 −0.852163 −0.426081 0.904685i \(-0.640106\pi\)
−0.426081 + 0.904685i \(0.640106\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −446.833 −0.376980
\(113\) 2076.09 1.72834 0.864170 0.503201i \(-0.167844\pi\)
0.864170 + 0.503201i \(0.167844\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −693.965 −0.555457
\(117\) 0 0
\(118\) −14.3894 −0.0112258
\(119\) −658.455 −0.507231
\(120\) 0 0
\(121\) 1045.45 0.785460
\(122\) −22.6653 −0.0168198
\(123\) 0 0
\(124\) 846.760 0.613236
\(125\) 0 0
\(126\) 0 0
\(127\) −360.217 −0.251686 −0.125843 0.992050i \(-0.540164\pi\)
−0.125843 + 0.992050i \(0.540164\pi\)
\(128\) 170.329 0.117618
\(129\) 0 0
\(130\) 0 0
\(131\) 2341.95 1.56196 0.780980 0.624556i \(-0.214720\pi\)
0.780980 + 0.624556i \(0.214720\pi\)
\(132\) 0 0
\(133\) −585.418 −0.381671
\(134\) 21.6994 0.0139891
\(135\) 0 0
\(136\) 125.390 0.0790594
\(137\) −939.721 −0.586028 −0.293014 0.956108i \(-0.594658\pi\)
−0.293014 + 0.956108i \(0.594658\pi\)
\(138\) 0 0
\(139\) −518.600 −0.316454 −0.158227 0.987403i \(-0.550578\pi\)
−0.158227 + 0.987403i \(0.550578\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 70.4907 0.0416581
\(143\) 1810.70 1.05887
\(144\) 0 0
\(145\) 0 0
\(146\) 73.5659 0.0417011
\(147\) 0 0
\(148\) −2720.17 −1.51079
\(149\) −1174.47 −0.645749 −0.322875 0.946442i \(-0.604649\pi\)
−0.322875 + 0.946442i \(0.604649\pi\)
\(150\) 0 0
\(151\) −1609.96 −0.867662 −0.433831 0.900994i \(-0.642838\pi\)
−0.433831 + 0.900994i \(0.642838\pi\)
\(152\) 111.481 0.0594890
\(153\) 0 0
\(154\) −28.4423 −0.0148828
\(155\) 0 0
\(156\) 0 0
\(157\) −3492.45 −1.77534 −0.887668 0.460484i \(-0.847676\pi\)
−0.887668 + 0.460484i \(0.847676\pi\)
\(158\) −53.4324 −0.0269041
\(159\) 0 0
\(160\) 0 0
\(161\) −245.500 −0.120175
\(162\) 0 0
\(163\) −2329.08 −1.11919 −0.559594 0.828767i \(-0.689043\pi\)
−0.559594 + 0.828767i \(0.689043\pi\)
\(164\) 1556.52 0.741123
\(165\) 0 0
\(166\) −47.2268 −0.0220814
\(167\) 1116.49 0.517343 0.258672 0.965965i \(-0.416715\pi\)
0.258672 + 0.965965i \(0.416715\pi\)
\(168\) 0 0
\(169\) −817.361 −0.372035
\(170\) 0 0
\(171\) 0 0
\(172\) −1613.82 −0.715423
\(173\) −974.826 −0.428409 −0.214204 0.976789i \(-0.568716\pi\)
−0.214204 + 0.976789i \(0.568716\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3111.80 −1.33273
\(177\) 0 0
\(178\) 45.4112 0.0191220
\(179\) −1418.59 −0.592350 −0.296175 0.955134i \(-0.595711\pi\)
−0.296175 + 0.955134i \(0.595711\pi\)
\(180\) 0 0
\(181\) −153.859 −0.0631838 −0.0315919 0.999501i \(-0.510058\pi\)
−0.0315919 + 0.999501i \(0.510058\pi\)
\(182\) −21.6712 −0.00882625
\(183\) 0 0
\(184\) 46.7507 0.0187310
\(185\) 0 0
\(186\) 0 0
\(187\) −4585.56 −1.79321
\(188\) −1762.98 −0.683928
\(189\) 0 0
\(190\) 0 0
\(191\) 4372.37 1.65641 0.828203 0.560428i \(-0.189363\pi\)
0.828203 + 0.560428i \(0.189363\pi\)
\(192\) 0 0
\(193\) −4706.42 −1.75531 −0.877657 0.479288i \(-0.840895\pi\)
−0.877657 + 0.479288i \(0.840895\pi\)
\(194\) −12.3910 −0.00458568
\(195\) 0 0
\(196\) −391.660 −0.142733
\(197\) −5150.73 −1.86281 −0.931407 0.363979i \(-0.881418\pi\)
−0.931407 + 0.363979i \(0.881418\pi\)
\(198\) 0 0
\(199\) 4677.70 1.66630 0.833148 0.553049i \(-0.186536\pi\)
0.833148 + 0.553049i \(0.186536\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −153.923 −0.0536138
\(203\) −607.747 −0.210126
\(204\) 0 0
\(205\) 0 0
\(206\) 80.9662 0.0273844
\(207\) 0 0
\(208\) −2370.99 −0.790379
\(209\) −4076.92 −1.34931
\(210\) 0 0
\(211\) −834.373 −0.272230 −0.136115 0.990693i \(-0.543462\pi\)
−0.136115 + 0.990693i \(0.543462\pi\)
\(212\) 4744.91 1.53718
\(213\) 0 0
\(214\) 63.7426 0.0203615
\(215\) 0 0
\(216\) 0 0
\(217\) 741.559 0.231983
