Properties

Label 1584.2.o.g.703.8
Level $1584$
Weight $2$
Character 1584.703
Analytic conductor $12.648$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1584,2,Mod(703,1584)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1584, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1584.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1584 = 2^{4} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1584.o (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.6483036802\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.454201344.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 4x^{6} + 24x^{5} - 25x^{4} - 12x^{3} + 128x^{2} - 182x + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 528)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.8
Root \(-2.39244 + 0.0909984i\) of defining polynomial
Character \(\chi\) \(=\) 1584.703
Dual form 1584.2.o.g.703.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.732051 q^{5} +2.36806 q^{7} +(-3.23483 + 0.732051i) q^{11} -2.36806i q^{13} -6.46965i q^{17} +6.46965 q^{19} -4.73205i q^{23} -4.46410 q^{25} +2.00000i q^{31} +1.73354 q^{35} +7.46410 q^{37} -4.73611i q^{41} +6.46965 q^{43} +6.19615i q^{47} -1.39230 q^{49} +7.26795 q^{53} +(-2.36806 + 0.535898i) q^{55} -2.53590i q^{59} -15.3074i q^{61} -1.73354i q^{65} +10.3923i q^{67} +7.26795i q^{71} -4.73611i q^{73} +(-7.66025 + 1.73354i) q^{77} -2.36806 q^{79} +4.73611 q^{83} -4.73611i q^{85} -10.3923 q^{89} -5.60770i q^{91} +4.73611 q^{95} -1.46410 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 8 q^{25} + 32 q^{37} + 72 q^{49} + 72 q^{53} + 8 q^{77} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1584\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(353\) \(991\) \(1189\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.732051 0.327383 0.163692 0.986512i \(-0.447660\pi\)
0.163692 + 0.986512i \(0.447660\pi\)
\(6\) 0 0
\(7\) 2.36806 0.895042 0.447521 0.894274i \(-0.352307\pi\)
0.447521 + 0.894274i \(0.352307\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.23483 + 0.732051i −0.975337 + 0.220722i
\(12\) 0 0
\(13\) 2.36806i 0.656781i −0.944542 0.328390i \(-0.893494\pi\)
0.944542 0.328390i \(-0.106506\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.46965i 1.56912i −0.620052 0.784561i \(-0.712889\pi\)
0.620052 0.784561i \(-0.287111\pi\)
\(18\) 0 0
\(19\) 6.46965 1.48424 0.742120 0.670267i \(-0.233820\pi\)
0.742120 + 0.670267i \(0.233820\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.73205i 0.986701i −0.869831 0.493350i \(-0.835772\pi\)
0.869831 0.493350i \(-0.164228\pi\)
\(24\) 0 0
\(25\) −4.46410 −0.892820
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.73354 0.293021
\(36\) 0 0
\(37\) 7.46410 1.22709 0.613545 0.789659i \(-0.289743\pi\)
0.613545 + 0.789659i \(0.289743\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.73611i 0.739657i −0.929100 0.369828i \(-0.879416\pi\)
0.929100 0.369828i \(-0.120584\pi\)
\(42\) 0 0
\(43\) 6.46965 0.986613 0.493306 0.869856i \(-0.335788\pi\)
0.493306 + 0.869856i \(0.335788\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.19615i 0.903802i 0.892068 + 0.451901i \(0.149254\pi\)
−0.892068 + 0.451901i \(0.850746\pi\)
\(48\) 0 0
\(49\) −1.39230 −0.198901
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.26795 0.998330 0.499165 0.866507i \(-0.333640\pi\)
0.499165 + 0.866507i \(0.333640\pi\)
\(54\) 0 0
\(55\) −2.36806 + 0.535898i −0.319309 + 0.0722605i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.53590i 0.330146i −0.986281 0.165073i \(-0.947214\pi\)
0.986281 0.165073i \(-0.0527859\pi\)
\(60\) 0 0
\(61\) 15.3074i 1.95991i −0.199226 0.979953i \(-0.563843\pi\)
0.199226 0.979953i \(-0.436157\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.73354i 0.215019i
\(66\) 0 0
\(67\) 10.3923i 1.26962i 0.772667 + 0.634811i \(0.218922\pi\)
−0.772667 + 0.634811i \(0.781078\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.26795i 0.862547i 0.902221 + 0.431273i \(0.141936\pi\)
−0.902221 + 0.431273i \(0.858064\pi\)
\(72\) 0 0
\(73\) 4.73611i 0.554320i −0.960824 0.277160i \(-0.910607\pi\)
