Properties

Label 1584.2.cd.c.17.1
Level $1584$
Weight $2$
Character 1584.17
Analytic conductor $12.648$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1584,2,Mod(17,1584)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1584, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1584.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1584.cd (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.6483036802\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2x^{14} - 16x^{12} - 72x^{10} + 26x^{8} + 360x^{6} + 725x^{4} + 1000x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 17.1
Root \(1.90184 + 0.0324487i\) of defining polynomial
Character \(\chi\) \(=\) 1584.17
Dual form 1584.2.cd.c.1025.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.13811 - 0.694712i) q^{5} +(2.38116 + 3.27739i) q^{7} +(-3.31656 - 0.0200544i) q^{11} +(4.42495 - 1.43775i) q^{13} +(0.0235753 - 0.0725574i) q^{17} +(-1.40822 + 1.93825i) q^{19} +3.22717i q^{23} +(0.0437835 + 0.0318106i) q^{25} +(-1.48796 + 1.08107i) q^{29} +(-0.517528 - 1.59279i) q^{31} +(-2.81433 - 8.66162i) q^{35} +(-5.87906 + 4.27138i) q^{37} +(6.82980 + 4.96214i) q^{41} +4.28086i q^{43} +(-3.65360 + 5.02874i) q^{47} +(-2.90822 + 8.95058i) q^{49} +(-1.16884 + 0.379779i) q^{53} +(7.07723 + 2.34694i) q^{55} +(-0.341086 - 0.469465i) q^{59} +(-3.59710 - 1.16877i) q^{61} -10.4598 q^{65} -12.9984 q^{67} +(1.06563 + 0.346245i) q^{71} +(7.82153 + 10.7654i) q^{73} +(-7.83155 - 10.9174i) q^{77} +(-0.627566 + 0.203908i) q^{79} +(-3.15542 + 9.71138i) q^{83} +(-0.100813 + 0.138757i) q^{85} +6.58983i q^{89} +(15.2486 + 11.0787i) q^{91} +(4.35745 - 3.16587i) q^{95} +(5.08168 + 15.6398i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{25} - 16 q^{31} - 12 q^{37} - 24 q^{49} - 16 q^{55} - 96 q^{67} - 20 q^{73} - 100 q^{85} + 72 q^{91} + 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.13811 0.694712i −0.956190 0.310685i −0.210962 0.977494i \(-0.567659\pi\)
−0.745228 + 0.666809i \(0.767659\pi\)
\(6\) 0 0
\(7\) 2.38116 + 3.27739i 0.899995 + 1.23874i 0.970470 + 0.241223i \(0.0775484\pi\)
−0.0704753 + 0.997514i \(0.522452\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.31656 0.0200544i −0.999982 0.00604662i
\(12\) 0 0
\(13\) 4.42495 1.43775i 1.22726 0.398761i 0.377538 0.925994i \(-0.376771\pi\)
0.849721 + 0.527233i \(0.176771\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.0235753 0.0725574i 0.00571786 0.0175978i −0.948157 0.317803i \(-0.897055\pi\)
0.953875 + 0.300205i \(0.0970551\pi\)
\(18\) 0 0
\(19\) −1.40822 + 1.93825i −0.323068 + 0.444665i −0.939401 0.342821i \(-0.888618\pi\)
0.616333 + 0.787486i \(0.288618\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.22717i 0.672912i 0.941699 + 0.336456i \(0.109228\pi\)
−0.941699 + 0.336456i \(0.890772\pi\)
\(24\) 0 0
\(25\) 0.0437835 + 0.0318106i 0.00875670 + 0.00636211i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.48796 + 1.08107i −0.276307 + 0.200749i −0.717305 0.696759i \(-0.754625\pi\)
0.440998 + 0.897508i \(0.354625\pi\)
\(30\) 0 0
\(31\) −0.517528 1.59279i −0.0929508 0.286073i 0.893763 0.448539i \(-0.148055\pi\)
−0.986714 + 0.162466i \(0.948055\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.81433 8.66162i −0.475709 1.46408i
\(36\) 0 0
\(37\) −5.87906 + 4.27138i −0.966511 + 0.702211i −0.954654 0.297718i \(-0.903774\pi\)
−0.0118571 + 0.999930i \(0.503774\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.82980 + 4.96214i 1.06664 + 0.774956i 0.975305 0.220864i \(-0.0708878\pi\)
0.0913313 + 0.995821i \(0.470888\pi\)
\(42\) 0 0
\(43\) 4.28086i 0.652825i 0.945227 + 0.326413i \(0.105840\pi\)
−0.945227 + 0.326413i \(0.894160\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.65360 + 5.02874i −0.532932 + 0.733518i −0.987574 0.157157i \(-0.949767\pi\)
0.454642 + 0.890674i \(0.349767\pi\)
\(48\) 0 0
\(49\) −2.90822 + 8.95058i −0.415460 + 1.27865i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.16884 + 0.379779i −0.160552 + 0.0521666i −0.388190 0.921579i \(-0.626900\pi\)
0.227638 + 0.973746i \(0.426900\pi\)
\(54\) 0 0
\(55\) 7.07723 + 2.34694i 0.954294 + 0.316461i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.341086 0.469465i −0.0444056 0.0611191i 0.786237 0.617925i \(-0.212027\pi\)
−0.830642 + 0.556806i \(0.812027\pi\)
\(60\) 0 0
\(61\) −3.59710 1.16877i −0.460561 0.149645i 0.0695411 0.997579i \(-0.477847\pi\)
−0.530102 + 0.847934i \(0.677847\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.4598 −1.29738
\(66\) 0 0
\(67\) −12.9984 −1.58801 −0.794003 0.607914i \(-0.792007\pi\)
−0.794003 + 0.607914i \(0.792007\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.06563 + 0.346245i 0.126467 + 0.0410917i 0.371567 0.928406i \(-0.378821\pi\)
−0.245100 + 0.969498i \(0.578821\pi\)
\(72\) 0 0
\(73\) 7.82153 + 10.7654i 0.915441 + 1.26000i 0.965274 + 0.261239i \(0.0841309\pi\)
−0.0498335 + 0.998758i \(0.515869\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.83155 10.9174i −0.892488 1.24416i