\(218\) 80.8285 0.0251119
\(219\) 0 0
\(220\) 0 0
\(221\) −3493.90 −1.06346
\(222\) 0 0
\(223\) −5912.79 −1.77556 −0.887780 0.460267i \(-0.847754\pi\)
−0.887780 + 0.460267i \(0.847754\pi\)
\(224\) 111.892 0.0333754
\(225\) 0 0
\(226\) −173.041 −0.0509315
\(227\) −3552.37 −1.03867 −0.519337 0.854569i \(-0.673821\pi\)
−0.519337 + 0.854569i \(0.673821\pi\)
\(228\) 0 0
\(229\) −1971.38 −0.568875 −0.284438 0.958695i \(-0.591807\pi\)
−0.284438 + 0.958695i \(0.591807\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 115.733 0.0327512
\(233\) −4930.95 −1.38643 −0.693213 0.720732i \(-0.743806\pi\)
−0.693213 + 0.720732i \(0.743806\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1379.91 −0.380613
\(237\) 0 0
\(238\) 54.8819 0.0149473
\(239\) 5978.13 1.61796 0.808981 0.587835i \(-0.200020\pi\)
0.808981 + 0.587835i \(0.200020\pi\)
\(240\) 0 0
\(241\) 4920.50 1.31517 0.657587 0.753378i \(-0.271577\pi\)
0.657587 + 0.753378i \(0.271577\pi\)
\(242\) −87.1374 −0.0231463
\(243\) 0 0
\(244\) −2173.56 −0.570277
\(245\) 0 0
\(246\) 0 0
\(247\) −3106.35 −0.800213
\(248\) −141.215 −0.0361579
\(249\) 0 0
\(250\) 0 0
\(251\) 2295.35 0.577215 0.288608 0.957447i \(-0.406808\pi\)
0.288608 + 0.957447i \(0.406808\pi\)
\(252\) 0 0
\(253\) −1709.69 −0.424852
\(254\) 30.0239 0.00741679
\(255\) 0 0
\(256\) 4060.48 0.991327
\(257\) 4290.88 1.04147 0.520734 0.853719i \(-0.325658\pi\)
0.520734 + 0.853719i \(0.325658\pi\)
\(258\) 0 0
\(259\) −2382.21 −0.571520
\(260\) 0 0
\(261\) 0 0
\(262\) −195.200 −0.0460285
\(263\) 7577.97 1.77672 0.888361 0.459147i \(-0.151845\pi\)
0.888361 + 0.459147i \(0.151845\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 48.7943 0.0112472
\(267\) 0 0
\(268\) 2080.94 0.474304
\(269\) 4253.32 0.964050 0.482025 0.876157i \(-0.339901\pi\)
0.482025 + 0.876157i \(0.339901\pi\)
\(270\) 0 0
\(271\) −3848.42 −0.862638 −0.431319 0.902200i \(-0.641952\pi\)
−0.431319 + 0.902200i \(0.641952\pi\)
\(272\) 6004.48 1.33851
\(273\) 0 0
\(274\) 78.3252 0.0172693
\(275\) 0 0
\(276\) 0 0
\(277\) 1742.62 0.377992 0.188996 0.981978i \(-0.439477\pi\)
0.188996 + 0.981978i \(0.439477\pi\)
\(278\) 43.2250 0.00932541
\(279\) 0 0
\(280\) 0 0
\(281\) −5091.71 −1.08095 −0.540474 0.841361i \(-0.681755\pi\)
−0.540474 + 0.841361i \(0.681755\pi\)
\(282\) 0 0
\(283\) −5256.26 −1.10407 −0.552036 0.833821i \(-0.686149\pi\)
−0.552036 + 0.833821i \(0.686149\pi\)
\(284\) 6759.93 1.41242
\(285\) 0 0
\(286\) −150.921 −0.0312033
\(287\) 1363.14 0.280361
\(288\) 0 0
\(289\) 3935.24 0.800984
\(290\) 0 0
\(291\) 0 0
\(292\) 7054.84 1.41388
\(293\) −9361.20 −1.86651 −0.933254 0.359217i \(-0.883044\pi\)
−0.933254 + 0.359217i \(0.883044\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 453.645 0.0890797
\(297\) 0 0
\(298\) 97.8917 0.0190292
\(299\) −1302.68 −0.251959
\(300\) 0 0
\(301\) −1413.32 −0.270639
\(302\) 134.189 0.0255687
\(303\) 0 0
\(304\) 5338.46 1.00718
\(305\) 0 0
\(306\) 0 0
\(307\) −5465.91 −1.01614 −0.508072 0.861315i \(-0.669642\pi\)
−0.508072 + 0.861315i \(0.669642\pi\)
\(308\) −2727.56 −0.504602
\(309\) 0 0
\(310\) 0 0
\(311\) −9924.88 −1.80961 −0.904804 0.425827i \(-0.859983\pi\)
−0.904804 + 0.425827i \(0.859983\pi\)
\(312\) 0 0
\(313\) −770.801 −0.139196 −0.0695978 0.997575i \(-0.522172\pi\)
−0.0695978 + 0.997575i \(0.522172\pi\)
\(314\) 291.093 0.0523164
\(315\) 0 0
\(316\) −5124.06 −0.912187
\(317\) 1948.88 0.345301 0.172650 0.984983i \(-0.444767\pi\)
0.172650 + 0.984983i \(0.444767\pi\)
\(318\) 0 0
\(319\) −4232.42 −0.742853
\(320\) 0 0
\(321\) 0 0
\(322\) 20.4623 0.00354137
\(323\) 7866.77 1.35517
\(324\) 0 0
\(325\) 0 0
\(326\) 194.127 0.0329807
\(327\) 0 0
