Properties

Label 1575.4.a.bu
Level 15751575
Weight 44
Character orbit 1575.a
Self dual yes
Analytic conductor 92.92892.928
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 92.928008259092.9280082590
Analytic rank: 00
Dimension: 1010
Coefficient field: Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x1067x8+1523x613569x4+36944x2256 x^{10} - 67x^{8} + 1523x^{6} - 13569x^{4} + 36944x^{2} - 256 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 21252 2^{12}\cdot 5^{2}
Twist minimal: no (minimal twist has level 315)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β91,\beta_1,\ldots,\beta_{9} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β2+5)q4+7q7+(β3+6β1)q8+(β8+β3+5β1)q11+(β4+2β2+10)q13+7β1q14+(β5β4+5β2+29)q16++49β1q98+O(q100) q + \beta_1 q^{2} + (\beta_{2} + 5) q^{4} + 7 q^{7} + (\beta_{3} + 6 \beta_1) q^{8} + (\beta_{8} + \beta_{3} + 5 \beta_1) q^{11} + ( - \beta_{4} + 2 \beta_{2} + 10) q^{13} + 7 \beta_1 q^{14} + (\beta_{5} - \beta_{4} + 5 \beta_{2} + 29) q^{16}+ \cdots + 49 \beta_1 q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+54q4+70q7+104q13+310q16+36q19+644q22+378q2824q31+116q34+732q37+212q43184q46+490q49+2692q52+3196q58+1024q61++4024q97+O(q100) 10 q + 54 q^{4} + 70 q^{7} + 104 q^{13} + 310 q^{16} + 36 q^{19} + 644 q^{22} + 378 q^{28} - 24 q^{31} + 116 q^{34} + 732 q^{37} + 212 q^{43} - 184 q^{46} + 490 q^{49} + 2692 q^{52} + 3196 q^{58} + 1024 q^{61}+ \cdots + 4024 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x1067x8+1523x613569x4+36944x2256 x^{10} - 67x^{8} + 1523x^{6} - 13569x^{4} + 36944x^{2} - 256 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν213 \nu^{2} - 13 Copy content Toggle raw display
β3\beta_{3}== ν322ν \nu^{3} - 22\nu Copy content Toggle raw display
β4\beta_{4}== (ν848ν6+541ν4+210ν25952)/112 ( \nu^{8} - 48\nu^{6} + 541\nu^{4} + 210\nu^{2} - 5952 ) / 112 Copy content Toggle raw display
β5\beta_{5}== (ν848ν6+653ν43038ν2+5248)/112 ( \nu^{8} - 48\nu^{6} + 653\nu^{4} - 3038\nu^{2} + 5248 ) / 112 Copy content Toggle raw display
β6\beta_{6}== (ν862ν6+1241ν48540ν2+8160)/112 ( \nu^{8} - 62\nu^{6} + 1241\nu^{4} - 8540\nu^{2} + 8160 ) / 112 Copy content Toggle raw display
β7\beta_{7}== (ν969ν7+1591ν513699ν3+31568ν)/224 ( \nu^{9} - 69\nu^{7} + 1591\nu^{5} - 13699\nu^{3} + 31568\nu ) / 224 Copy content Toggle raw display
β8\beta_{8}== (3ν9+207ν74885ν5+45353ν3127520ν)/224 ( -3\nu^{9} + 207\nu^{7} - 4885\nu^{5} + 45353\nu^{3} - 127520\nu ) / 224 Copy content Toggle raw display
β9\beta_{9}== (2ν9131ν7+2888ν524815ν3+65432ν)/112 ( 2\nu^{9} - 131\nu^{7} + 2888\nu^{5} - 24815\nu^{3} + 65432\nu ) / 112 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+13 \beta_{2} + 13 Copy content Toggle raw display
ν3\nu^{3}== β3+22β1 \beta_{3} + 22\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β5β4+29β2+277 \beta_{5} - \beta_{4} + 29\beta_{2} + 277 Copy content Toggle raw display
ν5\nu^{5}== 2β86β7+38β3+543β1 -2\beta_{8} - 6\beta_{7} + 38\beta_{3} + 543\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 8β6+50β542β4+825β2+6733 -8\beta_{6} + 50\beta_{5} - 42\beta_{4} + 825\beta_{2} + 6733 Copy content Toggle raw display
ν7\nu^{7}== 16β984β8316β7+1227β3+14360β1 16\beta_{9} - 84\beta_{8} - 316\beta_{7} + 1227\beta_{3} + 14360\beta_1 Copy content Toggle raw display
ν8\nu^{8}== 384β6+1859β51363β4+23701β2+176549 -384\beta_{6} + 1859\beta_{5} - 1363\beta_{4} + 23701\beta_{2} + 176549 Copy content Toggle raw display
ν9\nu^{9}== 1104β92614β812034β7+37904β3+396737β1 1104\beta_{9} - 2614\beta_{8} - 12034\beta_{7} + 37904\beta_{3} + 396737\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−5.44617
−4.31226
−3.73445
−2.18874
−0.0833494
0.0833494
2.18874
3.73445
4.31226
5.44617
−5.44617 0 21.6607 0 0 7.00000 −74.3987 0 0