\(78\) 0 0
\(79\) −0.627566 + 0.203908i −0.0706066 + 0.0229415i −0.344107 0.938930i \(-0.611818\pi\)
0.273501 + 0.961872i \(0.411818\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.15542 + 9.71138i −0.346352 + 1.06596i 0.614504 + 0.788914i \(0.289356\pi\)
−0.960856 + 0.277048i \(0.910644\pi\)
\(84\) 0 0
\(85\) −0.100813 + 0.138757i −0.0109347 + 0.0150503i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.58983i 0.698520i 0.937026 + 0.349260i \(0.113567\pi\)
−0.937026 + 0.349260i \(0.886433\pi\)
\(90\) 0 0
\(91\) 15.2486 + 11.0787i 1.59849 + 1.16137i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.35745 3.16587i 0.447065 0.324812i
\(96\) 0 0
\(97\) 5.08168 + 15.6398i 0.515966 + 1.58798i 0.781517 + 0.623883i \(0.214446\pi\)
−0.265551 + 0.964097i \(0.585554\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.532095 1.63762i −0.0529455 0.162949i 0.921087 0.389356i \(-0.127302\pi\)
−0.974033 + 0.226406i \(0.927302\pi\)
\(102\) 0 0
\(103\) −2.61382 + 1.89905i −0.257548 + 0.187119i −0.709065 0.705143i \(-0.750883\pi\)
0.451518 + 0.892262i \(0.350883\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.9884 + 8.71006i 1.15896 + 0.842034i 0.989646 0.143529i \(-0.0458449\pi\)
0.169314 + 0.985562i \(0.445845\pi\)
\(108\) 0 0
\(109\) 14.9258i 1.42963i −0.699313 0.714815i \(-0.746511\pi\)
0.699313 0.714815i \(-0.253489\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.61055 + 9.09864i −0.621868 + 0.855928i −0.997487 0.0708461i \(-0.977430\pi\)
0.375619 + 0.926774i \(0.377430\pi\)
\(114\) 0 0
\(115\) 2.24196 6.90004i 0.209064 0.643432i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.293935 0.0955054i 0.0269450 0.00875497i
\(120\) 0 0
\(121\) 10.9992 + 0.133023i 0.999927 + 0.0120930i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.53559 + 8.99547i 0.584561 + 0.804580i
\(126\) 0 0
\(127\) 5.76481 + 1.87310i 0.511544 + 0.166211i 0.553404 0.832913i \(-0.313328\pi\)
−0.0418604 + 0.999123i \(0.513328\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.15083 −0.624771 −0.312385 0.949955i \(-0.601128\pi\)
−0.312385 + 0.949955i \(0.601128\pi\)
\(132\) 0 0
\(133\) −9.70560 −0.841582
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.1026 3.28252i −0.863120 0.280445i −0.156189 0.987727i \(-0.549921\pi\)
−0.706931 + 0.707283i \(0.749921\pi\)
\(138\) 0 0
\(139\) 0.0311975 + 0.0429397i 0.00264614 + 0.00364210i 0.810338 0.585963i \(-0.199284\pi\)
−0.807692 + 0.589605i \(0.799284\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −14.7044 + 4.67966i −1.22965 + 0.391333i
\(144\) 0 0
\(145\) 3.93244 1.27773i 0.326572 0.106110i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.30238 19.3967i 0.516311 1.58904i −0.264572 0.964366i \(-0.585231\pi\)
0.780883 0.624677i \(-0.214769\pi\)
\(150\) 0 0
\(151\) −0.698980 + 0.962063i −0.0568822 + 0.0782916i −0.836510 0.547951i \(-0.815408\pi\)
0.779628 + 0.626243i \(0.215408\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.76508i 0.302419i
\(156\) 0 0
\(157\) 1.40210 + 1.01868i 0.111900 + 0.0812998i 0.642328 0.766430i \(-0.277969\pi\)
−0.530428 + 0.847730i \(0.677969\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −10.5767 + 7.68443i −0.833561 + 0.605618i
\(162\) 0 0
\(163\) 0.309821 + 0.953532i 0.0242671 + 0.0746864i 0.962457 0.271435i \(-0.0874984\pi\)
−0.938190 + 0.346122i \(0.887498\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.17734 12.8565i −0.323252 0.994868i −0.972223 0.234055i \(-0.924800\pi\)
0.648971 0.760813i \(-0.275200\pi\)
\(168\) 0 0
\(169\) 6.99579 5.08274i 0.538138 0.390980i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.08619 + 4.42188i 0.462724 + 0.336189i 0.794599 0.607135i \(-0.207681\pi\)
−0.331875 + 0.943324i \(0.607681\pi\)
\(174\) 0 0
\(175\) 0.219242i 0.0165731i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.34750 10.1130i 0.549178 0.755879i −0.440722 0.897643i \(-0.645278\pi\)
0.989900 + 0.141765i \(0.0452777\pi\)
\(180\) 0 0
\(181\) −5.56261 + 17.1200i −0.413466 + 1.27252i 0.500150 + 0.865939i \(0.333278\pi\)
−0.913616 + 0.406578i \(0.866722\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.5374 5.04842i 1.14233 0.371167i
\(186\) 0 0
\(187\) −0.0796442 + 0.240168i −0.00582416 + 0.0175629i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.7297 17.5209i −0.921085 1.26777i −0.963237 0.268654i \(-0.913421\pi\)
0.0421514 0.999111i \(-0.486579\pi\)
\(192\) 0 0
\(193\) −4.93306 1.60285i −0.355090 0.115376i 0.126040 0.992025i \(-0.459773\pi\)
−0.481129 + 0.876650i \(0.659773\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.14679 0.366693 0.183347 0.983048i \(-0.441307\pi\)
0.183347 + 0.983048i \(0.441307\pi\)
\(198\) 0 0
\(199\) −24.2595 −1.71971 −0.859855 0.510539i \(-0.829446\pi\)
−0.859855 + 0.510539i \(0.829446\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.08615 2.30243i −0.497350 0.161599i