\(328\) −259.583 −0.0436985
\(329\) −1543.95 −0.258725
\(330\) 0 0
\(331\) −715.822 −0.118867 −0.0594337 0.998232i \(-0.518929\pi\)
−0.0594337 + 0.998232i \(0.518929\pi\)
\(332\) −4528.97 −0.748673
\(333\) 0 0
\(334\) −93.0585 −0.0152453
\(335\) 0 0
\(336\) 0 0
\(337\) −3030.12 −0.489796 −0.244898 0.969549i \(-0.578754\pi\)
−0.244898 + 0.969549i \(0.578754\pi\)
\(338\) 68.1265 0.0109633
\(339\) 0 0
\(340\) 0 0
\(341\) 5164.30 0.820125
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 269.139 0.0421831
\(345\) 0 0
\(346\) 81.2512 0.0126245
\(347\) 4035.15 0.624260 0.312130 0.950039i \(-0.398958\pi\)
0.312130 + 0.950039i \(0.398958\pi\)
\(348\) 0 0
\(349\) −3311.37 −0.507890 −0.253945 0.967219i \(-0.581728\pi\)
−0.253945 + 0.967219i \(0.581728\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 779.228 0.117991
\(353\) 3344.01 0.504204 0.252102 0.967701i \(-0.418878\pi\)
0.252102 + 0.967701i \(0.418878\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4354.85 0.648333
\(357\) 0 0
\(358\) 118.239 0.0174557
\(359\) −8210.80 −1.20710 −0.603551 0.797324i \(-0.706248\pi\)
−0.603551 + 0.797324i \(0.706248\pi\)
\(360\) 0 0
\(361\) 135.176 0.0197078
\(362\) 12.8241 0.00186193
\(363\) 0 0
\(364\) −2078.23 −0.299255
\(365\) 0 0
\(366\) 0 0
\(367\) 10698.8 1.52173 0.760866 0.648909i \(-0.224775\pi\)
0.760866 + 0.648909i \(0.224775\pi\)
\(368\) 2238.73 0.317125
\(369\) 0 0
\(370\) 0 0
\(371\) 4155.41 0.581504
\(372\) 0 0
\(373\) −12433.1 −1.72590 −0.862950 0.505290i \(-0.831386\pi\)
−0.862950 + 0.505290i \(0.831386\pi\)
\(374\) 382.204 0.0528430
\(375\) 0 0
\(376\) 294.014 0.0403261
\(377\) −3224.84 −0.440550
\(378\) 0 0
\(379\) −12485.5 −1.69218 −0.846088 0.533044i \(-0.821048\pi\)
−0.846088 + 0.533044i \(0.821048\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −364.434 −0.0488117
\(383\) −7645.59 −1.02003 −0.510015 0.860166i \(-0.670360\pi\)
−0.510015 + 0.860166i \(0.670360\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 392.277 0.0517264
\(387\) 0 0
\(388\) −1188.27 −0.155478
\(389\) −2070.45 −0.269861 −0.134931 0.990855i \(-0.543081\pi\)
−0.134931 + 0.990855i \(0.543081\pi\)
\(390\) 0 0
\(391\) 3299.00 0.426695
\(392\) 65.3175 0.00841590
\(393\) 0 0
\(394\) 429.310 0.0548943
\(395\) 0 0
\(396\) 0 0
\(397\) −776.739 −0.0981950 −0.0490975 0.998794i \(-0.515635\pi\)
−0.0490975 + 0.998794i \(0.515635\pi\)
\(398\) −389.883 −0.0491032
\(399\) 0 0
\(400\) 0 0
\(401\) −6475.92 −0.806464 −0.403232 0.915098i \(-0.632113\pi\)
−0.403232 + 0.915098i \(0.632113\pi\)
\(402\) 0 0
\(403\) 3934.87 0.486376
\(404\) −14760.9 −1.81778
\(405\) 0 0
\(406\) 50.6553 0.00619208
\(407\) −16590.0 −2.02048
\(408\) 0 0
\(409\) 15812.6 1.91169 0.955844 0.293874i \(-0.0949445\pi\)
0.955844 + 0.293874i \(0.0949445\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 7764.51 0.928471
\(413\) −1208.47 −0.143983
\(414\) 0 0
\(415\) 0 0
\(416\) 593.722 0.0699751
\(417\) 0 0
\(418\) 339.809 0.0397622
\(419\) 2235.64 0.260664 0.130332 0.991470i \(-0.458396\pi\)
0.130332 + 0.991470i \(0.458396\pi\)
\(420\) 0 0
\(421\) −5447.83 −0.630668 −0.315334 0.948981i \(-0.602116\pi\)
−0.315334 + 0.948981i \(0.602116\pi\)
\(422\) 69.5444 0.00802220
\(423\) 0 0
\(424\) −791.315 −0.0906360
\(425\) 0 0
\(426\) 0 0
\(427\) −1903.51 −0.215732
\(428\) 6112.80 0.690359
\(429\) 0 0
\(430\) 0 0
\(431\) 11751.7 1.31336 0.656681 0.754169i \(-0.271960\pi\)
0.656681 + 0.754169i \(0.271960\pi\)
\(432\) 0 0
\(433\) 8608.11 0.955380 0.477690 0.878528i \(-0.341474\pi\)
0.477690 + 0.878528i \(0.341474\pi\)
\(434\) −61.8084 −0.00683618
\(435\) 0 0
\(436\) 7751.31 0.851423
\(437\) 2933.07 0.321071
\(438\) 0 0
