Properties

Label 1575.4.a.i
Level 15751575
Weight 44
Character orbit 1575.a
Self dual yes
Analytic conductor 92.92892.928
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1575,4,Mod(1,1575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1575.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1575.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 92.928008259092.9280082590
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 315)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3q2+q47q721q860q1138q1321q1471q1684q17+110q19180q22+120q23114q267q28162q29+236q3145q32++147q98+O(q100) q + 3 q^{2} + q^{4} - 7 q^{7} - 21 q^{8} - 60 q^{11} - 38 q^{13} - 21 q^{14} - 71 q^{16} - 84 q^{17} + 110 q^{19} - 180 q^{22} + 120 q^{23} - 114 q^{26} - 7 q^{28} - 162 q^{29} + 236 q^{31} - 45 q^{32}+ \cdots + 147 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
3.00000 0 1.00000 0 0 −7.00000 −21.0000 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 +1 +1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1575.4.a.i 1
3.b odd 2 1 1575.4.a.c 1
5.b even 2 1 315.4.a.b 1
15.d odd 2 1 315.4.a.e yes 1
35.c odd 2 1 2205.4.a.f 1
105.g even 2 1 2205.4.a.p 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
315.4.a.b 1 5.b even 2 1
315.4.a.e yes 1 15.d odd 2 1
1575.4.a.c 1 3.b odd 2 1
1575.4.a.i 1 1.a even 1 1 trivial
2205.4.a.f 1 35.c odd 2 1
2205.4.a.p 1 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1575))S_{4}^{\mathrm{new}}(\Gamma_0(1575)):

T23 T_{2} - 3 Copy content Toggle raw display
T11+60 T_{11} + 60 Copy content Toggle raw display
T13+38 T_{13} + 38 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T - 3 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T+7 T + 7 Copy content Toggle raw display
1111 T+60 T + 60 Copy content Toggle raw display
1313 T+38 T + 38 Copy content Toggle raw display
1717 T+84 T + 84 Copy content Toggle raw display
1919 T110 T - 110 Copy content Toggle raw display
2323 T120 T - 120 Copy content Toggle raw display
2929 T+162 T + 162 Copy content Toggle raw display
3131 T236 T - 236 Copy content Toggle raw display
3737 T376 T - 376 Copy content Toggle raw display
4141 T126 T - 126 Copy content Toggle raw display
4343 T34 T - 34 Copy content Toggle raw display
4747 T+6 T + 6 Copy content Toggle raw display
5353 T582 T - 582 Copy content Toggle raw display
5959 T+492 T + 492 Copy content Toggle raw display
6161 T+880 T + 880 Copy content Toggle raw display
6767 T826 T - 826 Copy content Toggle raw display
7171 T666 T - 666 Copy content Toggle raw display
7373 T826 T - 826 Copy content Toggle raw display
7979 T+592 T + 592 Copy content Toggle raw display
8383 T792 T - 792 Copy content Toggle raw display
8989 T+1002 T + 1002 Copy content Toggle raw display
9797 T+1442 T + 1442 Copy content Toggle raw display
show more
show less