Properties

Label 2112.2.o.e.703.4
Level $2112$
Weight $2$
Character 2112.703
Analytic conductor $16.864$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2112,2,Mod(703,2112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2112.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2112.o (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8644049069\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.454201344.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 4x^{6} + 24x^{5} - 25x^{4} - 12x^{3} + 128x^{2} - 182x + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 528)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.4
Root \(-2.39244 - 0.0909984i\) of defining polynomial
Character \(\chi\) \(=\) 2112.703
Dual form 2112.2.o.e.703.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +0.732051 q^{5} +2.36806 q^{7} -1.00000 q^{9} +(-3.23483 + 0.732051i) q^{11} +2.36806i q^{13} -0.732051i q^{15} +6.46965i q^{17} -6.46965 q^{19} -2.36806i q^{21} +4.73205i q^{23} -4.46410 q^{25} +1.00000i q^{27} +2.00000i q^{31} +(0.732051 + 3.23483i) q^{33} +1.73354 q^{35} -7.46410 q^{37} +2.36806 q^{39} +4.73611i q^{41} -6.46965 q^{43} -0.732051 q^{45} -6.19615i q^{47} -1.39230 q^{49} +6.46965 q^{51} +7.26795 q^{53} +(-2.36806 + 0.535898i) q^{55} +6.46965i q^{57} -2.53590i q^{59} +15.3074i q^{61} -2.36806 q^{63} +1.73354i q^{65} -10.3923i q^{67} +4.73205 q^{69} -7.26795i q^{71} -4.73611i q^{73} +4.46410i q^{75} +(-7.66025 + 1.73354i) q^{77} -2.36806 q^{79} +1.00000 q^{81} +4.73611 q^{83} +4.73611i q^{85} +10.3923 q^{89} +5.60770i q^{91} +2.00000 q^{93} -4.73611 q^{95} -1.46410 q^{97} +(3.23483 - 0.732051i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 8 q^{9} - 8 q^{25} - 8 q^{33} - 32 q^{37} + 8 q^{45} + 72 q^{49} + 72 q^{53} + 24 q^{69} + 8 q^{77} + 8 q^{81} + 16 q^{93} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2112\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(1409\) \(1729\) \(2047\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.732051 0.327383 0.163692 0.986512i \(-0.447660\pi\)
0.163692 + 0.986512i \(0.447660\pi\)
\(6\) 0 0
\(7\) 2.36806 0.895042 0.447521 0.894274i \(-0.352307\pi\)
0.447521 + 0.894274i \(0.352307\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.23483 + 0.732051i −0.975337 + 0.220722i
\(12\) 0 0
\(13\) 2.36806i 0.656781i 0.944542 + 0.328390i \(0.106506\pi\)
−0.944542 + 0.328390i \(0.893494\pi\)
\(14\) 0 0
\(15\) 0.732051i 0.189015i
\(16\) 0 0
\(17\) 6.46965i 1.56912i 0.620052 + 0.784561i \(0.287111\pi\)
−0.620052 + 0.784561i \(0.712889\pi\)
\(18\) 0 0
\(19\) −6.46965 −1.48424 −0.742120 0.670267i \(-0.766180\pi\)
−0.742120 + 0.670267i \(0.766180\pi\)
\(20\) 0 0
\(21\) 2.36806i 0.516752i
\(22\) 0 0
\(23\) 4.73205i 0.986701i 0.869831 + 0.493350i \(0.164228\pi\)
−0.869831 + 0.493350i \(0.835772\pi\)
\(24\) 0 0
\(25\) −4.46410 −0.892820
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 0 0
\(33\) 0.732051 + 3.23483i 0.127434 + 0.563111i
\(34\) 0 0
\(35\) 1.73354 0.293021
\(36\) 0 0
\(37\) −7.46410 −1.22709 −0.613545 0.789659i \(-0.710257\pi\)
−0.613545 + 0.789659i \(0.710257\pi\)
\(38\) 0 0
\(39\) 2.36806 0.379193
\(40\) 0 0
\(41\) 4.73611i 0.739657i 0.929100 + 0.369828i \(0.120584\pi\)
−0.929100 + 0.369828i \(0.879416\pi\)
\(42\) 0 0
\(43\) −6.46965 −0.986613 −0.493306 0.869856i \(-0.664212\pi\)
−0.493306 + 0.869856i \(0.664212\pi\)
\(44\) 0 0
\(45\) −0.732051 −0.109128
\(46\) 0 0
\(47\) 6.19615i 0.903802i −0.892068 0.451901i \(-0.850746\pi\)
0.892068 0.451901i \(-0.149254\pi\)
\(48\) 0 0
\(49\) −1.39230 −0.198901
\(50\) 0 0
\(51\) 6.46965 0.905933
\(52\) 0 0
\(53\) 7.26795 0.998330 0.499165 0.866507i \(-0.333640\pi\)
0.499165 + 0.866507i \(0.333640\pi\)
\(54\) 0 0
\(55\) −2.36806 + 0.535898i −0.319309 + 0.0722605i
\(56\) 0 0
\(57\) 6.46965i 0.856926i
\(58\) 0 0
\(59\) 2.53590i 0.330146i −0.986281 0.165073i \(-0.947214\pi\)
0.986281 0.165073i \(-0.0527859\pi\)
\(60\) 0 0
\(61\) 15.3074i 1.95991i 0.199226 + 0.979953i \(0.436157\pi\)
−0.199226 + 0.979953i \(0.563843\pi\)
\(62\) 0 0
\(63\) −2.36806 −0.298347
\(64\) 0 0
\(65\) 1.73354i 0.215019i
\(66\) 0 0
\(67\) 10.3923i 1.26962i −0.772667 0.634811i \(-0.781078\pi\)
0.772667 0.634811i \(-0.218922\pi\)
\(68\) 0 0
\(69\) 4.73205 0.569672
\(70\) 0 0
\(71\) 7.26795i 0.862547i −0.902221 0.431273i \(-0.858064\pi\)
0.902221 0.431273i \(-0.141936\pi\)
\(72\) 0 0