\(439\) 6662.51 0.724338 0.362169 0.932113i \(-0.382036\pi\)
0.362169 + 0.932113i \(0.382036\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 291.215 0.0313386
\(443\) 2433.37 0.260977 0.130489 0.991450i \(-0.458345\pi\)
0.130489 + 0.991450i \(0.458345\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 492.828 0.0523230
\(447\) 0 0
\(448\) 3565.34 0.375997
\(449\) 13782.3 1.44862 0.724308 0.689477i \(-0.242160\pi\)
0.724308 + 0.689477i \(0.242160\pi\)
\(450\) 0 0
\(451\) 9493.08 0.991157
\(452\) −16594.3 −1.72684
\(453\) 0 0
\(454\) 296.088 0.0306081
\(455\) 0 0
\(456\) 0 0
\(457\) −4736.27 −0.484800 −0.242400 0.970176i \(-0.577935\pi\)
−0.242400 + 0.970176i \(0.577935\pi\)
\(458\) 164.313 0.0167639
\(459\) 0 0
\(460\) 0 0
\(461\) 6679.16 0.674793 0.337396 0.941363i \(-0.390454\pi\)
0.337396 + 0.941363i \(0.390454\pi\)
\(462\) 0 0
\(463\) 1674.24 0.168053 0.0840266 0.996464i \(-0.473222\pi\)
0.0840266 + 0.996464i \(0.473222\pi\)
\(464\) 5542.07 0.554492
\(465\) 0 0
\(466\) 410.992 0.0408559
\(467\) 15602.4 1.54602 0.773010 0.634393i \(-0.218750\pi\)
0.773010 + 0.634393i \(0.218750\pi\)
\(468\) 0 0
\(469\) 1822.40 0.179426
\(470\) 0 0
\(471\) 0 0
\(472\) 230.130 0.0224419
\(473\) −9842.53 −0.956786
\(474\) 0 0
\(475\) 0 0
\(476\) 5263.07 0.506791
\(477\) 0 0
\(478\) −498.273 −0.0476788
\(479\) −13133.9 −1.25282 −0.626412 0.779492i \(-0.715477\pi\)
−0.626412 + 0.779492i \(0.715477\pi\)
\(480\) 0 0
\(481\) −12640.5 −1.19825
\(482\) −410.120 −0.0387562
\(483\) 0 0
\(484\) −8356.32 −0.784778
\(485\) 0 0
\(486\) 0 0
\(487\) −5732.67 −0.533413 −0.266706 0.963778i \(-0.585935\pi\)
−0.266706 + 0.963778i \(0.585935\pi\)
\(488\) 362.487 0.0336250
\(489\) 0 0
\(490\) 0 0
\(491\) 749.477 0.0688868 0.0344434 0.999407i \(-0.489034\pi\)
0.0344434 + 0.999407i \(0.489034\pi\)
\(492\) 0 0
\(493\) 8166.82 0.746076
\(494\) 258.913 0.0235810
\(495\) 0 0
\(496\) −6762.31 −0.612170
\(497\) 5920.08 0.534310
\(498\) 0 0
\(499\) 15180.5 1.36187 0.680933 0.732346i \(-0.261574\pi\)
0.680933 + 0.732346i \(0.261574\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −191.316 −0.0170096
\(503\) 14069.8 1.24720 0.623598 0.781745i \(-0.285670\pi\)
0.623598 + 0.781745i \(0.285670\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 142.502 0.0125197
\(507\) 0 0
\(508\) 2879.23 0.251467
\(509\) 8259.05 0.719207 0.359603 0.933105i \(-0.382912\pi\)
0.359603 + 0.933105i \(0.382912\pi\)
\(510\) 0 0
\(511\) 6178.35 0.534861
\(512\) −1701.07 −0.146831
\(513\) 0 0
\(514\) −357.642 −0.0306905
\(515\) 0 0
\(516\) 0 0
\(517\) −10752.2 −0.914667
\(518\) 198.556 0.0168418
\(519\) 0 0
\(520\) 0 0
\(521\) −16129.2 −1.35630 −0.678149 0.734924i \(-0.737218\pi\)
−0.678149 + 0.734924i \(0.737218\pi\)
\(522\) 0 0
\(523\) −4730.56 −0.395512 −0.197756 0.980251i \(-0.563365\pi\)
−0.197756 + 0.980251i \(0.563365\pi\)
\(524\) −18719.3 −1.56060
\(525\) 0 0
\(526\) −631.619 −0.0523572
\(527\) −9964.96 −0.823683
\(528\) 0 0
\(529\) −10937.0 −0.898906
\(530\) 0 0
\(531\) 0 0
\(532\) 4679.28 0.381339
\(533\) 7233.12 0.587807
\(534\) 0 0
\(535\) 0 0
\(536\) −347.040 −0.0279661
\(537\) 0 0
\(538\) −354.512 −0.0284091
\(539\) −2388.69 −0.190887
\(540\) 0 0
\(541\) 14089.0 1.11966 0.559828 0.828609i \(-0.310867\pi\)
0.559828 + 0.828609i \(0.310867\pi\)
\(542\) 320.763 0.0254206
\(543\) 0 0
\(544\) −1503.59 −0.118503
\(545\) 0 0
\(546\) 0 0
\(547\) −5943.06 −0.464546 −0.232273 0.972651i \(-0.574616\pi\)
−0.232273 + 0.972651i \(0.574616\pi\)
\(548\) 7511.24 0.585519
\(549\) 0 0
\(550\) 0 0
\(551\) 7260.94 0.561391
\(552\) 0 0
\(553\) −4487.45 −0.345074
\(554\) −145.246 −0.0111388
\(555\) 0 0
\(556\) 4145.20 0.316179