\(204\) 0 0
\(205\) −11.1556 15.3543i −0.779139 1.07239i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.70933 6.40009i 0.325751 0.442704i
\(210\) 0 0
\(211\) 17.8262 5.79210i 1.22721 0.398744i 0.377506 0.926007i \(-0.376782\pi\)
0.849702 + 0.527263i \(0.176782\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.97397 9.15293i 0.202823 0.624225i
\(216\) 0 0
\(217\) 3.98787 5.48883i 0.270714 0.372606i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.354958i 0.0238771i
\(222\) 0 0
\(223\) −4.44037 3.22612i −0.297349 0.216037i 0.429100 0.903257i \(-0.358831\pi\)
−0.726449 + 0.687220i \(0.758831\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.1352 + 8.09016i −0.739066 + 0.536963i −0.892419 0.451209i \(-0.850993\pi\)
0.153352 + 0.988172i \(0.450993\pi\)
\(228\) 0 0
\(229\) −6.53035 20.0983i −0.431538 1.32814i −0.896593 0.442855i \(-0.853966\pi\)
0.465056 0.885281i \(-0.346034\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.62458 + 14.2330i 0.302967 + 0.932435i 0.980428 + 0.196877i \(0.0630800\pi\)
−0.677462 + 0.735558i \(0.736920\pi\)
\(234\) 0 0
\(235\) 11.3053 8.21378i 0.737477 0.535808i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.37274 + 3.17698i 0.282849 + 0.205502i 0.720159 0.693809i \(-0.244069\pi\)
−0.437310 + 0.899311i \(0.644069\pi\)
\(240\) 0 0
\(241\) 11.7091i 0.754252i −0.926162 0.377126i \(-0.876912\pi\)
0.926162 0.377126i \(-0.123088\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.4362 17.1169i 0.794518 1.09356i
\(246\) 0 0
\(247\) −3.44458 + 10.6013i −0.219173 + 0.674546i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.4920 6.98319i 1.35657 0.440775i 0.461671 0.887051i \(-0.347250\pi\)
0.894895 + 0.446276i \(0.147250\pi\)
\(252\) 0 0
\(253\) 0.0647190 10.7031i 0.00406885 0.672900i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −16.1737 22.2612i −1.00889 1.38862i −0.919709 0.392601i \(-0.871575\pi\)
−0.0891801 0.996016i \(-0.528425\pi\)
\(258\) 0 0
\(259\) −27.9980 9.09709i −1.73971 0.565266i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 32.0386 1.97559 0.987793 0.155773i \(-0.0497868\pi\)
0.987793 + 0.155773i \(0.0497868\pi\)
\(264\) 0 0
\(265\) 2.76294 0.169726
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.7177 + 8.35619i 1.56804 + 0.509486i 0.958940 0.283610i \(-0.0915322\pi\)
0.609097 + 0.793096i \(0.291532\pi\)
\(270\) 0 0
\(271\) −8.74690 12.0391i −0.531336 0.731322i 0.455997 0.889981i \(-0.349283\pi\)
−0.987333 + 0.158660i \(0.949283\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.144573 0.106380i −0.00871807 0.00641495i
\(276\) 0 0
\(277\) −7.49418 + 2.43501i −0.450282 + 0.146305i −0.525374 0.850871i \(-0.676075\pi\)
0.0750927 + 0.997177i \(0.476075\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.56034 + 20.1906i −0.391357 + 1.20447i 0.540406 + 0.841405i \(0.318271\pi\)
−0.931763 + 0.363068i \(0.881729\pi\)
\(282\) 0 0
\(283\) 2.52460 3.47482i 0.150072 0.206556i −0.727362 0.686254i \(-0.759254\pi\)
0.877434 + 0.479698i \(0.159254\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 34.1996i 2.01874i
\(288\) 0 0
\(289\) 13.7486 + 9.98893i 0.808740 + 0.587584i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −15.4486 + 11.2241i −0.902518 + 0.655717i −0.939111 0.343613i \(-0.888349\pi\)
0.0365938 + 0.999330i \(0.488349\pi\)
\(294\) 0 0
\(295\) 0.403135 + 1.24072i 0.0234714 + 0.0722376i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.63988 + 14.2801i 0.268331 + 0.825838i
\(300\) 0 0
\(301\) −14.0300 + 10.1934i −0.808678 + 0.587539i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.87902 + 4.99790i 0.393891 + 0.286179i
\(306\) 0 0
\(307\) 1.86240i 0.106293i 0.998587 + 0.0531463i \(0.0169250\pi\)
−0.998587 + 0.0531463i \(0.983075\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.26339 7.24443i 0.298459 0.410794i −0.633279 0.773923i \(-0.718292\pi\)
0.931739 + 0.363129i \(0.118292\pi\)
\(312\) 0 0
\(313\) 5.29558 16.2981i 0.299324 0.921224i −0.682411 0.730969i \(-0.739068\pi\)
0.981735 0.190255i \(-0.0609316\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.9678 8.43746i 1.45850 0.473895i 0.530888 0.847442i \(-0.321859\pi\)
0.927611 + 0.373547i \(0.121859\pi\)
\(318\) 0 0
\(319\) 4.95659 3.55558i 0.277516 0.199075i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.107435 + 0.147872i 0.00597785 + 0.00822781i
\(324\) 0 0
\(325\) 0.239475 + 0.0778102i 0.0132837 + 0.00431614i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −25.1809 −1.38827
\(330\) 0 0
\(331\) 5.87217 0.322764 0.161382 0.986892i \(-0.448405\pi\)
0.161382 + 0.986892i \(0.448405\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 27.7919 + 9.03014i 1.51844 + 0.493370i
\(336\) 0 0
\(337\) −9.74004 13.4060i −0.530574 0.730272i 0.456644 0.889650i \(-0.349051\pi\)
−0.987218 + 0.159377i \(0.949051\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.68447 + 5.29296i 0.0912193 + 0.286630i
\(342\) 0 0