0.960824 0.277160i \(-0.0893933\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.66025 + 1.73354i −0.872967 + 0.197555i
\(78\) 0 0
\(79\) −2.36806 −0.266427 −0.133214 0.991087i \(-0.542530\pi\)
−0.133214 + 0.991087i \(0.542530\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.73611 0.519856 0.259928 0.965628i \(-0.416301\pi\)
0.259928 + 0.965628i \(0.416301\pi\)
\(84\) 0 0
\(85\) 4.73611i 0.513704i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.3923 −1.10158 −0.550791 0.834643i \(-0.685674\pi\)
−0.550791 + 0.834643i \(0.685674\pi\)
\(90\) 0 0
\(91\) 5.60770i 0.587846i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.73611 0.485915
\(96\) 0 0
\(97\) −1.46410 −0.148657 −0.0743285 0.997234i \(-0.523681\pi\)
−0.0743285 + 0.997234i \(0.523681\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.20319i 0.816248i 0.912927 + 0.408124i \(0.133817\pi\)
−0.912927 + 0.408124i \(0.866183\pi\)
\(102\) 0 0
\(103\) 10.0000i 0.985329i −0.870219 0.492665i \(-0.836023\pi\)
0.870219 0.492665i \(-0.163977\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.46965 0.625445 0.312722 0.949845i \(-0.398759\pi\)
0.312722 + 0.949845i \(0.398759\pi\)
\(108\) 0 0
\(109\) 10.5712i 1.01254i −0.862374 0.506271i \(-0.831024\pi\)
0.862374 0.506271i \(-0.168976\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 17.3205 1.62938 0.814688 0.579899i \(-0.196908\pi\)
0.814688 + 0.579899i \(0.196908\pi\)
\(114\) 0 0
\(115\) 3.46410i 0.323029i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.3205i 1.40443i
\(120\) 0 0
\(121\) 9.92820 4.73611i 0.902564 0.430556i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.92820 −0.619677
\(126\) 0 0
\(127\) 2.36806 0.210131 0.105066 0.994465i \(-0.466495\pi\)
0.105066 + 0.994465i \(0.466495\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17.6754 1.54431 0.772154 0.635435i \(-0.219179\pi\)
0.772154 + 0.635435i \(0.219179\pi\)
\(132\) 0 0
\(133\) 15.3205 1.32846
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.92820 0.762788 0.381394 0.924413i \(-0.375444\pi\)
0.381394 + 0.924413i \(0.375444\pi\)
\(138\) 0 0
\(139\) 1.73354 0.147037 0.0735184 0.997294i \(-0.476577\pi\)
0.0735184 + 0.997294i \(0.476577\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.73354 + 7.66025i 0.144966 + 0.640583i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.20319i 0.672032i −0.941856 0.336016i \(-0.890920\pi\)
0.941856 0.336016i \(-0.109080\pi\)
\(150\) 0 0
\(151\) −15.3074 −1.24570 −0.622848 0.782343i \(-0.714024\pi\)
−0.622848 + 0.782343i \(0.714024\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.46410i 0.117599i
\(156\) 0 0
\(157\) −15.8564 −1.26548 −0.632740 0.774365i \(-0.718070\pi\)
−0.632740 + 0.774365i \(0.718070\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 11.2058i 0.883138i
\(162\) 0 0
\(163\) 10.9282i 0.855963i −0.903788 0.427981i \(-0.859225\pi\)
0.903788 0.427981i \(-0.140775\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.20319 −0.634782 −0.317391 0.948295i \(-0.602807\pi\)
−0.317391 + 0.948295i \(0.602807\pi\)
\(168\) 0 0
\(169\) 7.39230 0.568639
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 22.4115i 1.70392i 0.523609 + 0.851959i \(0.324585\pi\)
−0.523609 + 0.851959i \(0.675415\pi\)
\(174\) 0 0
\(175\) −10.5712 −0.799111
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 20.3923i 1.52419i 0.647464 + 0.762096i \(0.275830\pi\)
−0.647464 + 0.762096i \(0.724170\pi\)
\(180\) 0 0
\(181\) −18.3923 −1.36709 −0.683545 0.729909i \(-0.739563\pi\)
−0.683545 + 0.729909i \(0.739563\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.46410 0.401729
\(186\) 0 0
\(187\) 4.73611 + 20.9282i 0.346339 + 1.53042i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.1244i 0.949645i −0.880082 0.474823i \(-0.842512\pi\)
0.880082 0.474823i \(-0.157488\pi\)
\(192\) 0 0
\(193\) 22.4115i 1.61322i 0.591086 + 0.806609i \(0.298700\pi\)
−0.591086 + 0.806609i \(0.701300\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.6754i 1.25932i −0.776870 0.629661i \(-0.783194\pi\)
0.776870 0.629661i \(-0.216806\pi\)
\(198\) 0 0