\(557\) 12702.2 0.966268 0.483134 0.875546i \(-0.339498\pi\)
0.483134 + 0.875546i \(0.339498\pi\)
\(558\) 0 0
\(559\) −7499.38 −0.567424
\(560\) 0 0
\(561\) 0 0
\(562\) 424.391 0.0318538
\(563\) 8829.27 0.660940 0.330470 0.943816i \(-0.392793\pi\)
0.330470 + 0.943816i \(0.392793\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 438.106 0.0325353
\(567\) 0 0
\(568\) −1127.36 −0.0832800
\(569\) 2414.73 0.177910 0.0889548 0.996036i \(-0.471647\pi\)
0.0889548 + 0.996036i \(0.471647\pi\)
\(570\) 0 0
\(571\) −4476.68 −0.328096 −0.164048 0.986452i \(-0.552455\pi\)
−0.164048 + 0.986452i \(0.552455\pi\)
\(572\) −14473.0 −1.05795
\(573\) 0 0
\(574\) −113.617 −0.00826182
\(575\) 0 0
\(576\) 0 0
\(577\) −15918.8 −1.14854 −0.574272 0.818664i \(-0.694715\pi\)
−0.574272 + 0.818664i \(0.694715\pi\)
\(578\) −327.999 −0.0236038
\(579\) 0 0
\(580\) 0 0
\(581\) −3966.29 −0.283218
\(582\) 0 0
\(583\) 28938.7 2.05578
\(584\) −1176.54 −0.0833659
\(585\) 0 0
\(586\) 780.250 0.0550031
\(587\) 9357.52 0.657967 0.328983 0.944336i \(-0.393294\pi\)
0.328983 + 0.944336i \(0.393294\pi\)
\(588\) 0 0
\(589\) −8859.63 −0.619787
\(590\) 0 0
\(591\) 0 0
\(592\) 21723.5 1.50816
\(593\) −14353.5 −0.993978 −0.496989 0.867757i \(-0.665561\pi\)
−0.496989 + 0.867757i \(0.665561\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9387.63 0.645188
\(597\) 0 0
\(598\) 108.577 0.00742485
\(599\) −7717.69 −0.526438 −0.263219 0.964736i \(-0.584784\pi\)
−0.263219 + 0.964736i \(0.584784\pi\)
\(600\) 0 0
\(601\) −20094.2 −1.36383 −0.681914 0.731432i \(-0.738852\pi\)
−0.681914 + 0.731432i \(0.738852\pi\)
\(602\) 117.799 0.00797532
\(603\) 0 0
\(604\) 12868.5 0.866908
\(605\) 0 0
\(606\) 0 0
\(607\) −4577.40 −0.306080 −0.153040 0.988220i \(-0.548906\pi\)
−0.153040 + 0.988220i \(0.548906\pi\)
\(608\) −1336.81 −0.0891689
\(609\) 0 0
\(610\) 0 0
\(611\) −8192.51 −0.542445
\(612\) 0 0
\(613\) −3199.71 −0.210824 −0.105412 0.994429i \(-0.533616\pi\)
−0.105412 + 0.994429i \(0.533616\pi\)
\(614\) 455.581 0.0299442
\(615\) 0 0
\(616\) 454.879 0.0297526
\(617\) 20731.4 1.35270 0.676350 0.736581i \(-0.263561\pi\)
0.676350 + 0.736581i \(0.263561\pi\)
\(618\) 0 0
\(619\) 6995.16 0.454215 0.227108 0.973870i \(-0.427073\pi\)
0.227108 + 0.973870i \(0.427073\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 827.233 0.0533264
\(623\) 3813.80 0.245260
\(624\) 0 0
\(625\) 0 0
\(626\) 64.2458 0.00410188
\(627\) 0 0
\(628\) 27915.3 1.77379
\(629\) 32011.9 2.02925
\(630\) 0 0
\(631\) −11306.5 −0.713317 −0.356658 0.934235i \(-0.616084\pi\)
−0.356658 + 0.934235i \(0.616084\pi\)
\(632\) 854.546 0.0537849
\(633\) 0 0
\(634\) −162.438 −0.0101755
\(635\) 0 0
\(636\) 0 0
\(637\) −1820.03 −0.113206
\(638\) 352.770 0.0218907
\(639\) 0 0
\(640\) 0 0
\(641\) −12712.2 −0.783312 −0.391656 0.920112i \(-0.628098\pi\)
−0.391656 + 0.920112i \(0.628098\pi\)
\(642\) 0 0
\(643\) −15687.5 −0.962138 −0.481069 0.876683i \(-0.659751\pi\)
−0.481069 + 0.876683i \(0.659751\pi\)
\(644\) 1962.30 0.120070
\(645\) 0 0
\(646\) −655.691 −0.0399347
\(647\) −564.225 −0.0342844 −0.0171422 0.999853i \(-0.505457\pi\)
−0.0171422 + 0.999853i \(0.505457\pi\)
\(648\) 0 0
\(649\) −8415.96 −0.509022
\(650\) 0 0
\(651\) 0 0
\(652\) 18616.5 1.11822
\(653\) −25404.2 −1.52243 −0.761213 0.648502i \(-0.775396\pi\)
−0.761213 + 0.648502i \(0.775396\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −12430.6 −0.739835
\(657\) 0 0
\(658\) 128.687 0.00762423
\(659\) 3776.09 0.223210 0.111605 0.993753i \(-0.464401\pi\)
0.111605 + 0.993753i \(0.464401\pi\)
\(660\) 0 0
\(661\) 7423.33 0.436814 0.218407 0.975858i \(-0.429914\pi\)
0.218407 + 0.975858i \(0.429914\pi\)
\(662\) 59.6633 0.00350284