\(343\) −9.28988 + 3.01847i −0.501606 + 0.162982i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.778158 2.39492i 0.0417737 0.128566i −0.927995 0.372593i \(-0.878469\pi\)
0.969768 + 0.244027i \(0.0784686\pi\)
\(348\) 0 0
\(349\) 5.13104 7.06228i 0.274658 0.378035i −0.649297 0.760535i \(-0.724937\pi\)
0.923955 + 0.382500i \(0.124937\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.536500i 0.0285550i −0.999898 0.0142775i \(-0.995455\pi\)
0.999898 0.0142775i \(-0.00454483\pi\)
\(354\) 0 0
\(355\) −2.03789 1.48062i −0.108160 0.0785829i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.7871 + 9.29040i −0.674880 + 0.490329i −0.871655 0.490120i \(-0.836953\pi\)
0.196775 + 0.980449i \(0.436953\pi\)
\(360\) 0 0
\(361\) 4.09760 + 12.6111i 0.215663 + 0.663742i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.24439 28.4513i −0.483873 1.48921i
\(366\) 0 0
\(367\) 23.4075 17.0065i 1.22186 0.887734i 0.225608 0.974218i \(-0.427563\pi\)
0.996253 + 0.0864843i \(0.0275633\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.02788 2.92642i −0.209117 0.151932i
\(372\) 0 0
\(373\) 6.60935i 0.342219i 0.985252 + 0.171109i \(0.0547352\pi\)
−0.985252 + 0.171109i \(0.945265\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.02984 + 6.92297i −0.259050 + 0.356551i
\(378\) 0 0
\(379\) −0.478524 + 1.47275i −0.0245801 + 0.0756498i −0.962594 0.270948i \(-0.912663\pi\)
0.938014 + 0.346597i \(0.112663\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.8467 + 4.17415i −0.656436 + 0.213289i −0.618250 0.785982i \(-0.712158\pi\)
−0.0381861 + 0.999271i \(0.512158\pi\)
\(384\) 0 0
\(385\) 9.16021 + 28.7833i 0.466847 + 1.46693i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.80471 + 12.1186i 0.446416 + 0.614440i 0.971623 0.236535i \(-0.0760119\pi\)
−0.525206 + 0.850975i \(0.676012\pi\)
\(390\) 0 0
\(391\) 0.234155 + 0.0760817i 0.0118417 + 0.00384762i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.48346 0.0746409
\(396\) 0 0
\(397\) −20.7132 −1.03956 −0.519782 0.854299i \(-0.673987\pi\)
−0.519782 + 0.854299i \(0.673987\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.7211 + 8.35730i 1.28445 + 0.417343i 0.870146 0.492795i \(-0.164025\pi\)
0.414305 + 0.910138i \(0.364025\pi\)
\(402\) 0 0
\(403\) −4.58007 6.30392i −0.228149 0.314021i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 19.5839 14.0484i 0.970739 0.696354i
\(408\) 0 0
\(409\) −5.80668 + 1.88670i −0.287122 + 0.0932915i −0.449037 0.893513i \(-0.648233\pi\)
0.161915 + 0.986805i \(0.448233\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.726437 2.23574i 0.0357456 0.110014i
\(414\) 0 0
\(415\) 13.4932 18.5718i 0.662357 0.911656i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 35.6619i 1.74220i −0.491110 0.871098i \(-0.663409\pi\)
0.491110 0.871098i \(-0.336591\pi\)
\(420\) 0 0
\(421\) −11.5751 8.40982i −0.564137 0.409870i 0.268834 0.963187i \(-0.413362\pi\)
−0.832971 + 0.553317i \(0.813362\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.00334030 0.00242687i 0.000162028 0.000117721i
\(426\) 0 0
\(427\) −4.73477 14.5721i −0.229131 0.705194i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.68944 8.27725i −0.129546 0.398701i 0.865156 0.501503i \(-0.167219\pi\)
−0.994702 + 0.102802i \(0.967219\pi\)
\(432\) 0 0
\(433\) 30.3812 22.0733i 1.46003 1.06077i 0.476673 0.879080i \(-0.341842\pi\)
0.983355 0.181693i \(-0.0581576\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.25507 4.54458i −0.299221 0.217397i
\(438\) 0 0
\(439\) 32.4669i 1.54956i −0.632232 0.774779i \(-0.717861\pi\)
0.632232 0.774779i \(-0.282139\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.0630 15.2269i 0.525618 0.723451i −0.460837 0.887485i \(-0.652451\pi\)
0.986455 + 0.164034i \(0.0524506\pi\)
\(444\) 0 0
\(445\) 4.57804 14.0897i 0.217020 0.667918i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.86840 + 2.23168i −0.324140 + 0.105319i −0.466567 0.884486i \(-0.654509\pi\)
0.142427 + 0.989805i \(0.454509\pi\)
\(450\) 0 0
\(451\) −22.5520 16.5942i −1.06193 0.781392i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −24.9065 34.2809i −1.16764 1.60711i
\(456\) 0 0
\(457\) 4.01554 + 1.30473i 0.187839 + 0.0610326i 0.401426 0.915891i \(-0.368515\pi\)
−0.213587 + 0.976924i \(0.568515\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.1922 0.660997 0.330499 0.943806i \(-0.392783\pi\)
0.330499 + 0.943806i \(0.392783\pi\)
\(462\) 0 0
\(463\) 40.3784 1.87654 0.938271 0.345902i \(-0.112427\pi\)
0.938271 + 0.345902i \(0.112427\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.7476 + 3.49210i 0.497338 + 0.161595i 0.546936 0.837174i \(-0.315794\pi\)
−0.0495980 + 0.998769i \(0.515794\pi\)
\(468\) 0 0
\(469\) −30.9513 42.6008i −1.42920 1.96712i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.0858500 14.1977i 0.00394739 0.652813i
\(474\) 0 0