\(199\) 16.5359i 1.17220i 0.810239 + 0.586099i \(0.199337\pi\)
−0.810239 + 0.586099i \(0.800663\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.46708i 0.242151i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −20.9282 + 4.73611i −1.44763 + 0.327604i
\(210\) 0 0
\(211\) 14.6728 1.01012 0.505060 0.863084i \(-0.331470\pi\)
0.505060 + 0.863084i \(0.331470\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.73611 0.323000
\(216\) 0 0
\(217\) 4.73611i 0.321508i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −15.3205 −1.03057
\(222\) 0 0
\(223\) 4.53590i 0.303746i −0.988400 0.151873i \(-0.951469\pi\)
0.988400 0.151873i \(-0.0485305\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.9419 −1.05810 −0.529050 0.848591i \(-0.677452\pi\)
−0.529050 + 0.848591i \(0.677452\pi\)
\(228\) 0 0
\(229\) −3.85641 −0.254839 −0.127419 0.991849i \(-0.540669\pi\)
−0.127419 + 0.991849i \(0.540669\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.73611i 0.310273i −0.987893 0.155137i \(-0.950418\pi\)
0.987893 0.155137i \(-0.0495818\pi\)
\(234\) 0 0
\(235\) 4.53590i 0.295889i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −27.1476 −1.75604 −0.878018 0.478628i \(-0.841134\pi\)
−0.878018 + 0.478628i \(0.841134\pi\)
\(240\) 0 0
\(241\) 3.46708i 0.223334i 0.993746 + 0.111667i \(0.0356190\pi\)
−0.993746 + 0.111667i \(0.964381\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.01924 −0.0651167
\(246\) 0 0
\(247\) 15.3205i 0.974821i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.85641i 0.369653i −0.982771 0.184827i \(-0.940828\pi\)
0.982771 0.184827i \(-0.0591723\pi\)
\(252\) 0 0
\(253\) 3.46410 + 15.3074i 0.217786 + 0.962366i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.53590 0.532455 0.266227 0.963910i \(-0.414223\pi\)
0.266227 + 0.963910i \(0.414223\pi\)
\(258\) 0 0
\(259\) 17.6754 1.09830
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −30.6147 −1.88778 −0.943892 0.330253i \(-0.892866\pi\)
−0.943892 + 0.330253i \(0.892866\pi\)
\(264\) 0 0
\(265\) 5.32051 0.326836
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.1244 1.53186 0.765930 0.642925i \(-0.222279\pi\)
0.765930 + 0.642925i \(0.222279\pi\)
\(270\) 0 0
\(271\) −15.3074 −0.929856 −0.464928 0.885348i \(-0.653920\pi\)
−0.464928 + 0.885348i \(0.653920\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 14.4406 3.26795i 0.870801 0.197065i
\(276\) 0 0
\(277\) 28.2467i 1.69718i 0.529053 + 0.848589i \(0.322547\pi\)
−0.529053 + 0.848589i \(0.677453\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 28.8812i 1.72291i 0.507836 + 0.861454i \(0.330445\pi\)
−0.507836 + 0.861454i \(0.669555\pi\)
\(282\) 0 0
\(283\) −1.73354 −0.103048 −0.0515241 0.998672i \(-0.516408\pi\)
−0.0515241 + 0.998672i \(0.516408\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.2154i 0.662024i
\(288\) 0 0
\(289\) −24.8564 −1.46214
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.47223i 0.553374i 0.960960 + 0.276687i \(0.0892364\pi\)
−0.960960 + 0.276687i \(0.910764\pi\)
\(294\) 0 0
\(295\) 1.85641i 0.108084i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.2058 −0.648046
\(300\) 0 0
\(301\) 15.3205 0.883059
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 11.2058i 0.641640i
\(306\) 0 0
\(307\) 11.2058 0.639547 0.319773 0.947494i \(-0.396393\pi\)
0.319773 + 0.947494i \(0.396393\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 30.9808i 1.75676i 0.477965 + 0.878379i \(0.341375\pi\)
−0.477965 + 0.878379i \(0.658625\pi\)
\(312\) 0 0
\(313\) −15.8564 −0.896257 −0.448129 0.893969i \(-0.647909\pi\)
−0.448129 + 0.893969i \(0.647909\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.66025 0.430243 0.215121 0.976587i \(-0.430985\pi\)
0.215121 + 0.976587i \(0.430985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 41.8564i 2.32895i
\(324\) 0 0
\(325\) 10.5712i 0.586387i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 14.6728i 0.808940i
\(330\) 0 0
\(331\) 14.9282i 0.820528i −0.911967 0.410264i \(-0.865437\pi\)
0.911967 0.410264i \(-0.134563\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.60770i 0.415653i
\(336\) 0 0