1.2 −4.31226 0 10.5956 0 0 7.00000 −11.1930 0 0
1.3 −3.73445 0 5.94609 0 0 7.00000 7.67022 0 0
1.4 −2.18874 0 −3.20940 0 0 7.00000 24.5345 0 0
1.5 −0.0833494 0 −7.99305 0 0 7.00000 1.33301 0 0
1.6 0.0833494 0 −7.99305 0 0 7.00000 −1.33301 0 0
1.7 2.18874 0 −3.20940 0 0 7.00000 −24.5345 0 0
1.8 3.73445 0 5.94609 0 0 7.00000 −7.67022 0 0
1.9 4.31226 0 10.5956 0 0 7.00000 11.1930 0 0
1.10 5.44617 0 21.6607 0 0 7.00000 74.3987 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 1 -1
77 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.4.a.bu 10
3.b odd 2 1 inner 1575.4.a.bu 10
5.b even 2 1 1575.4.a.bt 10
5.c odd 4 2 315.4.d.d 20
15.d odd 2 1 1575.4.a.bt 10
15.e even 4 2 315.4.d.d 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.4.d.d 20 5.c odd 4 2
315.4.d.d 20 15.e even 4 2
1575.4.a.bt 10 5.b even 2 1
1575.4.a.bt 10 15.d odd 2 1
1575.4.a.bu 10 1.a even 1 1 trivial
1575.4.a.bu 10 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1575))S_{4}^{\mathrm{new}}(\Gamma_0(1575)):

T21067T28+1523T2613569T24+36944T22256 T_{2}^{10} - 67T_{2}^{8} + 1523T_{2}^{6} - 13569T_{2}^{4} + 36944T_{2}^{2} - 256 Copy content Toggle raw display
T11108988T118+28913136T11640462757440T114+22772208205824T1122775688151040000 T_{11}^{10} - 8988T_{11}^{8} + 28913136T_{11}^{6} - 40462757440T_{11}^{4} + 22772208205824T_{11}^{2} - 2775688151040000 Copy content Toggle raw display
T13552T1346384T133+366408T132+4517184T13317871232 T_{13}^{5} - 52T_{13}^{4} - 6384T_{13}^{3} + 366408T_{13}^{2} + 4517184T_{13} - 317871232 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T1067T8+256 T^{10} - 67 T^{8} + \cdots - 256 Copy content Toggle raw display
33 T10 T^{10} Copy content Toggle raw display
55 T10 T^{10} Copy content Toggle raw display
77 (T7)10 (T - 7)^{10} Copy content Toggle raw display
1111 T10+27 ⁣ ⁣00 T^{10} + \cdots - 27\!\cdots\!00 Copy content Toggle raw display
1313 (T552T4+317871232)2 (T^{5} - 52 T^{4} + \cdots - 317871232)^{2} Copy content Toggle raw display
1717 T10+48 ⁣ ⁣16 T^{10} + \cdots - 48\!\cdots\!16 Copy content Toggle raw display
1919 (T518T4+1947671040)2 (T^{5} - 18 T^{4} + \cdots - 1947671040)^{2} Copy content Toggle raw display
2323 T10+13 ⁣ ⁣00 T^{10} + \cdots - 13\!\cdots\!00 Copy content Toggle raw display
2929 T10+10 ⁣ ⁣00 T^{10} + \cdots - 10\!\cdots\!00 Copy content Toggle raw display
3131 (T5+12T4++76972365952)2 (T^{5} + 12 T^{4} + \cdots + 76972365952)^{2} Copy content Toggle raw display
3737 (T5366T4++131111593984)2 (T^{5} - 366 T^{4} + \cdots + 131111593984)^{2} Copy content Toggle raw display
4141 T10+10 ⁣ ⁣16 T^{10} + \cdots - 10\!\cdots\!16 Copy content Toggle raw display
4343 (T5106T4++58598844416)2 (T^{5} - 106 T^{4} + \cdots + 58598844416)^{2} Copy content Toggle raw display
4747 T10+24 ⁣ ⁣24 T^{10} + \cdots - 24\!\cdots\!24 Copy content Toggle raw display
5353 T10+21 ⁣ ⁣76 T^{10} + \cdots - 21\!\cdots\!76 Copy content Toggle raw display
5959 T10+21 ⁣ ⁣16 T^{10} + \cdots - 21\!\cdots\!16 Copy content Toggle raw display
6161 (T5+1370493512000)2 (T^{5} + \cdots - 1370493512000)^{2} Copy content Toggle raw display
6767 (T5++20083004612608)2 (T^{5} + \cdots + 20083004612608)^{2} Copy content Toggle raw display
7171 T10+90 ⁣ ⁣16 T^{10} + \cdots - 90\!\cdots\!16 Copy content Toggle raw display
7373 (T5++15592344641664)2 (T^{5} + \cdots + 15592344641664)^{2} Copy content Toggle raw display
7979 (T5++8769624080384)2 (T^{5} + \cdots + 8769624080384)^{2} Copy content Toggle raw display
8383 T10+39 ⁣ ⁣00 T^{10} + \cdots - 39\!\cdots\!00 Copy content Toggle raw display
8989 T10+11 ⁣ ⁣84 T^{10} + \cdots - 11\!\cdots\!84 Copy content Toggle raw display
9797 (T5+203983416135296)2 (T^{5} + \cdots - 203983416135296)^{2} Copy content Toggle raw display
show more
show less