Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1587,1,Mod(170,1587)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1587, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 10]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1587.170");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1587.h (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 20.0.5969915757478328440239161344.6 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 4.0.36501.1 |
Artin image: | |
Artin field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
170.1 |
|
0 | 0.654861 | + | 0.755750i | 0.841254 | − | 0.540641i | 0 | 0 | −0.587486 | + | 1.28641i | 0 | −0.142315 | + | 0.989821i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
170.2 | 0 | 0.654861 | + | 0.755750i | 0.841254 | − | 0.540641i | 0 | 0 | 0.587486 | − | 1.28641i | 0 | −0.142315 | + | 0.989821i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
266.1 | 0 | −0.841254 | − | 0.540641i | −0.142315 | + | 0.989821i | 0 | 0 | −1.35693 | − | 0.398430i | 0 | 0.415415 | + | 0.909632i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
266.2 | 0 | −0.841254 | − | 0.540641i | −0.142315 | + | 0.989821i | 0 | 0 | 1.35693 | + | 0.398430i | 0 | 0.415415 | + | 0.909632i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.1 | 0 | −0.415415 | + | 0.909632i | −0.959493 | + | 0.281733i | 0 | 0 | −1.18971 | + | 0.764582i | 0 | −0.654861 | − | 0.755750i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.2 | 0 | −0.415415 | + | 0.909632i | −0.959493 | + | 0.281733i | 0 | 0 | 1.18971 | − | 0.764582i | 0 | −0.654861 | − | 0.755750i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
863.1 | 0 | 0.142315 | − | 0.989821i | 0.415415 | − | 0.909632i | 0 | 0 | −0.926113 | − | 1.06879i | 0 | −0.959493 | − | 0.281733i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
863.2 | 0 | 0.142315 | − | 0.989821i | 0.415415 | − | 0.909632i | 0 | 0 | 0.926113 | + | 1.06879i | 0 | −0.959493 | − | 0.281733i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
995.1 | 0 | 0.959493 | + | 0.281733i | −0.654861 | − | 0.755750i | 0 | 0 | −0.201264 | + | 1.39982i | 0 | 0.841254 | + | 0.540641i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
995.2 | 0 | 0.959493 | + | 0.281733i | −0.654861 | − | 0.755750i | 0 | 0 | 0.201264 | − | 1.39982i | 0 | 0.841254 | + | 0.540641i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1016.1 | 0 | 0.959493 | − | 0.281733i | −0.654861 | + | 0.755750i | 0 | 0 | −0.201264 | − | 1.39982i | 0 | 0.841254 | − | 0.540641i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1016.2 | 0 | 0.959493 | − | 0.281733i | −0.654861 | + | 0.755750i | 0 | 0 | 0.201264 | + | 1.39982i | 0 | 0.841254 | − | 0.540641i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1235.1 | 0 | −0.841254 | + | 0.540641i | −0.142315 | − | 0.989821i | 0 | 0 | −1.35693 | + | 0.398430i | 0 | 0.415415 | − | 0.909632i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1235.2 | 0 | −0.841254 | + | 0.540641i | −0.142315 | − | 0.989821i | 0 | 0 | 1.35693 | − | 0.398430i | 0 | 0.415415 | − | 0.909632i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1313.1 | 0 | 0.142315 | + | 0.989821i | 0.415415 | + | 0.909632i | 0 | 0 | −0.926113 | + | 1.06879i | 0 | −0.959493 | + | 0.281733i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1313.2 | 0 | 0.142315 | + | 0.989821i | 0.415415 | + | 0.909632i | 0 | 0 | 0.926113 | − | 1.06879i | 0 | −0.959493 | + | 0.281733i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1457.1 | 0 | −0.415415 | − | 0.909632i | −0.959493 | − | 0.281733i | 0 | 0 | −1.18971 | − | 0.764582i | 0 | −0.654861 | + | 0.755750i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1457.2 | 0 | −0.415415 | − | 0.909632i | −0.959493 | − | 0.281733i | 0 | 0 | 1.18971 | + | 0.764582i | 0 | −0.654861 | + | 0.755750i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1559.1 | 0 | 0.654861 | − | 0.755750i | 0.841254 | + | 0.540641i | 0 | 0 | −0.587486 | − | 1.28641i | 0 | −0.142315 | − | 0.989821i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1559.2 | 0 | 0.654861 | − | 0.755750i | 0.841254 | + | 0.540641i | 0 | 0 | 0.587486 | + | 1.28641i | 0 | −0.142315 | − | 0.989821i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by |
23.b | odd | 2 | 1 | inner |
23.c | even | 11 | 9 | inner |
23.d | odd | 22 | 9 | inner |
69.c | even | 2 | 1 | inner |
69.g | even | 22 | 9 | inner |
69.h | odd | 22 | 9 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1587.1.h.c | 20 | |
3.b | odd | 2 | 1 | CM | 1587.1.h.c | 20 | |
23.b | odd | 2 | 1 | inner | 1587.1.h.c | 20 | |
23.c | even | 11 | 1 | 1587.1.b.b | ✓ | 2 | |
23.c | even | 11 | 9 | inner | 1587.1.h.c | 20 | |
23.d | odd | 22 | 1 | 1587.1.b.b | ✓ | 2 | |
23.d | odd | 22 | 9 | inner | 1587.1.h.c | 20 | |
69.c | even | 2 | 1 | inner | 1587.1.h.c | 20 | |
69.g | even | 22 | 1 | 1587.1.b.b | ✓ | 2 | |
69.g | even | 22 | 9 | inner | 1587.1.h.c | 20 | |
69.h | odd | 22 | 1 | 1587.1.b.b | ✓ | 2 | |
69.h | odd | 22 | 9 | inner | 1587.1.h.c | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1587.1.b.b | ✓ | 2 | 23.c | even | 11 | 1 | |
1587.1.b.b | ✓ | 2 | 23.d | odd | 22 | 1 | |
1587.1.b.b | ✓ | 2 | 69.g | even | 22 | 1 | |
1587.1.b.b | ✓ | 2 | 69.h | odd | 22 | 1 | |
1587.1.h.c | 20 | 1.a | even | 1 | 1 | trivial | |
1587.1.h.c | 20 | 3.b | odd | 2 | 1 | CM | |
1587.1.h.c | 20 | 23.b | odd | 2 | 1 | inner | |
1587.1.h.c | 20 | 23.c | even | 11 | 9 | inner | |
1587.1.h.c | 20 | 23.d | odd | 22 | 9 | inner | |
1587.1.h.c | 20 | 69.c | even | 2 | 1 | inner | |
1587.1.h.c | 20 | 69.g | even | 22 | 9 | inner | |
1587.1.h.c | 20 | 69.h | odd | 22 | 9 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|