\(73\) 4.73611i 0.554320i −0.960824 0.277160i \(-0.910607\pi\)
0.960824 0.277160i \(-0.0893933\pi\)
\(74\) 0 0
\(75\) 4.46410i 0.515470i
\(76\) 0 0
\(77\) −7.66025 + 1.73354i −0.872967 + 0.197555i
\(78\) 0 0
\(79\) −2.36806 −0.266427 −0.133214 0.991087i \(-0.542530\pi\)
−0.133214 + 0.991087i \(0.542530\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.73611 0.519856 0.259928 0.965628i \(-0.416301\pi\)
0.259928 + 0.965628i \(0.416301\pi\)
\(84\) 0 0
\(85\) 4.73611i 0.513704i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.3923 1.10158 0.550791 0.834643i \(-0.314326\pi\)
0.550791 + 0.834643i \(0.314326\pi\)
\(90\) 0 0
\(91\) 5.60770i 0.587846i
\(92\) 0 0
\(93\) 2.00000 0.207390
\(94\) 0 0
\(95\) −4.73611 −0.485915
\(96\) 0 0
\(97\) −1.46410 −0.148657 −0.0743285 0.997234i \(-0.523681\pi\)
−0.0743285 + 0.997234i \(0.523681\pi\)
\(98\) 0 0
\(99\) 3.23483 0.732051i 0.325112 0.0735739i
\(100\) 0 0
\(101\) 8.20319i 0.816248i 0.912927 + 0.408124i \(0.133817\pi\)
−0.912927 + 0.408124i \(0.866183\pi\)
\(102\) 0 0
\(103\) 10.0000i 0.985329i −0.870219 0.492665i \(-0.836023\pi\)
0.870219 0.492665i \(-0.163977\pi\)
\(104\) 0 0
\(105\) 1.73354i 0.169176i
\(106\) 0 0
\(107\) 6.46965 0.625445 0.312722 0.949845i \(-0.398759\pi\)
0.312722 + 0.949845i \(0.398759\pi\)
\(108\) 0 0
\(109\) 10.5712i 1.01254i 0.862374 + 0.506271i \(0.168976\pi\)
−0.862374 + 0.506271i \(0.831024\pi\)
\(110\) 0 0
\(111\) 7.46410i 0.708461i
\(112\) 0 0
\(113\) −17.3205 −1.62938 −0.814688 0.579899i \(-0.803092\pi\)
−0.814688 + 0.579899i \(0.803092\pi\)
\(114\) 0 0
\(115\) 3.46410i 0.323029i
\(116\) 0 0
\(117\) 2.36806i 0.218927i
\(118\) 0 0
\(119\) 15.3205i 1.40443i
\(120\) 0 0
\(121\) 9.92820 4.73611i 0.902564 0.430556i
\(122\) 0 0
\(123\) 4.73611 0.427041
\(124\) 0 0
\(125\) −6.92820 −0.619677
\(126\) 0 0
\(127\) 2.36806 0.210131 0.105066 0.994465i \(-0.466495\pi\)
0.105066 + 0.994465i \(0.466495\pi\)
\(128\) 0 0
\(129\) 6.46965i 0.569621i
\(130\) 0 0
\(131\) 17.6754 1.54431 0.772154 0.635435i \(-0.219179\pi\)
0.772154 + 0.635435i \(0.219179\pi\)
\(132\) 0 0
\(133\) −15.3205 −1.32846
\(134\) 0 0
\(135\) 0.732051i 0.0630049i
\(136\) 0 0
\(137\) −8.92820 −0.762788 −0.381394 0.924413i \(-0.624556\pi\)
−0.381394 + 0.924413i \(0.624556\pi\)
\(138\) 0 0
\(139\) −1.73354 −0.147037 −0.0735184 0.997294i \(-0.523423\pi\)
−0.0735184 + 0.997294i \(0.523423\pi\)
\(140\) 0 0
\(141\) −6.19615 −0.521810
\(142\) 0 0
\(143\) −1.73354 7.66025i −0.144966 0.640583i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.39230i 0.114835i
\(148\) 0 0
\(149\) 8.20319i 0.672032i −0.941856 0.336016i \(-0.890920\pi\)
0.941856 0.336016i \(-0.109080\pi\)
\(150\) 0 0
\(151\) −15.3074 −1.24570 −0.622848 0.782343i \(-0.714024\pi\)
−0.622848 + 0.782343i \(0.714024\pi\)
\(152\) 0 0
\(153\) 6.46965i 0.523040i
\(154\) 0 0
\(155\) 1.46410i 0.117599i
\(156\) 0 0
\(157\) 15.8564 1.26548 0.632740 0.774365i \(-0.281930\pi\)
0.632740 + 0.774365i \(0.281930\pi\)
\(158\) 0 0
\(159\) 7.26795i 0.576386i
\(160\) 0 0
\(161\) 11.2058i 0.883138i
\(162\) 0 0
\(163\) 10.9282i 0.855963i 0.903788 + 0.427981i \(0.140775\pi\)
−0.903788 + 0.427981i \(0.859225\pi\)
\(164\) 0 0
\(165\) 0.535898 + 2.36806i 0.0417196 + 0.184353i
\(166\) 0 0
\(167\) 8.20319 0.634782 0.317391 0.948295i \(-0.397193\pi\)
0.317391 + 0.948295i \(0.397193\pi\)
\(168\) 0 0
\(169\) 7.39230 0.568639
\(170\) 0 0
\(171\) 6.46965 0.494747
\(172\) 0 0
\(173\) 22.4115i 1.70392i 0.523609 + 0.851959i \(0.324585\pi\)
−0.523609 + 0.851959i \(0.675415\pi\)
\(174\) 0 0
\(175\) −10.5712 −0.799111
\(176\) 0 0
\(177\) −2.53590 −0.190610
\(178\) 0 0
\(179\) 20.3923i 1.52419i 0.647464 + 0.762096i \(0.275830\pi\)
−0.647464 + 0.762096i \(0.724170\pi\)
\(180\) 0 0
\(181\) 18.3923 1.36709 0.683545 0.729909i \(-0.260437\pi\)
0.683545 + 0.729909i \(0.260437\pi\)
\(182\) 0 0
\(183\) 15.3074 1.13155
\(184\) 0 0
\(185\) −5.46410 −0.401729
\(186\) 0 0
\(187\) −4.73611 20.9282i −0.346339 1.53042i
\(188\) 0 0
\(189\) 2.36806i 0.172251i
\(190\) 0 0
\(191\) 13.1244i 0.949645i 0.880082 + 0.474823i \(0.157488\pi\)
−0.880082 + 0.474823i \(0.842512\pi\)
\(192\) 0 0
\(193\) 22.4115i 1.61322i 0.591086 + 0.806609i \(0.298700\pi\)
−0.591086 + 0.806609i \(0.701300\pi\)
\(194\) 0 0
\(195\) 1.73354 0.124141
\(196\) 0 0
\(197\) 17.6754i 1.25932i −0.776870 0.629661i \(-0.783194\pi\)
0.776870 0.629661i \(-0.216806\pi\)