\(337\) 17.6754i 0.962841i 0.876490 + 0.481421i \(0.159879\pi\)
−0.876490 + 0.481421i \(0.840121\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.46410 6.46965i −0.0792855 0.350351i
\(342\) 0 0
\(343\) −19.8735 −1.07307
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.2083 −0.762744 −0.381372 0.924422i \(-0.624548\pi\)
−0.381372 + 0.924422i \(0.624548\pi\)
\(348\) 0 0
\(349\) 20.0435i 1.07290i 0.843931 + 0.536451i \(0.180236\pi\)
−0.843931 + 0.536451i \(0.819764\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −35.8564 −1.90844 −0.954222 0.299099i \(-0.903314\pi\)
−0.954222 + 0.299099i \(0.903314\pi\)
\(354\) 0 0
\(355\) 5.32051i 0.282383i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.9393 0.682910 0.341455 0.939898i \(-0.389080\pi\)
0.341455 + 0.939898i \(0.389080\pi\)
\(360\) 0 0
\(361\) 22.8564 1.20297
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.46708i 0.181475i
\(366\) 0 0
\(367\) 10.3923i 0.542474i −0.962513 0.271237i \(-0.912567\pi\)
0.962513 0.271237i \(-0.0874327\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 17.2109 0.893546
\(372\) 0 0
\(373\) 24.7796i 1.28304i 0.767107 + 0.641519i \(0.221696\pi\)
−0.767107 + 0.641519i \(0.778304\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 10.9282i 0.561344i 0.959804 + 0.280672i \(0.0905573\pi\)
−0.959804 + 0.280672i \(0.909443\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 30.9808i 1.58304i −0.611141 0.791521i \(-0.709289\pi\)
0.611141 0.791521i \(-0.290711\pi\)
\(384\) 0 0
\(385\) −5.60770 + 1.26904i −0.285795 + 0.0646762i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.73205 0.239924 0.119962 0.992778i \(-0.461723\pi\)
0.119962 + 0.992778i \(0.461723\pi\)
\(390\) 0 0
\(391\) −30.6147 −1.54825
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.73354 −0.0872238
\(396\) 0 0
\(397\) 13.3205 0.668537 0.334269 0.942478i \(-0.391511\pi\)
0.334269 + 0.942478i \(0.391511\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.46410 0.172989 0.0864945 0.996252i \(-0.472434\pi\)
0.0864945 + 0.996252i \(0.472434\pi\)
\(402\) 0 0
\(403\) 4.73611 0.235923
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −24.1451 + 5.46410i −1.19683 + 0.270845i
\(408\) 0 0
\(409\) 21.1425i 1.04543i −0.852508 0.522715i \(-0.824919\pi\)
0.852508 0.522715i \(-0.175081\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.00515i 0.295494i
\(414\) 0 0
\(415\) 3.46708 0.170192
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 33.8564i 1.65399i 0.562207 + 0.826997i \(0.309953\pi\)
−0.562207 + 0.826997i \(0.690047\pi\)
\(420\) 0 0
\(421\) −25.3205 −1.23405 −0.617023 0.786945i \(-0.711661\pi\)
−0.617023 + 0.786945i \(0.711661\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 28.8812i 1.40094i
\(426\) 0 0
\(427\) 36.2487i 1.75420i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 27.1476 1.30766 0.653828 0.756643i \(-0.273162\pi\)
0.653828 + 0.756643i \(0.273162\pi\)
\(432\) 0 0
\(433\) −3.07180 −0.147621 −0.0738106 0.997272i \(-0.523516\pi\)
−0.0738106 + 0.997272i \(0.523516\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 30.6147i 1.46450i
\(438\) 0 0
\(439\) −29.5157 −1.40871 −0.704354 0.709849i \(-0.748763\pi\)
−0.704354 + 0.709849i \(0.748763\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.8564i 1.41852i 0.704947 + 0.709260i \(0.250971\pi\)
−0.704947 + 0.709260i \(0.749029\pi\)
\(444\) 0 0
\(445\) −7.60770 −0.360639
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 28.9282 1.36521 0.682603 0.730789i \(-0.260848\pi\)
0.682603 + 0.730789i \(0.260848\pi\)
\(450\) 0 0
\(451\) 3.46708 + 15.3205i 0.163258 + 0.721415i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.10512i 0.192451i
\(456\) 0 0
\(457\) 17.6754i 0.826821i −0.910545 0.413411i \(-0.864337\pi\)
0.910545 0.413411i \(-0.135663\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 35.3508i 1.64645i 0.567713 + 0.823226i \(0.307828\pi\)
−0.567713 + 0.823226i \(0.692172\pi\)
\(462\) 0 0
\(463\) 19.0718i 0.886342i 0.896437 + 0.443171i \(0.146146\pi\)
−0.896437 + 0.443171i \(0.853854\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.53590i 0.117347i 0.998277 + 0.0586737i \(0.0186871\pi\)