\(475\) −0.123314 + 0.0400671i −0.00565802 + 0.00183840i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.07597 + 21.7776i −0.323309 + 0.995044i 0.648889 + 0.760883i \(0.275234\pi\)
−0.972198 + 0.234161i \(0.924766\pi\)
\(480\) 0 0
\(481\) −19.8733 + 27.3533i −0.906145 + 1.24720i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 36.9698i 1.67871i
\(486\) 0 0
\(487\) −6.10169 4.43314i −0.276494 0.200885i 0.440893 0.897560i \(-0.354662\pi\)
−0.717387 + 0.696675i \(0.754662\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −30.8965 + 22.4476i −1.39434 + 1.01305i −0.398967 + 0.916965i \(0.630631\pi\)
−0.995373 + 0.0960820i \(0.969369\pi\)
\(492\) 0 0
\(493\) 0.0433602 + 0.133449i 0.00195285 + 0.00601024i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.40266 + 4.31695i 0.0629181 + 0.193642i
\(498\) 0 0
\(499\) −6.51994 + 4.73701i −0.291873 + 0.212058i −0.724079 0.689717i \(-0.757735\pi\)
0.432207 + 0.901775i \(0.357735\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.0846 + 15.3188i 0.940115 + 0.683033i 0.948448 0.316932i \(-0.102653\pi\)
−0.00833362 + 0.999965i \(0.502653\pi\)
\(504\) 0 0
\(505\) 3.87106i 0.172260i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.4364 22.6228i 0.728531 1.00274i −0.270666 0.962673i \(-0.587244\pi\)
0.999197 0.0400639i \(-0.0127561\pi\)
\(510\) 0 0
\(511\) −16.6581 + 51.2684i −0.736911 + 2.26798i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.90792 2.24452i 0.304399 0.0989054i
\(516\) 0 0
\(517\) 12.2182 16.6049i 0.537357 0.730282i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.9804 26.1242i −0.831545 1.14452i −0.987633 0.156781i \(-0.949888\pi\)
0.156088 0.987743i \(-0.450112\pi\)
\(522\) 0 0
\(523\) −16.5104 5.36454i −0.721948 0.234575i −0.0750804 0.997177i \(-0.523921\pi\)
−0.646868 + 0.762602i \(0.723921\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.127769 −0.00556572
\(528\) 0 0
\(529\) 12.5853 0.547189
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 37.3558 + 12.1376i 1.61806 + 0.525740i
\(534\) 0 0
\(535\) −19.5814 26.9515i −0.846578 1.16522i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.82480 29.6269i 0.423184 1.27612i
\(540\) 0 0
\(541\) −9.58312 + 3.11375i −0.412011 + 0.133870i −0.507686 0.861542i \(-0.669499\pi\)
0.0956753 + 0.995413i \(0.469499\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −10.3691 + 31.9129i −0.444165 + 1.36700i
\(546\) 0 0
\(547\) −14.0244 + 19.3029i −0.599639 + 0.825333i −0.995675 0.0929023i \(-0.970386\pi\)
0.396036 + 0.918235i \(0.370386\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.40642i 0.187720i
\(552\) 0 0
\(553\) −2.16262 1.57124i −0.0919640 0.0668158i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −31.6776 + 23.0151i −1.34222 + 0.975181i −0.342862 + 0.939386i \(0.611396\pi\)
−0.999359 + 0.0357950i \(0.988604\pi\)
\(558\) 0 0
\(559\) 6.15482 + 18.9426i 0.260321 + 0.801185i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.55147 4.77494i −0.0653868 0.201240i 0.913025 0.407903i \(-0.133740\pi\)
−0.978412 + 0.206663i \(0.933740\pi\)
\(564\) 0 0
\(565\) 20.4550 14.8614i 0.860548 0.625225i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.69308 + 5.58935i 0.322511 + 0.234318i 0.737246 0.675624i \(-0.236126\pi\)
−0.414735 + 0.909942i \(0.636126\pi\)
\(570\) 0 0
\(571\) 39.8291i 1.66680i 0.552673 + 0.833398i \(0.313608\pi\)
−0.552673 + 0.833398i \(0.686392\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.102658 + 0.141297i −0.00428115 + 0.00589249i
\(576\) 0 0
\(577\) −4.03506 + 12.4186i −0.167982 + 0.516994i −0.999244 0.0388866i \(-0.987619\pi\)
0.831262 + 0.555881i \(0.187619\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −39.3415 + 12.7828i −1.63216 + 0.530321i
\(582\) 0 0
\(583\) 3.88415 1.23612i 0.160865 0.0511949i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.9608 + 19.2153i 0.576222 + 0.793102i 0.993275 0.115780i \(-0.0369369\pi\)
−0.417053 + 0.908882i \(0.636937\pi\)
\(588\) 0 0
\(589\) 3.81602 + 1.23990i 0.157236 + 0.0510891i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 37.1489 1.52552 0.762761 0.646680i \(-0.223843\pi\)
0.762761 + 0.646680i \(0.223843\pi\)
\(594\) 0 0
\(595\) −0.694814 −0.0284846
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.26902 0.737248i −0.0927095 0.0301231i 0.262295 0.964988i \(-0.415521\pi\)
−0.355004 + 0.934865i \(0.615521\pi\)
\(600\) 0 0
\(601\) 3.99333 + 5.49635i 0.162891 + 0.224201i 0.882658 0.470015i \(-0.155751\pi\)
−0.719767 + 0.694216i \(0.755751\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −23.4250 7.92570i −0.952363 0.322225i
\(606\) 0 0
\(607\) 38.5143 12.5141i 1.56325 0.507930i 0.605575 0.795788i \(-0.292943\pi\)
0.957673 + 0.287859i \(0.0929433\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.93688 + 27.5049i −0.361547 + 1.11273i
\(612\) 0 0
\(613\) 0.119072 0.163888i 0.00480926 0.00661938i −0.806606 0.591090i \(-0.798698\pi\)
0.811415 + 0.584471i \(0.198698\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.08426i 0.325460i 0.986671 + 0.162730i \(0.0520299\pi\)