\(198\) 0 0
\(199\) 16.5359i 1.17220i 0.810239 + 0.586099i \(0.199337\pi\)
−0.810239 + 0.586099i \(0.800663\pi\)
\(200\) 0 0
\(201\) −10.3923 −0.733017
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.46708i 0.242151i
\(206\) 0 0
\(207\) 4.73205i 0.328900i
\(208\) 0 0
\(209\) 20.9282 4.73611i 1.44763 0.327604i
\(210\) 0 0
\(211\) −14.6728 −1.01012 −0.505060 0.863084i \(-0.668530\pi\)
−0.505060 + 0.863084i \(0.668530\pi\)
\(212\) 0 0
\(213\) −7.26795 −0.497992
\(214\) 0 0
\(215\) −4.73611 −0.323000
\(216\) 0 0
\(217\) 4.73611i 0.321508i
\(218\) 0 0
\(219\) −4.73611 −0.320037
\(220\) 0 0
\(221\) −15.3205 −1.03057
\(222\) 0 0
\(223\) 4.53590i 0.303746i −0.988400 0.151873i \(-0.951469\pi\)
0.988400 0.151873i \(-0.0485305\pi\)
\(224\) 0 0
\(225\) 4.46410 0.297607
\(226\) 0 0
\(227\) −15.9419 −1.05810 −0.529050 0.848591i \(-0.677452\pi\)
−0.529050 + 0.848591i \(0.677452\pi\)
\(228\) 0 0
\(229\) 3.85641 0.254839 0.127419 0.991849i \(-0.459331\pi\)
0.127419 + 0.991849i \(0.459331\pi\)
\(230\) 0 0
\(231\) 1.73354 + 7.66025i 0.114058 + 0.504008i
\(232\) 0 0
\(233\) 4.73611i 0.310273i 0.987893 + 0.155137i \(0.0495818\pi\)
−0.987893 + 0.155137i \(0.950418\pi\)
\(234\) 0 0
\(235\) 4.53590i 0.295889i
\(236\) 0 0
\(237\) 2.36806i 0.153822i
\(238\) 0 0
\(239\) 27.1476 1.75604 0.878018 0.478628i \(-0.158866\pi\)
0.878018 + 0.478628i \(0.158866\pi\)
\(240\) 0 0
\(241\) 3.46708i 0.223334i 0.993746 + 0.111667i \(0.0356190\pi\)
−0.993746 + 0.111667i \(0.964381\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −1.01924 −0.0651167
\(246\) 0 0
\(247\) 15.3205i 0.974821i
\(248\) 0 0
\(249\) 4.73611i 0.300139i
\(250\) 0 0
\(251\) 5.85641i 0.369653i −0.982771 0.184827i \(-0.940828\pi\)
0.982771 0.184827i \(-0.0591723\pi\)
\(252\) 0 0
\(253\) −3.46410 15.3074i −0.217786 0.962366i
\(254\) 0 0
\(255\) 4.73611 0.296587
\(256\) 0 0
\(257\) −8.53590 −0.532455 −0.266227 0.963910i \(-0.585777\pi\)
−0.266227 + 0.963910i \(0.585777\pi\)
\(258\) 0 0
\(259\) −17.6754 −1.09830
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 30.6147 1.88778 0.943892 0.330253i \(-0.107134\pi\)
0.943892 + 0.330253i \(0.107134\pi\)
\(264\) 0 0
\(265\) 5.32051 0.326836
\(266\) 0 0
\(267\) 10.3923i 0.635999i
\(268\) 0 0
\(269\) 25.1244 1.53186 0.765930 0.642925i \(-0.222279\pi\)
0.765930 + 0.642925i \(0.222279\pi\)
\(270\) 0 0
\(271\) −15.3074 −0.929856 −0.464928 0.885348i \(-0.653920\pi\)
−0.464928 + 0.885348i \(0.653920\pi\)
\(272\) 0 0
\(273\) 5.60770 0.339393
\(274\) 0 0
\(275\) 14.4406 3.26795i 0.870801 0.197065i
\(276\) 0 0
\(277\) 28.2467i 1.69718i −0.529053 0.848589i \(-0.677453\pi\)
0.529053 0.848589i \(-0.322547\pi\)
\(278\) 0 0
\(279\) 2.00000i 0.119737i
\(280\) 0 0
\(281\) 28.8812i 1.72291i −0.507836 0.861454i \(-0.669555\pi\)
0.507836 0.861454i \(-0.330445\pi\)
\(282\) 0 0
\(283\) 1.73354 0.103048 0.0515241 0.998672i \(-0.483592\pi\)
0.0515241 + 0.998672i \(0.483592\pi\)
\(284\) 0 0
\(285\) 4.73611i 0.280543i
\(286\) 0 0
\(287\) 11.2154i 0.662024i
\(288\) 0 0
\(289\) −24.8564 −1.46214
\(290\) 0 0
\(291\) 1.46410i 0.0858272i
\(292\) 0 0
\(293\) 9.47223i 0.553374i 0.960960 + 0.276687i \(0.0892364\pi\)
−0.960960 + 0.276687i \(0.910764\pi\)
\(294\) 0 0
\(295\) 1.85641i 0.108084i
\(296\) 0 0
\(297\) −0.732051 3.23483i −0.0424779 0.187704i
\(298\) 0 0
\(299\) −11.2058 −0.648046
\(300\) 0 0
\(301\) −15.3205 −0.883059
\(302\) 0 0
\(303\) 8.20319 0.471261
\(304\) 0 0
\(305\) 11.2058i 0.641640i
\(306\) 0 0
\(307\) −11.2058 −0.639547 −0.319773 0.947494i \(-0.603607\pi\)
−0.319773 + 0.947494i \(0.603607\pi\)
\(308\) 0 0
\(309\) −10.0000 −0.568880
\(310\) 0 0
\(311\) 30.9808i 1.75676i −0.477965 0.878379i \(-0.658625\pi\)
0.477965 0.878379i \(-0.341375\pi\)
\(312\) 0 0
\(313\) −15.8564 −0.896257 −0.448129 0.893969i \(-0.647909\pi\)
−0.448129 + 0.893969i \(0.647909\pi\)
\(314\) 0 0
\(315\) −1.73354 −0.0976738
\(316\) 0 0
\(317\) 7.66025 0.430243 0.215121 0.976587i \(-0.430985\pi\)
0.215121 + 0.976587i \(0.430985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 6.46965i 0.361101i
\(322\) 0 0
\(323\) 41.8564i 2.32895i
\(324\) 0 0
\(325\) 10.5712i 0.586387i
\(326\) 0 0
\(327\) 10.5712 0.584591
\(328\) 0 0
\(329\) 14.6728i 0.808940i
\(330\) 0 0
\(331\) 14.9282i 0.820528i 0.911967 + 0.410264i \(0.134563\pi\)
−0.911967 + 0.410264i \(0.865437\pi\)
\(332\) 0 0
\(333\) 7.46410 0.409030
\(334\) 0 0
\(335\) 7.60770i 0.415653i