\(663\) 0 0
\(664\) 755.301 0.0441436
\(665\) 0 0
\(666\) 0 0
\(667\) 3044.94 0.176763
\(668\) −8924.14 −0.516894
\(669\) 0 0
\(670\) 0 0
\(671\) −13256.3 −0.762673
\(672\) 0 0
\(673\) 20555.0 1.17732 0.588661 0.808380i \(-0.299655\pi\)
0.588661 + 0.808380i \(0.299655\pi\)
\(674\) 252.559 0.0144335
\(675\) 0 0
\(676\) 6533.21 0.371712
\(677\) −994.516 −0.0564584 −0.0282292 0.999601i \(-0.508987\pi\)
−0.0282292 + 0.999601i \(0.508987\pi\)
\(678\) 0 0
\(679\) −1040.64 −0.0588162
\(680\) 0 0
\(681\) 0 0
\(682\) −430.441 −0.0241678
\(683\) −30061.8 −1.68416 −0.842081 0.539352i \(-0.818669\pi\)
−0.842081 + 0.539352i \(0.818669\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 28.5888 0.00159115
\(687\) 0 0
\(688\) 12888.1 0.714179
\(689\) 22049.5 1.21918
\(690\) 0 0
\(691\) −12973.7 −0.714242 −0.357121 0.934058i \(-0.616242\pi\)
−0.357121 + 0.934058i \(0.616242\pi\)
\(692\) 7791.84 0.428037
\(693\) 0 0
\(694\) −336.327 −0.0183960
\(695\) 0 0
\(696\) 0 0
\(697\) −18317.7 −0.995457
\(698\) 276.001 0.0149667
\(699\) 0 0
\(700\) 0 0
\(701\) −13289.0 −0.716003 −0.358002 0.933721i \(-0.616542\pi\)
−0.358002 + 0.933721i \(0.616542\pi\)
\(702\) 0 0
\(703\) 28461.1 1.52693
\(704\) 24829.4 1.32925
\(705\) 0 0
\(706\) −278.722 −0.0148581
\(707\) −12927.1 −0.687655
\(708\) 0 0
\(709\) −16040.2 −0.849650 −0.424825 0.905275i \(-0.639664\pi\)
−0.424825 + 0.905275i \(0.639664\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −726.263 −0.0382273
\(713\) −3715.37 −0.195149
\(714\) 0 0
\(715\) 0 0
\(716\) 11338.9 0.591836
\(717\) 0 0
\(718\) 684.365 0.0355714
\(719\) 9534.95 0.494567 0.247283 0.968943i \(-0.420462\pi\)
0.247283 + 0.968943i \(0.420462\pi\)
\(720\) 0 0
\(721\) 6799.86 0.351234
\(722\) −11.2668 −0.000580757 0
\(723\) 0 0
\(724\) 1229.81 0.0631290
\(725\) 0 0
\(726\) 0 0
\(727\) 29066.4 1.48282 0.741411 0.671051i \(-0.234157\pi\)
0.741411 + 0.671051i \(0.234157\pi\)
\(728\) 346.589 0.0176448
\(729\) 0 0
\(730\) 0 0
\(731\) 18992.0 0.960937
\(732\) 0 0
\(733\) 1035.33 0.0521701 0.0260851 0.999660i \(-0.491696\pi\)
0.0260851 + 0.999660i \(0.491696\pi\)
\(734\) −891.742 −0.0448431
\(735\) 0 0
\(736\) −560.602 −0.0280762
\(737\) 12691.4 0.634321
\(738\) 0 0
\(739\) 18595.2 0.925621 0.462811 0.886457i \(-0.346841\pi\)
0.462811 + 0.886457i \(0.346841\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −346.351 −0.0171360
\(743\) −24164.2 −1.19314 −0.596568 0.802563i \(-0.703469\pi\)
−0.596568 + 0.802563i \(0.703469\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1036.29 0.0508596
\(747\) 0 0
\(748\) 36652.6 1.79165
\(749\) 5353.35 0.261158
\(750\) 0 0
\(751\) 33783.1 1.64150 0.820748 0.571291i \(-0.193557\pi\)
0.820748 + 0.571291i \(0.193557\pi\)
\(752\) 14079.3 0.682740
\(753\) 0 0
\(754\) 268.788 0.0129823
\(755\) 0 0
\(756\) 0 0
\(757\) 15216.7 0.730593 0.365296 0.930891i \(-0.380968\pi\)
0.365296 + 0.930891i \(0.380968\pi\)
\(758\) 1040.65 0.0498658
\(759\) 0 0
\(760\) 0 0
\(761\) −14324.4 −0.682336 −0.341168 0.940002i \(-0.610822\pi\)
−0.341168 + 0.940002i \(0.610822\pi\)
\(762\) 0 0
\(763\) 6788.29 0.322087
\(764\) −34948.6 −1.65497
\(765\) 0 0
\(766\) 637.255 0.0300587
\(767\) −6412.42 −0.301876
\(768\) 0 0
\(769\) −17998.3 −0.844001 −0.422000 0.906596i \(-0.638672\pi\)
−0.422000 + 0.906596i \(0.638672\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 37618.7 1.75379
\(773\) 2816.84 0.131067 0.0655335 0.997850i \(-0.479125\pi\)
0.0655335 + 0.997850i \(0.479125\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 198.170 0.00916738
\(777\) 0 0
\(778\) 172.571 0.00795240
\(779\) −16285.9 −0.749040
\(780\) 0 0
\(781\) 41228.1 1.88894