−0.998277 + 0.0586737i \(0.981313\pi\)
\(468\) 0 0
\(469\) 24.6096i 1.13636i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −20.9282 + 4.73611i −0.962280 + 0.217767i
\(474\) 0 0
\(475\) −28.8812 −1.32516
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.73611 −0.216399 −0.108199 0.994129i \(-0.534508\pi\)
−0.108199 + 0.994129i \(0.534508\pi\)
\(480\) 0 0
\(481\) 17.6754i 0.805930i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.07180 −0.0486678
\(486\) 0 0
\(487\) 2.39230i 0.108406i −0.998530 0.0542028i \(-0.982738\pi\)
0.998530 0.0542028i \(-0.0172618\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.4090 0.875914 0.437957 0.898996i \(-0.355702\pi\)
0.437957 + 0.898996i \(0.355702\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.2109i 0.772015i
\(498\) 0 0
\(499\) 30.9282i 1.38454i 0.721640 + 0.692268i \(0.243389\pi\)
−0.721640 + 0.692268i \(0.756611\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.6754 0.788108 0.394054 0.919087i \(-0.371072\pi\)
0.394054 + 0.919087i \(0.371072\pi\)
\(504\) 0 0
\(505\) 6.00515i 0.267226i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −23.2679 −1.03133 −0.515667 0.856789i \(-0.672456\pi\)
−0.515667 + 0.856789i \(0.672456\pi\)
\(510\) 0 0
\(511\) 11.2154i 0.496140i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.32051i 0.322580i
\(516\) 0 0
\(517\) −4.53590 20.0435i −0.199489 0.881511i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6.67949 0.292634 0.146317 0.989238i \(-0.453258\pi\)
0.146317 + 0.989238i \(0.453258\pi\)
\(522\) 0 0
\(523\) −25.4141 −1.11128 −0.555641 0.831422i \(-0.687527\pi\)
−0.555641 + 0.831422i \(0.687527\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.9393 0.563645
\(528\) 0 0
\(529\) 0.607695 0.0264215
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −11.2154 −0.485792
\(534\) 0 0
\(535\) 4.73611 0.204760
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.50386 1.01924i 0.193995 0.0439017i
\(540\) 0 0
\(541\) 36.4499i 1.56710i −0.621328 0.783551i \(-0.713406\pi\)
0.621328 0.783551i \(-0.286594\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.73869i 0.331489i
\(546\) 0 0
\(547\) 28.8812 1.23487 0.617435 0.786622i \(-0.288172\pi\)
0.617435 + 0.786622i \(0.288172\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −5.60770 −0.238463
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.47223i 0.401351i −0.979658 0.200676i \(-0.935686\pi\)
0.979658 0.200676i \(-0.0643137\pi\)
\(558\) 0 0
\(559\) 15.3205i 0.647988i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.93673 0.418783 0.209392 0.977832i \(-0.432852\pi\)
0.209392 + 0.977832i \(0.432852\pi\)
\(564\) 0 0
\(565\) 12.6795 0.533430
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.8812i 1.21076i 0.795936 + 0.605381i \(0.206979\pi\)
−0.795936 + 0.605381i \(0.793021\pi\)
\(570\) 0 0
\(571\) −1.73354 −0.0725463 −0.0362732 0.999342i \(-0.511549\pi\)
−0.0362732 + 0.999342i \(0.511549\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 21.1244i 0.880947i
\(576\) 0 0
\(577\) 19.6077 0.816279 0.408140 0.912920i \(-0.366178\pi\)
0.408140 + 0.912920i \(0.366178\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.2154 0.465293
\(582\) 0 0
\(583\) −23.5106 + 5.32051i −0.973708 + 0.220353i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.1769i 1.20426i −0.798398 0.602130i \(-0.794319\pi\)
0.798398 0.602130i \(-0.205681\pi\)
\(588\) 0 0
\(589\) 12.9393i 0.533155i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.00258i 0.123301i −0.998098 0.0616505i \(-0.980364\pi\)
0.998098 0.0616505i \(-0.0196364\pi\)
\(594\) 0 0
\(595\) 11.2154i 0.459786i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.1962i 1.07035i −0.844743 0.535173i \(-0.820246\pi\)
0.844743 0.535173i \(-0.179754\pi\)
\(600\) 0 0
\(601\) 34.0818i 1.39023i −0.718901 0.695113i \(-0.755354\pi\)
0.718901 0.695113i \(-0.244646\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.26795 3.46708i 0.295484 0.140957i
\(606\) 0 0
\(607\) 36.4499 1.47945 0.739727 0.672907i \(-0.234955\pi\)