\(336\) 0 0
\(337\) 17.6754i 0.962841i 0.876490 + 0.481421i \(0.159879\pi\)
−0.876490 + 0.481421i \(0.840121\pi\)
\(338\) 0 0
\(339\) 17.3205i 0.940721i
\(340\) 0 0
\(341\) −1.46410 6.46965i −0.0792855 0.350351i
\(342\) 0 0
\(343\) −19.8735 −1.07307
\(344\) 0 0
\(345\) 3.46410 0.186501
\(346\) 0 0
\(347\) −14.2083 −0.762744 −0.381372 0.924422i \(-0.624548\pi\)
−0.381372 + 0.924422i \(0.624548\pi\)
\(348\) 0 0
\(349\) 20.0435i 1.07290i −0.843931 0.536451i \(-0.819764\pi\)
0.843931 0.536451i \(-0.180236\pi\)
\(350\) 0 0
\(351\) −2.36806 −0.126398
\(352\) 0 0
\(353\) 35.8564 1.90844 0.954222 0.299099i \(-0.0966862\pi\)
0.954222 + 0.299099i \(0.0966862\pi\)
\(354\) 0 0
\(355\) 5.32051i 0.282383i
\(356\) 0 0
\(357\) 15.3205 0.810847
\(358\) 0 0
\(359\) −12.9393 −0.682910 −0.341455 0.939898i \(-0.610920\pi\)
−0.341455 + 0.939898i \(0.610920\pi\)
\(360\) 0 0
\(361\) 22.8564 1.20297
\(362\) 0 0
\(363\) −4.73611 9.92820i −0.248582 0.521096i
\(364\) 0 0
\(365\) 3.46708i 0.181475i
\(366\) 0 0
\(367\) 10.3923i 0.542474i −0.962513 0.271237i \(-0.912567\pi\)
0.962513 0.271237i \(-0.0874327\pi\)
\(368\) 0 0
\(369\) 4.73611i 0.246552i
\(370\) 0 0
\(371\) 17.2109 0.893546
\(372\) 0 0
\(373\) 24.7796i 1.28304i −0.767107 0.641519i \(-0.778304\pi\)
0.767107 0.641519i \(-0.221696\pi\)
\(374\) 0 0
\(375\) 6.92820i 0.357771i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 10.9282i 0.561344i −0.959804 0.280672i \(-0.909443\pi\)
0.959804 0.280672i \(-0.0905573\pi\)
\(380\) 0 0
\(381\) 2.36806i 0.121319i
\(382\) 0 0
\(383\) 30.9808i 1.58304i 0.611141 + 0.791521i \(0.290711\pi\)
−0.611141 + 0.791521i \(0.709289\pi\)
\(384\) 0 0
\(385\) −5.60770 + 1.26904i −0.285795 + 0.0646762i
\(386\) 0 0
\(387\) 6.46965 0.328871
\(388\) 0 0
\(389\) 4.73205 0.239924 0.119962 0.992778i \(-0.461723\pi\)
0.119962 + 0.992778i \(0.461723\pi\)
\(390\) 0 0
\(391\) −30.6147 −1.54825
\(392\) 0 0
\(393\) 17.6754i 0.891607i
\(394\) 0 0
\(395\) −1.73354 −0.0872238
\(396\) 0 0
\(397\) −13.3205 −0.668537 −0.334269 0.942478i \(-0.608489\pi\)
−0.334269 + 0.942478i \(0.608489\pi\)
\(398\) 0 0
\(399\) 15.3205i 0.766985i
\(400\) 0 0
\(401\) −3.46410 −0.172989 −0.0864945 0.996252i \(-0.527566\pi\)
−0.0864945 + 0.996252i \(0.527566\pi\)
\(402\) 0 0
\(403\) −4.73611 −0.235923
\(404\) 0 0
\(405\) 0.732051 0.0363759
\(406\) 0 0
\(407\) 24.1451 5.46410i 1.19683 0.270845i
\(408\) 0 0
\(409\) 21.1425i 1.04543i −0.852508 0.522715i \(-0.824919\pi\)
0.852508 0.522715i \(-0.175081\pi\)
\(410\) 0 0
\(411\) 8.92820i 0.440396i
\(412\) 0 0
\(413\) 6.00515i 0.295494i
\(414\) 0 0
\(415\) 3.46708 0.170192
\(416\) 0 0
\(417\) 1.73354i 0.0848917i
\(418\) 0 0
\(419\) 33.8564i 1.65399i 0.562207 + 0.826997i \(0.309953\pi\)
−0.562207 + 0.826997i \(0.690047\pi\)
\(420\) 0 0
\(421\) 25.3205 1.23405 0.617023 0.786945i \(-0.288339\pi\)
0.617023 + 0.786945i \(0.288339\pi\)
\(422\) 0 0
\(423\) 6.19615i 0.301267i
\(424\) 0 0
\(425\) 28.8812i 1.40094i
\(426\) 0 0
\(427\) 36.2487i 1.75420i
\(428\) 0 0
\(429\) −7.66025 + 1.73354i −0.369841 + 0.0836960i
\(430\) 0 0
\(431\) −27.1476 −1.30766 −0.653828 0.756643i \(-0.726838\pi\)
−0.653828 + 0.756643i \(0.726838\pi\)
\(432\) 0 0
\(433\) −3.07180 −0.147621 −0.0738106 0.997272i \(-0.523516\pi\)
−0.0738106 + 0.997272i \(0.523516\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 30.6147i 1.46450i
\(438\) 0 0
\(439\) −29.5157 −1.40871 −0.704354 0.709849i \(-0.748763\pi\)
−0.704354 + 0.709849i \(0.748763\pi\)
\(440\) 0 0
\(441\) 1.39230 0.0663002
\(442\) 0 0
\(443\) 29.8564i 1.41852i 0.704947 + 0.709260i \(0.250971\pi\)
−0.704947 + 0.709260i \(0.749029\pi\)
\(444\) 0 0
\(445\) 7.60770 0.360639
\(446\) 0 0
\(447\) −8.20319 −0.387998
\(448\) 0 0
\(449\) −28.9282 −1.36521 −0.682603 0.730789i \(-0.739152\pi\)
−0.682603 + 0.730789i \(0.739152\pi\)
\(450\) 0 0
\(451\) −3.46708 15.3205i −0.163258 0.721415i
\(452\) 0 0
\(453\) 15.3074i 0.719203i
\(454\) 0 0
\(455\) 4.10512i 0.192451i
\(456\) 0 0
\(457\) 17.6754i 0.826821i −0.910545 0.413411i \(-0.864337\pi\)
0.910545 0.413411i \(-0.135663\pi\)
\(458\) 0 0
\(459\) −6.46965 −0.301978
\(460\) 0 0
\(461\) 35.3508i 1.64645i 0.567713 + 0.823226i \(0.307828\pi\)
−0.567713 + 0.823226i \(0.692172\pi\)
\(462\) 0 0
\(463\) 19.0718i 0.886342i 0.896437 + 0.443171i \(0.146146\pi\)
−0.896437 + 0.443171i \(0.853854\pi\)
\(464\) 0 0
\(465\) 1.46410 0.0678961