\(782\) −274.970 −0.0125740
\(783\) 0 0
\(784\) 3127.83 0.142485
\(785\) 0 0
\(786\) 0 0
\(787\) −6712.82 −0.304049 −0.152024 0.988377i \(-0.548579\pi\)
−0.152024 + 0.988377i \(0.548579\pi\)
\(788\) 41170.1 1.86120
\(789\) 0 0
\(790\) 0 0
\(791\) −14532.6 −0.653251
\(792\) 0 0
\(793\) −10100.5 −0.452305
\(794\) 64.7407 0.00289366
\(795\) 0 0
\(796\) −37389.1 −1.66485
\(797\) −23506.3 −1.04471 −0.522356 0.852727i \(-0.674947\pi\)
−0.522356 + 0.852727i \(0.674947\pi\)
\(798\) 0 0
\(799\) 20747.4 0.918634
\(800\) 0 0
\(801\) 0 0
\(802\) 539.764 0.0237653
\(803\) 43026.7 1.89088
\(804\) 0 0
\(805\) 0 0
\(806\) −327.969 −0.0143328
\(807\) 0 0
\(808\) 2461.70 0.107181
\(809\) −22544.6 −0.979761 −0.489881 0.871790i \(-0.662960\pi\)
−0.489881 + 0.871790i \(0.662960\pi\)
\(810\) 0 0
\(811\) −12379.8 −0.536022 −0.268011 0.963416i \(-0.586366\pi\)
−0.268011 + 0.963416i \(0.586366\pi\)
\(812\) 4857.75 0.209943
\(813\) 0 0
\(814\) 1382.77 0.0595405
\(815\) 0 0
\(816\) 0 0
\(817\) 16885.4 0.723066
\(818\) −1317.97 −0.0563345
\(819\) 0 0
\(820\) 0 0
\(821\) 12651.3 0.537798 0.268899 0.963168i \(-0.413340\pi\)
0.268899 + 0.963168i \(0.413340\pi\)
\(822\) 0 0
\(823\) 38475.4 1.62961 0.814804 0.579737i \(-0.196845\pi\)
0.814804 + 0.579737i \(0.196845\pi\)
\(824\) −1294.90 −0.0547450
\(825\) 0 0
\(826\) 100.726 0.00424297
\(827\) 3062.97 0.128791 0.0643953 0.997924i \(-0.479488\pi\)
0.0643953 + 0.997924i \(0.479488\pi\)
\(828\) 0 0
\(829\) 11813.1 0.494917 0.247459 0.968898i \(-0.420405\pi\)
0.247459 + 0.968898i \(0.420405\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 18918.5 0.788317
\(833\) 4609.19 0.191715
\(834\) 0 0
\(835\) 0 0
\(836\) 32587.1 1.34814
\(837\) 0 0
\(838\) −186.339 −0.00768136
\(839\) −29359.8 −1.20812 −0.604059 0.796939i \(-0.706451\pi\)
−0.604059 + 0.796939i \(0.706451\pi\)
\(840\) 0 0
\(841\) −16851.1 −0.690931
\(842\) 454.073 0.0185848
\(843\) 0 0
\(844\) 6669.18 0.271994
\(845\) 0 0
\(846\) 0 0
\(847\) −7318.13 −0.296876
\(848\) −37893.4 −1.53451
\(849\) 0 0
\(850\) 0 0
\(851\) 11935.4 0.480776
\(852\) 0 0
\(853\) 27515.7 1.10448 0.552239 0.833686i \(-0.313774\pi\)
0.552239 + 0.833686i \(0.313774\pi\)
\(854\) 158.657 0.00635729
\(855\) 0 0
\(856\) −1019.44 −0.0407053
\(857\) −9970.63 −0.397421 −0.198711 0.980058i \(-0.563675\pi\)
−0.198711 + 0.980058i \(0.563675\pi\)
\(858\) 0 0
\(859\) −35051.6 −1.39225 −0.696126 0.717919i \(-0.745095\pi\)
−0.696126 + 0.717919i \(0.745095\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −979.496 −0.0387027
\(863\) 27756.4 1.09483 0.547415 0.836861i \(-0.315612\pi\)
0.547415 + 0.836861i \(0.315612\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −717.481 −0.0281536
\(867\) 0 0
\(868\) −5927.32 −0.231781
\(869\) −31251.2 −1.21993
\(870\) 0 0
\(871\) 9670.05 0.376185
\(872\) −1292.69 −0.0502020
\(873\) 0 0
\(874\) −244.470 −0.00946145
\(875\) 0 0
\(876\) 0 0
\(877\) 520.779 0.0200518 0.0100259 0.999950i \(-0.496809\pi\)
0.0100259 + 0.999950i \(0.496809\pi\)
\(878\) −555.316 −0.0213451
\(879\) 0 0
\(880\) 0 0
\(881\) −16514.4 −0.631536 −0.315768 0.948836i \(-0.602262\pi\)
−0.315768 + 0.948836i \(0.602262\pi\)
\(882\) 0 0
\(883\) 9502.60 0.362161 0.181080 0.983468i \(-0.442041\pi\)
0.181080 + 0.983468i \(0.442041\pi\)
\(884\) 27927.0 1.06254
\(885\) 0 0
\(886\) −202.820 −0.00769060
\(887\) −37594.1 −1.42310 −0.711548 0.702638i \(-0.752006\pi\)
−0.711548 + 0.702638i \(0.752006\pi\)
\(888\) 0 0
\(889\) 2521.52 0.0951283
\(890\) 0 0
\(891\) 0 0
\(892\) 47261.3 1.77402
\(893\) 18446.0 0.691235
\(894\) 0 0
\(895\) 0 0
\(896\) −1192.30 −0.0444554
\(897\) 0 0
\(898\) −1148.75 −0.0426885
\(899\) −9197.55 −0.341219