0.739727 + 0.672907i \(0.234955\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.6728 0.593600
\(612\) 0 0
\(613\) 1.09902i 0.0443890i −0.999754 0.0221945i \(-0.992935\pi\)
0.999754 0.0221945i \(-0.00706530\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.4641 −0.622561 −0.311281 0.950318i \(-0.600758\pi\)
−0.311281 + 0.950318i \(0.600758\pi\)
\(618\) 0 0
\(619\) 15.4641i 0.621555i 0.950483 + 0.310777i \(0.100589\pi\)
−0.950483 + 0.310777i \(0.899411\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −24.6096 −0.985962
\(624\) 0 0
\(625\) 17.2487 0.689948
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 48.2901i 1.92545i
\(630\) 0 0
\(631\) 34.7846i 1.38475i −0.721536 0.692377i \(-0.756564\pi\)
0.721536 0.692377i \(-0.243436\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.73354 0.0687934
\(636\) 0 0
\(637\) 3.29706i 0.130634i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11.4641 0.452805 0.226402 0.974034i \(-0.427304\pi\)
0.226402 + 0.974034i \(0.427304\pi\)
\(642\) 0 0
\(643\) 8.53590i 0.336623i −0.985734 0.168311i \(-0.946169\pi\)
0.985734 0.168311i \(-0.0538314\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 37.1244i 1.45951i −0.683709 0.729755i \(-0.739634\pi\)
0.683709 0.729755i \(-0.260366\pi\)
\(648\) 0 0
\(649\) 1.85641 + 8.20319i 0.0728703 + 0.322003i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24.7321 0.967840 0.483920 0.875112i \(-0.339213\pi\)
0.483920 + 0.875112i \(0.339213\pi\)
\(654\) 0 0
\(655\) 12.9393 0.505581
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.4141 −0.989993 −0.494997 0.868895i \(-0.664831\pi\)
−0.494997 + 0.868895i \(0.664831\pi\)
\(660\) 0 0
\(661\) 4.14359 0.161167 0.0805836 0.996748i \(-0.474322\pi\)
0.0805836 + 0.996748i \(0.474322\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 11.2154 0.434914
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.2058 + 49.5167i 0.432594 + 1.91157i
\(672\) 0 0
\(673\) 34.0818i 1.31376i 0.753996 + 0.656878i \(0.228124\pi\)
−0.753996 + 0.656878i \(0.771876\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 30.6147i 1.17662i 0.808636 + 0.588310i \(0.200206\pi\)
−0.808636 + 0.588310i \(0.799794\pi\)
\(678\) 0 0
\(679\) −3.46708 −0.133054
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 35.7128i 1.36651i 0.730179 + 0.683256i \(0.239437\pi\)
−0.730179 + 0.683256i \(0.760563\pi\)
\(684\) 0 0
\(685\) 6.53590 0.249724
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 17.2109i 0.655684i
\(690\) 0 0
\(691\) 9.60770i 0.365494i −0.983160 0.182747i \(-0.941501\pi\)
0.983160 0.182747i \(-0.0584989\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.26904 0.0481374
\(696\) 0 0
\(697\) −30.6410 −1.16061
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.4115i 0.846472i −0.906019 0.423236i \(-0.860894\pi\)
0.906019 0.423236i \(-0.139106\pi\)
\(702\) 0 0
\(703\) 48.2901 1.82130
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19.4256i 0.730576i
\(708\) 0 0
\(709\) 18.7846 0.705471 0.352735 0.935723i \(-0.385252\pi\)
0.352735 + 0.935723i \(0.385252\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 9.46410 0.354433
\(714\) 0 0
\(715\) 1.26904 + 5.60770i 0.0474593 + 0.209716i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11.6603i 0.434854i 0.976077 + 0.217427i \(0.0697664\pi\)
−0.976077 + 0.217427i \(0.930234\pi\)
\(720\) 0 0
\(721\) 23.6806i 0.881911i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 48.2487i 1.78945i 0.446622 + 0.894723i \(0.352627\pi\)
−0.446622 + 0.894723i \(0.647373\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 41.8564i 1.54812i
\(732\) 0 0
\(733\) 10.5712i 0.390458i −0.980758 0.195229i \(-0.937455\pi\)
0.980758 0.195229i \(-0.0625450\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.60770 33.6173i −0.280233 1.23831i
\(738\) 0 0
\(739\) 24.1451 0.888191 0.444095 0.895979i \(-0.353525\pi\)
0.444095 + 0.895979i \(0.353525\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −38.8179 −1.42409 −0.712046 0.702133i \(-0.752231\pi\)
−0.712046 + 0.702133i \(0.752231\pi\)
\(744\) 0 0