\(466\) 0 0
\(467\) 2.53590i 0.117347i 0.998277 + 0.0586737i \(0.0186871\pi\)
−0.998277 + 0.0586737i \(0.981313\pi\)
\(468\) 0 0
\(469\) 24.6096i 1.13636i
\(470\) 0 0
\(471\) 15.8564i 0.730625i
\(472\) 0 0
\(473\) 20.9282 4.73611i 0.962280 0.217767i
\(474\) 0 0
\(475\) 28.8812 1.32516
\(476\) 0 0
\(477\) −7.26795 −0.332777
\(478\) 0 0
\(479\) 4.73611 0.216399 0.108199 0.994129i \(-0.465492\pi\)
0.108199 + 0.994129i \(0.465492\pi\)
\(480\) 0 0
\(481\) 17.6754i 0.805930i
\(482\) 0 0
\(483\) 11.2058 0.509880
\(484\) 0 0
\(485\) −1.07180 −0.0486678
\(486\) 0 0
\(487\) 2.39230i 0.108406i −0.998530 0.0542028i \(-0.982738\pi\)
0.998530 0.0542028i \(-0.0172618\pi\)
\(488\) 0 0
\(489\) 10.9282 0.494190
\(490\) 0 0
\(491\) 19.4090 0.875914 0.437957 0.898996i \(-0.355702\pi\)
0.437957 + 0.898996i \(0.355702\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 2.36806 0.535898i 0.106436 0.0240868i
\(496\) 0 0
\(497\) 17.2109i 0.772015i
\(498\) 0 0
\(499\) 30.9282i 1.38454i −0.721640 0.692268i \(-0.756611\pi\)
0.721640 0.692268i \(-0.243389\pi\)
\(500\) 0 0
\(501\) 8.20319i 0.366492i
\(502\) 0 0
\(503\) −17.6754 −0.788108 −0.394054 0.919087i \(-0.628928\pi\)
−0.394054 + 0.919087i \(0.628928\pi\)
\(504\) 0 0
\(505\) 6.00515i 0.267226i
\(506\) 0 0
\(507\) 7.39230i 0.328304i
\(508\) 0 0
\(509\) −23.2679 −1.03133 −0.515667 0.856789i \(-0.672456\pi\)
−0.515667 + 0.856789i \(0.672456\pi\)
\(510\) 0 0
\(511\) 11.2154i 0.496140i
\(512\) 0 0
\(513\) 6.46965i 0.285642i
\(514\) 0 0
\(515\) 7.32051i 0.322580i
\(516\) 0 0
\(517\) 4.53590 + 20.0435i 0.199489 + 0.881511i
\(518\) 0 0
\(519\) 22.4115 0.983757
\(520\) 0 0
\(521\) −6.67949 −0.292634 −0.146317 0.989238i \(-0.546742\pi\)
−0.146317 + 0.989238i \(0.546742\pi\)
\(522\) 0 0
\(523\) 25.4141 1.11128 0.555641 0.831422i \(-0.312473\pi\)
0.555641 + 0.831422i \(0.312473\pi\)
\(524\) 0 0
\(525\) 10.5712i 0.461367i
\(526\) 0 0
\(527\) −12.9393 −0.563645
\(528\) 0 0
\(529\) 0.607695 0.0264215
\(530\) 0 0
\(531\) 2.53590i 0.110049i
\(532\) 0 0
\(533\) −11.2154 −0.485792
\(534\) 0 0
\(535\) 4.73611 0.204760
\(536\) 0 0
\(537\) 20.3923 0.879993
\(538\) 0 0
\(539\) 4.50386 1.01924i 0.193995 0.0439017i
\(540\) 0 0
\(541\) 36.4499i 1.56710i 0.621328 + 0.783551i \(0.286594\pi\)
−0.621328 + 0.783551i \(0.713406\pi\)
\(542\) 0 0
\(543\) 18.3923i 0.789289i
\(544\) 0 0
\(545\) 7.73869i 0.331489i
\(546\) 0 0
\(547\) −28.8812 −1.23487 −0.617435 0.786622i \(-0.711828\pi\)
−0.617435 + 0.786622i \(0.711828\pi\)
\(548\) 0 0
\(549\) 15.3074i 0.653302i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −5.60770 −0.238463
\(554\) 0 0
\(555\) 5.46410i 0.231938i
\(556\) 0 0
\(557\) 9.47223i 0.401351i −0.979658 0.200676i \(-0.935686\pi\)
0.979658 0.200676i \(-0.0643137\pi\)
\(558\) 0 0
\(559\) 15.3205i 0.647988i
\(560\) 0 0
\(561\) −20.9282 + 4.73611i −0.883589 + 0.199959i
\(562\) 0 0
\(563\) 9.93673 0.418783 0.209392 0.977832i \(-0.432852\pi\)
0.209392 + 0.977832i \(0.432852\pi\)
\(564\) 0 0
\(565\) −12.6795 −0.533430
\(566\) 0 0
\(567\) 2.36806 0.0994491
\(568\) 0 0
\(569\) 28.8812i 1.21076i −0.795936 0.605381i \(-0.793021\pi\)
0.795936 0.605381i \(-0.206979\pi\)
\(570\) 0 0
\(571\) 1.73354 0.0725463 0.0362732 0.999342i \(-0.488451\pi\)
0.0362732 + 0.999342i \(0.488451\pi\)
\(572\) 0 0
\(573\) 13.1244 0.548278
\(574\) 0 0
\(575\) 21.1244i 0.880947i
\(576\) 0 0
\(577\) 19.6077 0.816279 0.408140 0.912920i \(-0.366178\pi\)
0.408140 + 0.912920i \(0.366178\pi\)
\(578\) 0 0
\(579\) 22.4115 0.931392
\(580\) 0 0
\(581\) 11.2154 0.465293
\(582\) 0 0
\(583\) −23.5106 + 5.32051i −0.973708 + 0.220353i
\(584\) 0 0
\(585\) 1.73354i 0.0716730i
\(586\) 0 0
\(587\) 29.1769i 1.20426i −0.798398 0.602130i \(-0.794319\pi\)
0.798398 0.602130i \(-0.205681\pi\)
\(588\) 0 0
\(589\) 12.9393i 0.533155i
\(590\) 0 0
\(591\) −17.6754 −0.727070
\(592\) 0 0
\(593\) 3.00258i 0.123301i 0.998098 + 0.0616505i \(0.0196364\pi\)
−0.998098 + 0.0616505i \(0.980364\pi\)
\(594\) 0 0
\(595\) 11.2154i 0.459786i
\(596\) 0 0
\(597\) 16.5359 0.676769
\(598\) 0 0
\(599\) 26.1962i 1.07035i 0.844743 + 0.535173i \(0.179754\pi\)
−0.844743 + 0.535173i \(0.820246\pi\)
\(600\) 0 0
\(601\) 34.0818i 1.39023i −0.718901 0.695113i \(-0.755354\pi\)
0.718901 0.695113i \(-0.244646\pi\)
\(602\) 0 0
\(603\) 10.3923i 0.423207i
\(604\) 0 0
\(605\) 7.26795 3.46708i 0.295484 0.140957i
\(606\) 0 0
\(607\) 36.4499 1.47945 0.739727 0.672907i \(-0.234955\pi\)