−0.986671 + 0.162730i \(0.947970\pi\)
\(618\) 0 0
\(619\) 16.9785 + 12.3356i 0.682424 + 0.495810i 0.874161 0.485636i \(-0.161412\pi\)
−0.191737 + 0.981446i \(0.561412\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −21.5974 + 15.6914i −0.865282 + 0.628664i
\(624\) 0 0
\(625\) −7.80814 24.0310i −0.312326 0.961239i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.171320 + 0.527268i 0.00683097 + 0.0210236i
\(630\) 0 0
\(631\) −19.6268 + 14.2597i −0.781332 + 0.567671i −0.905378 0.424606i \(-0.860413\pi\)
0.124047 + 0.992276i \(0.460413\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.0245 8.00977i −0.437494 0.317858i
\(636\) 0 0
\(637\) 43.7871i 1.73491i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.48633 + 13.0568i −0.374688 + 0.515713i −0.954167 0.299273i \(-0.903256\pi\)
0.579480 + 0.814987i \(0.303256\pi\)
\(642\) 0 0
\(643\) −3.88866 + 11.9681i −0.153354 + 0.471975i −0.997990 0.0633656i \(-0.979817\pi\)
0.844637 + 0.535340i \(0.179817\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −28.7701 + 9.34797i −1.13107 + 0.367507i −0.813982 0.580890i \(-0.802705\pi\)
−0.317087 + 0.948396i \(0.602705\pi\)
\(648\) 0 0
\(649\) 1.12182 + 1.56385i 0.0440352 + 0.0613865i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.5162 15.8507i −0.450664 0.620286i 0.521876 0.853021i \(-0.325232\pi\)
−0.972540 + 0.232735i \(0.925232\pi\)
\(654\) 0 0
\(655\) 15.2892 + 4.96777i 0.597399 + 0.194107i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.34943 −0.0525664 −0.0262832 0.999655i \(-0.508367\pi\)
−0.0262832 + 0.999655i \(0.508367\pi\)
\(660\) 0 0
\(661\) 28.7859 1.11964 0.559821 0.828614i \(-0.310870\pi\)
0.559821 + 0.828614i \(0.310870\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 20.7516 + 6.74260i 0.804712 + 0.261467i
\(666\) 0 0
\(667\) −3.48879 4.80191i −0.135086 0.185931i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.9066 + 3.94843i 0.459648 + 0.152428i
\(672\) 0 0
\(673\) 20.6864 6.72140i 0.797400 0.259091i 0.118148 0.992996i \(-0.462304\pi\)
0.679252 + 0.733905i \(0.262304\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.84208 + 17.9801i −0.224529 + 0.691030i 0.773810 + 0.633418i \(0.218349\pi\)
−0.998339 + 0.0576121i \(0.981651\pi\)
\(678\) 0 0
\(679\) −39.1574 + 53.8955i −1.50272 + 2.06832i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 33.7466i 1.29128i 0.763642 + 0.645640i \(0.223409\pi\)
−0.763642 + 0.645640i \(0.776591\pi\)
\(684\) 0 0
\(685\) 19.3199 + 14.0367i 0.738176 + 0.536316i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.62602 + 3.36100i −0.176237 + 0.128044i
\(690\) 0 0
\(691\) 8.50814 + 26.1854i 0.323665 + 0.996138i 0.972040 + 0.234817i \(0.0754490\pi\)
−0.648375 + 0.761321i \(0.724551\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.0368728 0.113483i −0.00139867 0.00430465i
\(696\) 0 0
\(697\) 0.521055 0.378569i 0.0197364 0.0143393i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8.43699 6.12983i −0.318661 0.231521i 0.416943 0.908933i \(-0.363101\pi\)
−0.735604 + 0.677412i \(0.763101\pi\)
\(702\) 0 0
\(703\) 17.4101i 0.656636i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.10011 5.64332i 0.154201 0.212239i
\(708\) 0 0
\(709\) −6.19477 + 19.0655i −0.232649 + 0.716021i 0.764775 + 0.644297i \(0.222850\pi\)
−0.997425 + 0.0717239i \(0.977150\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.14021 1.67015i 0.192502 0.0625478i
\(714\) 0 0
\(715\) 34.6907 + 0.209765i 1.29736 + 0.00784477i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.01752 + 8.28241i 0.224416 + 0.308882i 0.906347 0.422535i \(-0.138860\pi\)
−0.681931 + 0.731417i \(0.738860\pi\)
\(720\) 0 0
\(721\) −12.4479 4.04456i −0.463583 0.150627i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.0995374 −0.00369673
\(726\) 0 0
\(727\) 14.4456 0.535759 0.267880 0.963452i \(-0.413677\pi\)
0.267880 + 0.963452i \(0.413677\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.310608 + 0.100923i 0.0114883 + 0.00373276i
\(732\) 0 0
\(733\) 4.29622 + 5.91324i 0.158685 + 0.218411i 0.880955 0.473200i \(-0.156901\pi\)
−0.722270 + 0.691611i \(0.756901\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 43.1100 + 0.260675i 1.58798 + 0.00960207i
\(738\) 0 0
\(739\) 12.4909 4.05854i 0.459485 0.149296i −0.0701229 0.997538i \(-0.522339\pi\)
0.529608 + 0.848243i \(0.322339\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.9307 33.6412i 0.401008 1.23418i −0.523175 0.852225i \(-0.675253\pi\)
0.924183 0.381950i \(-0.124747\pi\)
\(744\) 0 0
\(745\) −26.9503 + 37.0939i −0.987383 + 1.35902i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 60.0306i 2.19347i
\(750\) 0 0
\(751\) −18.6629 13.5594i −0.681018 0.494789i 0.192677 0.981262i \(-0.438283\pi\)
−0.873695 + 0.486473i \(0.838283\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.16285 1.57140i 0.0787141 0.0571892i
\(756\) 0 0