\(745\) 6.00515i 0.220012i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15.3205 0.559799
\(750\) 0 0
\(751\) 51.5692i 1.88179i 0.338702 + 0.940894i \(0.390012\pi\)
−0.338702 + 0.940894i \(0.609988\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −11.2058 −0.407820
\(756\) 0 0
\(757\) −19.1769 −0.696997 −0.348498 0.937309i \(-0.613308\pi\)
−0.348498 + 0.937309i \(0.613308\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.4141i 0.921261i −0.887592 0.460630i \(-0.847623\pi\)
0.887592 0.460630i \(-0.152377\pi\)
\(762\) 0 0
\(763\) 25.0333i 0.906267i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.00515 −0.216833
\(768\) 0 0
\(769\) 35.3508i 1.27478i −0.770540 0.637392i \(-0.780013\pi\)
0.770540 0.637392i \(-0.219987\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −44.8372 −1.61268 −0.806340 0.591452i \(-0.798555\pi\)
−0.806340 + 0.591452i \(0.798555\pi\)
\(774\) 0 0
\(775\) 8.92820i 0.320711i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 30.6410i 1.09783i
\(780\) 0 0
\(781\) −5.32051 23.5106i −0.190383 0.841274i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.6077 −0.414296
\(786\) 0 0
\(787\) 28.8812 1.02950 0.514752 0.857339i \(-0.327884\pi\)
0.514752 + 0.857339i \(0.327884\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 41.0160 1.45836
\(792\) 0 0
\(793\) −36.2487 −1.28723
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.339746 −0.0120344 −0.00601721 0.999982i \(-0.501915\pi\)
−0.00601721 + 0.999982i \(0.501915\pi\)
\(798\) 0 0
\(799\) 40.0870 1.41817
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.46708 + 15.3205i 0.122350 + 0.540649i
\(804\) 0 0
\(805\) 8.20319i 0.289124i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 21.1425i 0.743331i −0.928367 0.371665i \(-0.878787\pi\)
0.928367 0.371665i \(-0.121213\pi\)
\(810\) 0 0
\(811\) −6.46965 −0.227180 −0.113590 0.993528i \(-0.536235\pi\)
−0.113590 + 0.993528i \(0.536235\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.00000i 0.280228i
\(816\) 0 0
\(817\) 41.8564 1.46437
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.20319i 0.286293i −0.989701 0.143147i \(-0.954278\pi\)
0.989701 0.143147i \(-0.0457221\pi\)
\(822\) 0 0
\(823\) 4.24871i 0.148101i −0.997255 0.0740504i \(-0.976407\pi\)
0.997255 0.0740504i \(-0.0235926\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30.6147 −1.06458 −0.532289 0.846563i \(-0.678668\pi\)
−0.532289 + 0.846563i \(0.678668\pi\)
\(828\) 0 0
\(829\) 12.1436 0.421764 0.210882 0.977511i \(-0.432366\pi\)
0.210882 + 0.977511i \(0.432366\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 9.00773i 0.312099i
\(834\) 0 0
\(835\) −6.00515 −0.207817
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.12436i 0.0388171i 0.999812 + 0.0194085i \(0.00617832\pi\)
−0.999812 + 0.0194085i \(0.993822\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.41154 0.186163
\(846\) 0 0
\(847\) 23.5106 11.2154i 0.807832 0.385365i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 35.3205i 1.21077i
\(852\) 0 0
\(853\) 16.5764i 0.567565i 0.958889 + 0.283783i \(0.0915894\pi\)
−0.958889 + 0.283783i \(0.908411\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.6147i 1.04578i −0.852400 0.522890i \(-0.824854\pi\)
0.852400 0.522890i \(-0.175146\pi\)
\(858\) 0 0
\(859\) 34.9282i 1.19173i −0.803083 0.595867i \(-0.796808\pi\)
0.803083 0.595867i \(-0.203192\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 29.1244i 0.991405i 0.868493 + 0.495702i \(0.165089\pi\)
−0.868493 + 0.495702i \(0.834911\pi\)
\(864\) 0 0
\(865\) 16.4064i 0.557834i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.66025 1.73354i 0.259856 0.0588063i
\(870\) 0 0
\(871\) 24.6096 0.833864
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −16.4064 −0.554637
\(876\) 0 0
\(877\) 24.7796i 0.836747i −0.908275 0.418374i \(-0.862600\pi\)
0.908275 0.418374i \(-0.137400\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 22.7846 0.767633 0.383817 0.923409i \(-0.374610\pi\)
0.383817 + 0.923409i \(0.374610\pi\)
\(882\) 0 0
\(883\) 36.5359i 1.22953i 0.788710 + 0.614765i \(0.210749\pi\)