0.739727 + 0.672907i \(0.234955\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.6728 0.593600
\(612\) 0 0
\(613\) 1.09902i 0.0443890i 0.999754 + 0.0221945i \(0.00706530\pi\)
−0.999754 + 0.0221945i \(0.992935\pi\)
\(614\) 0 0
\(615\) 3.46708 0.139806
\(616\) 0 0
\(617\) 15.4641 0.622561 0.311281 0.950318i \(-0.399242\pi\)
0.311281 + 0.950318i \(0.399242\pi\)
\(618\) 0 0
\(619\) 15.4641i 0.621555i −0.950483 0.310777i \(-0.899411\pi\)
0.950483 0.310777i \(-0.100589\pi\)
\(620\) 0 0
\(621\) −4.73205 −0.189891
\(622\) 0 0
\(623\) 24.6096 0.985962
\(624\) 0 0
\(625\) 17.2487 0.689948
\(626\) 0 0
\(627\) −4.73611 20.9282i −0.189142 0.835792i
\(628\) 0 0
\(629\) 48.2901i 1.92545i
\(630\) 0 0
\(631\) 34.7846i 1.38475i −0.721536 0.692377i \(-0.756564\pi\)
0.721536 0.692377i \(-0.243436\pi\)
\(632\) 0 0
\(633\) 14.6728i 0.583193i
\(634\) 0 0
\(635\) 1.73354 0.0687934
\(636\) 0 0
\(637\) 3.29706i 0.130634i
\(638\) 0 0
\(639\) 7.26795i 0.287516i
\(640\) 0 0
\(641\) −11.4641 −0.452805 −0.226402 0.974034i \(-0.572696\pi\)
−0.226402 + 0.974034i \(0.572696\pi\)
\(642\) 0 0
\(643\) 8.53590i 0.336623i 0.985734 + 0.168311i \(0.0538314\pi\)
−0.985734 + 0.168311i \(0.946169\pi\)
\(644\) 0 0
\(645\) 4.73611i 0.186484i
\(646\) 0 0
\(647\) 37.1244i 1.45951i 0.683709 + 0.729755i \(0.260366\pi\)
−0.683709 + 0.729755i \(0.739634\pi\)
\(648\) 0 0
\(649\) 1.85641 + 8.20319i 0.0728703 + 0.322003i
\(650\) 0 0
\(651\) 4.73611 0.185623
\(652\) 0 0
\(653\) 24.7321 0.967840 0.483920 0.875112i \(-0.339213\pi\)
0.483920 + 0.875112i \(0.339213\pi\)
\(654\) 0 0
\(655\) 12.9393 0.505581
\(656\) 0 0
\(657\) 4.73611i 0.184773i
\(658\) 0 0
\(659\) −25.4141 −0.989993 −0.494997 0.868895i \(-0.664831\pi\)
−0.494997 + 0.868895i \(0.664831\pi\)
\(660\) 0 0
\(661\) −4.14359 −0.161167 −0.0805836 0.996748i \(-0.525678\pi\)
−0.0805836 + 0.996748i \(0.525678\pi\)
\(662\) 0 0
\(663\) 15.3205i 0.594999i
\(664\) 0 0
\(665\) −11.2154 −0.434914
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −4.53590 −0.175368
\(670\) 0 0
\(671\) −11.2058 49.5167i −0.432594 1.91157i
\(672\) 0 0
\(673\) 34.0818i 1.31376i 0.753996 + 0.656878i \(0.228124\pi\)
−0.753996 + 0.656878i \(0.771876\pi\)
\(674\) 0 0
\(675\) 4.46410i 0.171823i
\(676\) 0 0
\(677\) 30.6147i 1.17662i 0.808636 + 0.588310i \(0.200206\pi\)
−0.808636 + 0.588310i \(0.799794\pi\)
\(678\) 0 0
\(679\) −3.46708 −0.133054
\(680\) 0 0
\(681\) 15.9419i 0.610894i
\(682\) 0 0
\(683\) 35.7128i 1.36651i 0.730179 + 0.683256i \(0.239437\pi\)
−0.730179 + 0.683256i \(0.760563\pi\)
\(684\) 0 0
\(685\) −6.53590 −0.249724
\(686\) 0 0
\(687\) 3.85641i 0.147131i
\(688\) 0 0
\(689\) 17.2109i 0.655684i
\(690\) 0 0
\(691\) 9.60770i 0.365494i 0.983160 + 0.182747i \(0.0584989\pi\)
−0.983160 + 0.182747i \(0.941501\pi\)
\(692\) 0 0
\(693\) 7.66025 1.73354i 0.290989 0.0658517i
\(694\) 0 0
\(695\) −1.26904 −0.0481374
\(696\) 0 0
\(697\) −30.6410 −1.16061
\(698\) 0 0
\(699\) 4.73611 0.179136
\(700\) 0 0
\(701\) 22.4115i 0.846472i −0.906019 0.423236i \(-0.860894\pi\)
0.906019 0.423236i \(-0.139106\pi\)
\(702\) 0 0
\(703\) 48.2901 1.82130
\(704\) 0 0
\(705\) −4.53590 −0.170832
\(706\) 0 0
\(707\) 19.4256i 0.730576i
\(708\) 0 0
\(709\) −18.7846 −0.705471 −0.352735 0.935723i \(-0.614748\pi\)
−0.352735 + 0.935723i \(0.614748\pi\)
\(710\) 0 0
\(711\) 2.36806 0.0888091
\(712\) 0 0
\(713\) −9.46410 −0.354433
\(714\) 0 0
\(715\) −1.26904 5.60770i −0.0474593 0.209716i
\(716\) 0 0
\(717\) 27.1476i 1.01385i
\(718\) 0 0
\(719\) 11.6603i 0.434854i −0.976077 0.217427i \(-0.930234\pi\)
0.976077 0.217427i \(-0.0697664\pi\)
\(720\) 0 0
\(721\) 23.6806i 0.881911i
\(722\) 0 0
\(723\) 3.46708 0.128942
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 48.2487i 1.78945i 0.446622 + 0.894723i \(0.352627\pi\)
−0.446622 + 0.894723i \(0.647373\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 41.8564i 1.54812i
\(732\) 0 0
\(733\) 10.5712i 0.390458i 0.980758 + 0.195229i \(0.0625450\pi\)
−0.980758 + 0.195229i \(0.937455\pi\)
\(734\) 0 0
\(735\) 1.01924i 0.0375952i
\(736\) 0 0
\(737\) 7.60770 + 33.6173i 0.280233 + 1.23831i
\(738\) 0 0
\(739\) −24.1451 −0.888191 −0.444095 0.895979i \(-0.646475\pi\)
−0.444095 + 0.895979i \(0.646475\pi\)
\(740\) 0 0
\(741\) −15.3205 −0.562813
\(742\) 0 0
\(743\) 38.8179 1.42409 0.712046 0.702133i \(-0.247769\pi\)
0.712046 + 0.702133i \(0.247769\pi\)