\(757\) 3.02640 + 9.31430i 0.109996 + 0.338534i 0.990871 0.134816i \(-0.0430445\pi\)
−0.880874 + 0.473350i \(0.843044\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.9642 46.0550i −0.542452 1.66949i −0.726973 0.686666i \(-0.759074\pi\)
0.184522 0.982828i \(-0.440926\pi\)
\(762\) 0 0
\(763\) 48.9176 35.5407i 1.77094 1.28666i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.18426 1.58696i −0.0788691 0.0573017i
\(768\) 0 0
\(769\) 33.4223i 1.20524i 0.798029 + 0.602619i \(0.205876\pi\)
−0.798029 + 0.602619i \(0.794124\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.82924 5.27050i 0.137728 0.189567i −0.734581 0.678521i \(-0.762621\pi\)
0.872310 + 0.488954i \(0.162621\pi\)
\(774\) 0 0
\(775\) 0.0280083 0.0862007i 0.00100609 0.00309642i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −19.2357 + 6.25007i −0.689192 + 0.223932i
\(780\) 0 0
\(781\) −3.52729 1.16971i −0.126216 0.0418556i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.29014 3.15211i −0.0817386 0.112503i
\(786\) 0 0
\(787\) −27.5749 8.95962i −0.982939 0.319376i −0.226911 0.973916i \(-0.572863\pi\)
−0.756028 + 0.654539i \(0.772863\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −45.5606 −1.61995
\(792\) 0 0
\(793\) −17.5974 −0.624901
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.7264 8.35900i −0.911274 0.296091i −0.184392 0.982853i \(-0.559032\pi\)
−0.726882 + 0.686762i \(0.759032\pi\)
\(798\) 0 0
\(799\) 0.278738 + 0.383650i 0.00986103 + 0.0135725i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −25.7247 35.8610i −0.907805 1.26551i
\(804\) 0 0
\(805\) 27.9526 9.08234i 0.985199 0.320110i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.9385 + 39.8205i −0.454892 + 1.40001i 0.416370 + 0.909195i \(0.363302\pi\)
−0.871262 + 0.490818i \(0.836698\pi\)
\(810\) 0 0
\(811\) 7.51871 10.3486i 0.264018 0.363389i −0.656341 0.754464i \(-0.727897\pi\)
0.920359 + 0.391075i \(0.127897\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.25399i 0.0789538i
\(816\) 0 0
\(817\) −8.29738 6.02840i −0.290289 0.210907i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.59682 + 6.97250i −0.334931 + 0.243342i −0.742520 0.669824i \(-0.766370\pi\)
0.407589 + 0.913166i \(0.366370\pi\)
\(822\) 0 0
\(823\) −8.11976 24.9900i −0.283037 0.871098i −0.986980 0.160842i \(-0.948579\pi\)
0.703943 0.710256i \(-0.251421\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.99992 + 24.6212i 0.278184 + 0.856163i 0.988359 + 0.152138i \(0.0486159\pi\)
−0.710175 + 0.704025i \(0.751384\pi\)
\(828\) 0 0
\(829\) −14.0195 + 10.1858i −0.486918 + 0.353766i −0.803998 0.594632i \(-0.797298\pi\)
0.317080 + 0.948399i \(0.397298\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.580869 + 0.422026i 0.0201259 + 0.0146223i
\(834\) 0 0
\(835\) 30.3907i 1.05171i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.2513 25.1207i 0.630104 0.867264i −0.367935 0.929851i \(-0.619935\pi\)
0.998039 + 0.0625873i \(0.0199352\pi\)
\(840\) 0 0
\(841\) −7.91617 + 24.3635i −0.272971 + 0.840120i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −18.4888 + 6.00737i −0.636033 + 0.206660i
\(846\) 0 0
\(847\) 25.7549 + 36.3654i 0.884949 + 1.24953i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13.7845 18.9727i −0.472527 0.650377i
\(852\) 0 0
\(853\) 0.303737 + 0.0986902i 0.0103998 + 0.00337909i 0.314212 0.949353i \(-0.398260\pi\)
−0.303812 + 0.952732i \(0.598260\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.2476 −0.452528 −0.226264 0.974066i \(-0.572651\pi\)
−0.226264 + 0.974066i \(0.572651\pi\)
\(858\) 0 0
\(859\) 8.58152 0.292798 0.146399 0.989226i \(-0.453232\pi\)
0.146399 + 0.989226i \(0.453232\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 51.0889 + 16.5998i 1.73909 + 0.565063i 0.994712 0.102700i \(-0.0327482\pi\)
0.744374 + 0.667763i \(0.232748\pi\)
\(864\) 0 0
\(865\) −9.94098 13.6826i −0.338004 0.465222i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.08545 0.663690i 0.0707441 0.0225141i
\(870\) 0 0
\(871\) −57.5172 + 18.6885i −1.94889 + 0.633234i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13.9193 + 42.8394i −0.470560 + 1.44823i
\(876\) 0 0
\(877\) −25.8716 + 35.6092i −0.873623 + 1.20244i 0.104524 + 0.994522i \(0.466668\pi\)
−0.978147 + 0.207916i \(0.933332\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.44194i 0.250725i −0.992111 0.125363i \(-0.959991\pi\)
0.992111 0.125363i \(-0.0400095\pi\)
\(882\) 0 0
\(883\) −7.59369 5.51714i −0.255548 0.185667i 0.452634 0.891696i \(-0.350484\pi\)
−0.708182 + 0.706030i \(0.750484\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −19.5658 + 14.2154i −0.656957 + 0.477307i −0.865634 0.500678i \(-0.833084\pi\)
0.208677 + 0.977985i \(0.433084\pi\)
\(888\) 0 0
\(889\) 7.58806 + 23.3537i 0.254496 + 0.783257i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.60189 14.1632i −0.153996 0.473952i
\(894\) 0 0