−0.788710 + 0.614765i \(0.789251\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.9393 −0.434459 −0.217230 0.976121i \(-0.569702\pi\)
−0.217230 + 0.976121i \(0.569702\pi\)
\(888\) 0 0
\(889\) 5.60770 0.188076
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 40.0870i 1.34146i
\(894\) 0 0
\(895\) 14.9282i 0.498995i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 47.0211i 1.56650i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −13.4641 −0.447562
\(906\) 0 0
\(907\) 38.3923i 1.27480i 0.770535 + 0.637398i \(0.219989\pi\)
−0.770535 + 0.637398i \(0.780011\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 50.9808i 1.68907i −0.535502 0.844534i \(-0.679878\pi\)
0.535502 0.844534i \(-0.320122\pi\)
\(912\) 0 0
\(913\) −15.3205 + 3.46708i −0.507035 + 0.114743i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 41.8564 1.38222
\(918\) 0 0
\(919\) 29.5157 0.973633 0.486817 0.873504i \(-0.338158\pi\)
0.486817 + 0.873504i \(0.338158\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17.2109 0.566504
\(924\) 0 0
\(925\) −33.3205 −1.09557
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −11.8564 −0.388996 −0.194498 0.980903i \(-0.562308\pi\)
−0.194498 + 0.980903i \(0.562308\pi\)
\(930\) 0 0
\(931\) −9.00773 −0.295216
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.46708 + 15.3205i 0.113386 + 0.501034i
\(936\) 0 0
\(937\) 12.9393i 0.422709i −0.977410 0.211354i \(-0.932213\pi\)
0.977410 0.211354i \(-0.0677874\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.73611i 0.154393i −0.997016 0.0771965i \(-0.975403\pi\)
0.997016 0.0771965i \(-0.0245969\pi\)
\(942\) 0 0
\(943\) −22.4115 −0.729820
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.1436i 0.719570i 0.933035 + 0.359785i \(0.117150\pi\)
−0.933035 + 0.359785i \(0.882850\pi\)
\(948\) 0 0
\(949\) −11.2154 −0.364067
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 47.0211i 1.52316i −0.648069 0.761582i \(-0.724423\pi\)
0.648069 0.761582i \(-0.275577\pi\)
\(954\) 0 0
\(955\) 9.60770i 0.310898i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 21.1425 0.682727
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.4064i 0.528140i
\(966\) 0 0
\(967\) 7.10417 0.228455 0.114227 0.993455i \(-0.463561\pi\)
0.114227 + 0.993455i \(0.463561\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40.0000i 1.28366i 0.766846 + 0.641831i \(0.221825\pi\)
−0.766846 + 0.641831i \(0.778175\pi\)
\(972\) 0 0
\(973\) 4.10512 0.131604
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40.2487 1.28767 0.643835 0.765164i \(-0.277342\pi\)
0.643835 + 0.765164i \(0.277342\pi\)
\(978\) 0 0
\(979\) 33.6173 7.60770i 1.07441 0.243143i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 32.3397i 1.03148i 0.856746 + 0.515739i \(0.172483\pi\)
−0.856746 + 0.515739i \(0.827517\pi\)
\(984\) 0 0
\(985\) 12.9393i 0.412281i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 30.6147i 0.973492i
\(990\) 0 0
\(991\) 18.7846i 0.596713i 0.954455 + 0.298356i \(0.0964384\pi\)
−0.954455 + 0.298356i \(0.903562\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12.1051i 0.383758i
\(996\) 0 0
\(997\) 54.1253i 1.71416i −0.515179 0.857082i \(-0.672275\pi\)
0.515179 0.857082i \(-0.327725\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1584.2.o.g.703.8 8
3.2 odd 2 528.2.o.b.175.6 yes 8
4.3 odd 2 inner 1584.2.o.g.703.5 8
11.10 odd 2 inner 1584.2.o.g.703.6 8
12.11 even 2 528.2.o.b.175.1 8
24.5 odd 2 2112.2.o.e.703.4 8
24.11 even 2 2112.2.o.e.703.7 8
33.32 even 2 528.2.o.b.175.5 yes 8
44.43 even 2 inner 1584.2.o.g.703.7 8
132.131 odd 2 528.2.o.b.175.2 yes 8
264.131 odd 2 2112.2.o.e.703.8 8
264.197 even 2 2112.2.o.e.703.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
528.2.o.b.175.1 8 12.11 even 2
528.2.o.b.175.2 yes 8 132.131 odd 2
528.2.o.b.175.5 yes 8 33.32 even 2
528.2.o.b.175.6 yes 8 3.2 odd 2
1584.2.o.g.703.5 8 4.3 odd 2 inner
1584.2.o.g.703.6 8 11.10 odd 2 inner
1584.2.o.g.703.7 8 44.43 even 2 inner
1584.2.o.g.703.8 8 1.1 even 1 trivial
2112.2.o.e.703.3 8 264.197 even 2
2112.2.o.e.703.4 8 24.5 odd 2
2112.2.o.e.703.7 8 24.11 even 2
2112.2.o.e.703.8 8 264.131 odd 2