\(744\) 0 0
\(745\) 6.00515i 0.220012i
\(746\) 0 0
\(747\) −4.73611 −0.173285
\(748\) 0 0
\(749\) 15.3205 0.559799
\(750\) 0 0
\(751\) 51.5692i 1.88179i 0.338702 + 0.940894i \(0.390012\pi\)
−0.338702 + 0.940894i \(0.609988\pi\)
\(752\) 0 0
\(753\) −5.85641 −0.213419
\(754\) 0 0
\(755\) −11.2058 −0.407820
\(756\) 0 0
\(757\) 19.1769 0.696997 0.348498 0.937309i \(-0.386692\pi\)
0.348498 + 0.937309i \(0.386692\pi\)
\(758\) 0 0
\(759\) −15.3074 + 3.46410i −0.555622 + 0.125739i
\(760\) 0 0
\(761\) 25.4141i 0.921261i 0.887592 + 0.460630i \(0.152377\pi\)
−0.887592 + 0.460630i \(0.847623\pi\)
\(762\) 0 0
\(763\) 25.0333i 0.906267i
\(764\) 0 0
\(765\) 4.73611i 0.171235i
\(766\) 0 0
\(767\) 6.00515 0.216833
\(768\) 0 0
\(769\) 35.3508i 1.27478i −0.770540 0.637392i \(-0.780013\pi\)
0.770540 0.637392i \(-0.219987\pi\)
\(770\) 0 0
\(771\) 8.53590i 0.307413i
\(772\) 0 0
\(773\) −44.8372 −1.61268 −0.806340 0.591452i \(-0.798555\pi\)
−0.806340 + 0.591452i \(0.798555\pi\)
\(774\) 0 0
\(775\) 8.92820i 0.320711i
\(776\) 0 0
\(777\) 17.6754i 0.634102i
\(778\) 0 0
\(779\) 30.6410i 1.09783i
\(780\) 0 0
\(781\) 5.32051 + 23.5106i 0.190383 + 0.841274i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.6077 0.414296
\(786\) 0 0
\(787\) −28.8812 −1.02950 −0.514752 0.857339i \(-0.672116\pi\)
−0.514752 + 0.857339i \(0.672116\pi\)
\(788\) 0 0
\(789\) 30.6147i 1.08991i
\(790\) 0 0
\(791\) −41.0160 −1.45836
\(792\) 0 0
\(793\) −36.2487 −1.28723
\(794\) 0 0
\(795\) 5.32051i 0.188699i
\(796\) 0 0
\(797\) −0.339746 −0.0120344 −0.00601721 0.999982i \(-0.501915\pi\)
−0.00601721 + 0.999982i \(0.501915\pi\)
\(798\) 0 0
\(799\) 40.0870 1.41817
\(800\) 0 0
\(801\) −10.3923 −0.367194
\(802\) 0 0
\(803\) 3.46708 + 15.3205i 0.122350 + 0.540649i
\(804\) 0 0
\(805\) 8.20319i 0.289124i
\(806\) 0 0
\(807\) 25.1244i 0.884419i
\(808\) 0 0
\(809\) 21.1425i 0.743331i 0.928367 + 0.371665i \(0.121213\pi\)
−0.928367 + 0.371665i \(0.878787\pi\)
\(810\) 0 0
\(811\) 6.46965 0.227180 0.113590 0.993528i \(-0.463765\pi\)
0.113590 + 0.993528i \(0.463765\pi\)
\(812\) 0 0
\(813\) 15.3074i 0.536853i
\(814\) 0 0
\(815\) 8.00000i 0.280228i
\(816\) 0 0
\(817\) 41.8564 1.46437
\(818\) 0 0
\(819\) 5.60770i 0.195949i
\(820\) 0 0
\(821\) 8.20319i 0.286293i −0.989701 0.143147i \(-0.954278\pi\)
0.989701 0.143147i \(-0.0457221\pi\)
\(822\) 0 0
\(823\) 4.24871i 0.148101i −0.997255 0.0740504i \(-0.976407\pi\)
0.997255 0.0740504i \(-0.0235926\pi\)
\(824\) 0 0
\(825\) −3.26795 14.4406i −0.113775 0.502757i
\(826\) 0 0
\(827\) −30.6147 −1.06458 −0.532289 0.846563i \(-0.678668\pi\)
−0.532289 + 0.846563i \(0.678668\pi\)
\(828\) 0 0
\(829\) −12.1436 −0.421764 −0.210882 0.977511i \(-0.567634\pi\)
−0.210882 + 0.977511i \(0.567634\pi\)
\(830\) 0 0
\(831\) −28.2467 −0.979866
\(832\) 0 0
\(833\) 9.00773i 0.312099i
\(834\) 0 0
\(835\) 6.00515 0.207817
\(836\) 0 0
\(837\) −2.00000 −0.0691301
\(838\) 0 0
\(839\) 1.12436i 0.0388171i −0.999812 0.0194085i \(-0.993822\pi\)
0.999812 0.0194085i \(-0.00617832\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) −28.8812 −0.994721
\(844\) 0 0
\(845\) 5.41154 0.186163
\(846\) 0 0
\(847\) 23.5106 11.2154i 0.807832 0.385365i
\(848\) 0 0
\(849\) 1.73354i 0.0594949i
\(850\) 0 0
\(851\) 35.3205i 1.21077i
\(852\) 0 0
\(853\) 16.5764i 0.567565i −0.958889 0.283783i \(-0.908411\pi\)
0.958889 0.283783i \(-0.0915894\pi\)
\(854\) 0 0
\(855\) 4.73611 0.161972
\(856\) 0 0
\(857\) 30.6147i 1.04578i 0.852400 + 0.522890i \(0.175146\pi\)
−0.852400 + 0.522890i \(0.824854\pi\)
\(858\) 0 0
\(859\) 34.9282i 1.19173i 0.803083 + 0.595867i \(0.203192\pi\)
−0.803083 + 0.595867i \(0.796808\pi\)
\(860\) 0 0
\(861\) 11.2154 0.382219
\(862\) 0 0
\(863\) 29.1244i 0.991405i −0.868493 0.495702i \(-0.834911\pi\)
0.868493 0.495702i \(-0.165089\pi\)
\(864\) 0 0
\(865\) 16.4064i 0.557834i
\(866\) 0 0
\(867\) 24.8564i 0.844168i
\(868\) 0 0
\(869\) 7.66025 1.73354i 0.259856 0.0588063i
\(870\) 0 0
\(871\) 24.6096 0.833864
\(872\) 0 0
\(873\) 1.46410 0.0495523
\(874\) 0 0
\(875\) −16.4064 −0.554637
\(876\) 0 0
\(877\) 24.7796i 0.836747i 0.908275 + 0.418374i \(0.137400\pi\)
−0.908275 + 0.418374i \(0.862600\pi\)
\(878\) 0 0
\(879\) 9.47223 0.319490
\(880\) 0 0
\(881\) −22.7846 −0.767633 −0.383817 0.923409i \(-0.625390\pi\)
−0.383817 + 0.923409i \(0.625390\pi\)
\(882\) 0 0
\(883\) 36.5359i 1.22953i −0.788710 0.614765i \(-0.789251\pi\)