\(895\) −22.7353 + 16.5182i −0.759958 + 0.552142i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.49197 + 1.81052i 0.0831119 + 0.0603843i
\(900\) 0 0
\(901\) 0.0937613i 0.00312364i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 23.7869 32.7399i 0.790703 1.08831i
\(906\) 0 0
\(907\) 11.0734 34.0803i 0.367685 1.13162i −0.580597 0.814191i \(-0.697181\pi\)
0.948282 0.317428i \(-0.102819\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 8.33061 2.70678i 0.276005 0.0896796i −0.167744 0.985831i \(-0.553648\pi\)
0.443749 + 0.896151i \(0.353648\pi\)
\(912\) 0 0
\(913\) 10.6599 32.1451i 0.352791 1.06385i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −17.0273 23.4360i −0.562290 0.773926i
\(918\) 0 0
\(919\) 39.4876 + 12.8303i 1.30258 + 0.423233i 0.876477 0.481443i \(-0.159887\pi\)
0.426100 + 0.904676i \(0.359887\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.21318 0.171594
\(924\) 0 0
\(925\) −0.393281 −0.0129310
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −51.5363 16.7451i −1.69085 0.549390i −0.703883 0.710316i \(-0.748552\pi\)
−0.986967 + 0.160925i \(0.948552\pi\)
\(930\) 0 0
\(931\) −13.2531 18.2413i −0.434351 0.597833i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.337136 0.458176i 0.0110255 0.0149839i
\(936\) 0 0
\(937\) −16.5444 + 5.37559i −0.540480 + 0.175613i −0.566520 0.824048i \(-0.691710\pi\)
0.0260393 + 0.999661i \(0.491710\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.64708 20.4576i 0.216689 0.666899i −0.782341 0.622851i \(-0.785974\pi\)
0.999029 0.0440486i \(-0.0140256\pi\)
\(942\) 0 0
\(943\) −16.0137 + 22.0410i −0.521478 + 0.717753i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 44.7887i 1.45544i −0.685875 0.727719i \(-0.740580\pi\)
0.685875 0.727719i \(-0.259420\pi\)
\(948\) 0 0
\(949\) 50.0878 + 36.3909i 1.62592 + 1.18130i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −8.11741 + 5.89765i −0.262949 + 0.191043i −0.711446 0.702741i \(-0.751959\pi\)
0.448497 + 0.893784i \(0.351959\pi\)
\(954\) 0 0
\(955\) 15.0454 + 46.3049i 0.486857 + 1.49839i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −13.2977 40.9262i −0.429406 1.32158i
\(960\) 0 0
\(961\) 22.8104 16.5727i 0.735819 0.534604i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.43388 + 6.85412i 0.303688 + 0.220642i
\(966\) 0 0
\(967\) 4.32167i 0.138976i −0.997583 0.0694878i \(-0.977863\pi\)
0.997583 0.0694878i \(-0.0221365\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −33.7344 + 46.4314i −1.08259 + 1.49005i −0.225947 + 0.974140i \(0.572548\pi\)
−0.856640 + 0.515914i \(0.827452\pi\)
\(972\) 0 0
\(973\) −0.0664437 + 0.204493i −0.00213009 + 0.00655574i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.28130 1.06616i 0.104978 0.0341095i −0.256057 0.966662i \(-0.582423\pi\)
0.361035 + 0.932552i \(0.382423\pi\)
\(978\) 0 0
\(979\) 0.132155 21.8556i 0.00422369 0.698508i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −0.608167 0.837070i −0.0193975 0.0266984i 0.799208 0.601054i \(-0.205253\pi\)
−0.818606 + 0.574356i \(0.805253\pi\)
\(984\) 0 0
\(985\) −11.0044 3.57554i −0.350628 0.113926i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13.8151 −0.439294
\(990\) 0 0
\(991\) −9.78910 −0.310961 −0.155481 0.987839i \(-0.549693\pi\)
−0.155481 + 0.987839i \(0.549693\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 51.8693 + 16.8534i 1.64437 + 0.534288i
\(996\) 0 0
\(997\) −6.82690 9.39642i −0.216210 0.297588i 0.687111 0.726552i \(-0.258878\pi\)
−0.903321 + 0.428965i \(0.858878\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.2.cd.c.17.1 16
3.2 odd 2 inner 1584.2.cd.c.17.4 16
4.3 odd 2 99.2.j.a.17.1 16
11.2 odd 10 inner 1584.2.cd.c.1025.4 16
12.11 even 2 99.2.j.a.17.4 yes 16
33.2 even 10 inner 1584.2.cd.c.1025.1 16
36.7 odd 6 891.2.u.c.215.1 32
36.11 even 6 891.2.u.c.215.4 32
36.23 even 6 891.2.u.c.512.1 32
36.31 odd 6 891.2.u.c.512.4 32
44.3 odd 10 1089.2.d.g.1088.3 16
44.19 even 10 1089.2.d.g.1088.13 16
44.35 even 10 99.2.j.a.35.4 yes 16
132.35 odd 10 99.2.j.a.35.1 yes 16
132.47 even 10 1089.2.d.g.1088.14 16
132.107 odd 10 1089.2.d.g.1088.4 16
396.79 even 30 891.2.u.c.134.1 32
396.167 odd 30 891.2.u.c.431.1 32
396.211 even 30 891.2.u.c.431.4 32
396.299 odd 30 891.2.u.c.134.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.j.a.17.1 16 4.3 odd 2
99.2.j.a.17.4 yes 16 12.11 even 2
99.2.j.a.35.1 yes 16 132.35 odd 10
99.2.j.a.35.4 yes 16 44.35 even 10
891.2.u.c.134.1 32 396.79 even 30
891.2.u.c.134.4 32 396.299 odd 30
891.2.u.c.215.1 32 36.7 odd 6
891.2.u.c.215.4 32 36.11 even 6
891.2.u.c.431.1 32 396.167 odd 30
891.2.u.c.431.4 32 396.211 even 30
891.2.u.c.512.1 32 36.23 even 6
891.2.u.c.512.4 32 36.31 odd 6
1089.2.d.g.1088.3 16 44.3 odd 10
1089.2.d.g.1088.4 16 132.107 odd 10
1089.2.d.g.1088.13 16 44.19 even 10
1089.2.d.g.1088.14 16 132.47 even 10
1584.2.cd.c.17.1 16 1.1 even 1 trivial
1584.2.cd.c.17.4 16 3.2 odd 2 inner
1584.2.cd.c.1025.1 16 33.2 even 10 inner
1584.2.cd.c.1025.4 16 11.2 odd 10 inner