\(900\) 0 0
\(901\) −55839.8 −2.06470
\(902\) −791.243 −0.0292079
\(903\) 0 0
\(904\) 2767.45 0.101819
\(905\) 0 0
\(906\) 0 0
\(907\) 17328.4 0.634377 0.317189 0.948362i \(-0.397261\pi\)
0.317189 + 0.948362i \(0.397261\pi\)
\(908\) 28394.3 1.03777
\(909\) 0 0
\(910\) 0 0
\(911\) 37777.9 1.37392 0.686958 0.726697i \(-0.258946\pi\)
0.686958 + 0.726697i \(0.258946\pi\)
\(912\) 0 0
\(913\) −27621.7 −1.00125
\(914\) 394.765 0.0142863
\(915\) 0 0
\(916\) 15757.3 0.568381
\(917\) −16393.6 −0.590365
\(918\) 0 0
\(919\) 17791.9 0.638630 0.319315 0.947649i \(-0.396547\pi\)
0.319315 + 0.947649i \(0.396547\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −556.704 −0.0198851
\(923\) 31413.2 1.12024
\(924\) 0 0
\(925\) 0 0
\(926\) −139.547 −0.00495227
\(927\) 0 0
\(928\) −1387.80 −0.0490912
\(929\) 33373.0 1.17861 0.589307 0.807909i \(-0.299401\pi\)
0.589307 + 0.807909i \(0.299401\pi\)
\(930\) 0 0
\(931\) 4097.93 0.144258
\(932\) 39413.4 1.38522
\(933\) 0 0
\(934\) −1300.45 −0.0455588
\(935\) 0 0
\(936\) 0 0
\(937\) −36078.5 −1.25788 −0.628939 0.777454i \(-0.716511\pi\)
−0.628939 + 0.777454i \(0.716511\pi\)
\(938\) −151.896 −0.00528740
\(939\) 0 0
\(940\) 0 0
\(941\) 32456.8 1.12440 0.562201 0.827001i \(-0.309955\pi\)
0.562201 + 0.827001i \(0.309955\pi\)
\(942\) 0 0
\(943\) −6829.63 −0.235847
\(944\) 11020.1 0.379952
\(945\) 0 0
\(946\) 820.369 0.0281950
\(947\) −3547.41 −0.121727 −0.0608634 0.998146i \(-0.519385\pi\)
−0.0608634 + 0.998146i \(0.519385\pi\)
\(948\) 0 0
\(949\) 32783.6 1.12139
\(950\) 0 0
\(951\) 0 0
\(952\) −877.728 −0.0298817
\(953\) −12278.3 −0.417347 −0.208674 0.977985i \(-0.566915\pi\)
−0.208674 + 0.977985i \(0.566915\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −47783.5 −1.61656
\(957\) 0 0
\(958\) 1094.70 0.0369188
\(959\) 6578.05 0.221498
\(960\) 0 0
\(961\) −18568.4 −0.623288
\(962\) 1053.58 0.0353106
\(963\) 0 0
\(964\) −39329.8 −1.31403
\(965\) 0 0
\(966\) 0 0
\(967\) −32861.0 −1.09280 −0.546401 0.837524i \(-0.684002\pi\)
−0.546401 + 0.837524i \(0.684002\pi\)
\(968\) 1393.59 0.0462725
\(969\) 0 0
\(970\) 0 0
\(971\) 27057.8 0.894261 0.447130 0.894469i \(-0.352446\pi\)
0.447130 + 0.894469i \(0.352446\pi\)
\(972\) 0 0
\(973\) 3630.20 0.119608
\(974\) 477.814 0.0157188
\(975\) 0 0
\(976\) 17358.2 0.569287
\(977\) 36357.6 1.19057 0.595283 0.803516i \(-0.297040\pi\)
0.595283 + 0.803516i \(0.297040\pi\)
\(978\) 0 0
\(979\) 26559.8 0.867063
\(980\) 0 0
\(981\) 0 0
\(982\) −62.4684 −0.00202999
\(983\) −41706.4 −1.35323 −0.676616 0.736336i \(-0.736554\pi\)
−0.676616 + 0.736336i \(0.736554\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −680.700 −0.0219857
\(987\) 0 0
\(988\) 24829.3 0.799518
\(989\) 7081.04 0.227668
\(990\) 0 0
\(991\) 61442.3 1.96950 0.984752 0.173965i \(-0.0556578\pi\)
0.984752 + 0.173965i \(0.0556578\pi\)
\(992\) 1693.35 0.0541977
\(993\) 0 0
\(994\) −493.435 −0.0157453
\(995\) 0 0
\(996\) 0 0
\(997\) 1577.35 0.0501056 0.0250528 0.999686i \(-0.492025\pi\)
0.0250528 + 0.999686i \(0.492025\pi\)
\(998\) −1265.28 −0.0401321
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1575.4.a.bt.1.5 10
3.2 odd 2 inner 1575.4.a.bt.1.6 10
5.2 odd 4 315.4.d.d.64.9 20
5.3 odd 4 315.4.d.d.64.11 yes 20
5.4 even 2 1575.4.a.bu.1.6 10
15.2 even 4 315.4.d.d.64.12 yes 20
15.8 even 4 315.4.d.d.64.10 yes 20
15.14 odd 2 1575.4.a.bu.1.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.4.d.d.64.9 20 5.2 odd 4
315.4.d.d.64.10 yes 20 15.8 even 4
315.4.d.d.64.11 yes 20 5.3 odd 4
315.4.d.d.64.12 yes 20 15.2 even 4
1575.4.a.bt.1.5 10 1.1 even 1 trivial
1575.4.a.bt.1.6 10 3.2 odd 2 inner
1575.4.a.bu.1.5 10 15.14 odd 2
1575.4.a.bu.1.6 10 5.4 even 2