0.788710 0.614765i \(-0.210749\pi\)
\(884\) 0 0
\(885\) −1.85641 −0.0624024
\(886\) 0 0
\(887\) 12.9393 0.434459 0.217230 0.976121i \(-0.430298\pi\)
0.217230 + 0.976121i \(0.430298\pi\)
\(888\) 0 0
\(889\) 5.60770 0.188076
\(890\) 0 0
\(891\) −3.23483 + 0.732051i −0.108371 + 0.0245246i
\(892\) 0 0
\(893\) 40.0870i 1.34146i
\(894\) 0 0
\(895\) 14.9282i 0.498995i
\(896\) 0 0
\(897\) 11.2058i 0.374150i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 47.0211i 1.56650i
\(902\) 0 0
\(903\) 15.3205i 0.509835i
\(904\) 0 0
\(905\) 13.4641 0.447562
\(906\) 0 0
\(907\) 38.3923i 1.27480i −0.770535 0.637398i \(-0.780011\pi\)
0.770535 0.637398i \(-0.219989\pi\)
\(908\) 0 0
\(909\) 8.20319i 0.272083i
\(910\) 0 0
\(911\) 50.9808i 1.68907i 0.535502 + 0.844534i \(0.320122\pi\)
−0.535502 + 0.844534i \(0.679878\pi\)
\(912\) 0 0
\(913\) −15.3205 + 3.46708i −0.507035 + 0.114743i
\(914\) 0 0
\(915\) 11.2058 0.370451
\(916\) 0 0
\(917\) 41.8564 1.38222
\(918\) 0 0
\(919\) 29.5157 0.973633 0.486817 0.873504i \(-0.338158\pi\)
0.486817 + 0.873504i \(0.338158\pi\)
\(920\) 0 0
\(921\) 11.2058i 0.369243i
\(922\) 0 0
\(923\) 17.2109 0.566504
\(924\) 0 0
\(925\) 33.3205 1.09557
\(926\) 0 0
\(927\) 10.0000i 0.328443i
\(928\) 0 0
\(929\) 11.8564 0.388996 0.194498 0.980903i \(-0.437692\pi\)
0.194498 + 0.980903i \(0.437692\pi\)
\(930\) 0 0
\(931\) 9.00773 0.295216
\(932\) 0 0
\(933\) −30.9808 −1.01426
\(934\) 0 0
\(935\) −3.46708 15.3205i −0.113386 0.501034i
\(936\) 0 0
\(937\) 12.9393i 0.422709i −0.977410 0.211354i \(-0.932213\pi\)
0.977410 0.211354i \(-0.0677874\pi\)
\(938\) 0 0
\(939\) 15.8564i 0.517454i
\(940\) 0 0
\(941\) 4.73611i 0.154393i −0.997016 0.0771965i \(-0.975403\pi\)
0.997016 0.0771965i \(-0.0245969\pi\)
\(942\) 0 0
\(943\) −22.4115 −0.729820
\(944\) 0 0
\(945\) 1.73354i 0.0563920i
\(946\) 0 0
\(947\) 22.1436i 0.719570i 0.933035 + 0.359785i \(0.117150\pi\)
−0.933035 + 0.359785i \(0.882850\pi\)
\(948\) 0 0
\(949\) 11.2154 0.364067
\(950\) 0 0
\(951\) 7.66025i 0.248401i
\(952\) 0 0
\(953\) 47.0211i 1.52316i 0.648069 + 0.761582i \(0.275577\pi\)
−0.648069 + 0.761582i \(0.724423\pi\)
\(954\) 0 0
\(955\) 9.60770i 0.310898i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −21.1425 −0.682727
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) −6.46965 −0.208482
\(964\) 0 0
\(965\) 16.4064i 0.528140i
\(966\) 0 0
\(967\) 7.10417 0.228455 0.114227 0.993455i \(-0.463561\pi\)
0.114227 + 0.993455i \(0.463561\pi\)
\(968\) 0 0
\(969\) −41.8564 −1.34462
\(970\) 0 0
\(971\) 40.0000i 1.28366i 0.766846 + 0.641831i \(0.221825\pi\)
−0.766846 + 0.641831i \(0.778175\pi\)
\(972\) 0 0
\(973\) −4.10512 −0.131604
\(974\) 0 0
\(975\) −10.5712 −0.338551
\(976\) 0 0
\(977\) −40.2487 −1.28767 −0.643835 0.765164i \(-0.722658\pi\)
−0.643835 + 0.765164i \(0.722658\pi\)
\(978\) 0 0
\(979\) −33.6173 + 7.60770i −1.07441 + 0.243143i
\(980\) 0 0
\(981\) 10.5712i 0.337514i
\(982\) 0 0
\(983\) 32.3397i 1.03148i −0.856746 0.515739i \(-0.827517\pi\)
0.856746 0.515739i \(-0.172483\pi\)
\(984\) 0 0
\(985\) 12.9393i 0.412281i
\(986\) 0 0
\(987\) −14.6728 −0.467042
\(988\) 0 0
\(989\) 30.6147i 0.973492i
\(990\) 0 0
\(991\) 18.7846i 0.596713i 0.954455 + 0.298356i \(0.0964384\pi\)
−0.954455 + 0.298356i \(0.903562\pi\)
\(992\) 0 0
\(993\) 14.9282 0.473732
\(994\) 0 0
\(995\) 12.1051i 0.383758i
\(996\) 0 0
\(997\) 54.1253i 1.71416i 0.515179 + 0.857082i \(0.327725\pi\)
−0.515179 + 0.857082i \(0.672275\pi\)
\(998\) 0 0
\(999\) 7.46410i 0.236154i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2112.2.o.e.703.4 8
4.3 odd 2 inner 2112.2.o.e.703.7 8
8.3 odd 2 528.2.o.b.175.1 8
8.5 even 2 528.2.o.b.175.6 yes 8
11.10 odd 2 inner 2112.2.o.e.703.3 8
24.5 odd 2 1584.2.o.g.703.8 8
24.11 even 2 1584.2.o.g.703.5 8
44.43 even 2 inner 2112.2.o.e.703.8 8
88.21 odd 2 528.2.o.b.175.5 yes 8
88.43 even 2 528.2.o.b.175.2 yes 8
264.131 odd 2 1584.2.o.g.703.7 8
264.197 even 2 1584.2.o.g.703.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
528.2.o.b.175.1 8 8.3 odd 2
528.2.o.b.175.2 yes 8 88.43 even 2
528.2.o.b.175.5 yes 8 88.21 odd 2
528.2.o.b.175.6 yes 8 8.5 even 2
1584.2.o.g.703.5 8 24.11 even 2
1584.2.o.g.703.6 8 264.197 even 2
1584.2.o.g.703.7 8 264.131 odd 2
1584.2.o.g.703.8 8 24.5 odd 2
2112.2.o.e.703.3 8 11.10 odd 2 inner
2112.2.o.e.703.4 8 1.1 even 1 trivial
2112.2.o.e.703.7 8 4.3 odd 2 inner
2112.2.o.e.703.8 8 44.43 even 2 inner