Properties

Label 1587.1.h.c
Level $1587$
Weight $1$
Character orbit 1587.h
Analytic conductor $0.792$
Analytic rank $0$
Dimension $20$
Projective image $D_{4}$
CM discriminant -3
Inner twists $40$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1587,1,Mod(170,1587)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1587, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1587.170");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1587.h (of order \(22\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.792016175049\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{22})\)
Coefficient field: 20.0.5969915757478328440239161344.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 2x^{18} + 4x^{16} + 8x^{14} + 16x^{12} + 32x^{10} + 64x^{8} + 128x^{6} + 256x^{4} + 512x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.36501.1
Artin image: $C_{11}\times D_8$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{88} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{8} q^{3} + \beta_{2} q^{4} - \beta_{15} q^{7} + \beta_{16} q^{9} - \beta_{10} q^{12} + \beta_{4} q^{16} + \beta_{13} q^{19} + \beta_1 q^{21} + \beta_{12} q^{25} - \beta_{2} q^{27} - \beta_{17} q^{28}+ \cdots + \beta_{17} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{3} - 2 q^{4} - 2 q^{9} + 2 q^{12} - 2 q^{16} - 2 q^{25} + 2 q^{27} - 2 q^{36} + 2 q^{48} - 2 q^{49} - 2 q^{64} + 2 q^{75} - 2 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} + 2x^{18} + 4x^{16} + 8x^{14} + 16x^{12} + 32x^{10} + 64x^{8} + 128x^{6} + 256x^{4} + 512x^{2} + 1024 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} ) / 8 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{8} ) / 16 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( \nu^{9} ) / 16 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( \nu^{10} ) / 32 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( \nu^{11} ) / 32 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( \nu^{12} ) / 64 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( \nu^{13} ) / 64 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( \nu^{14} ) / 128 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( \nu^{15} ) / 128 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( \nu^{16} ) / 256 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( \nu^{17} ) / 256 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( \nu^{18} ) / 512 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( \nu^{19} ) / 512 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{6} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 8\beta_{7} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 16\beta_{8} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 16\beta_{9} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 32\beta_{10} \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 32\beta_{11} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 64\beta_{12} \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 64\beta_{13} \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 128\beta_{14} \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 128\beta_{15} \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 256\beta_{16} \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 256\beta_{17} \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 512\beta_{18} \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 512\beta_{19} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1587\mathbb{Z}\right)^\times\).

\(n\) \(530\) \(1063\)
\(\chi(n)\) \(-1\) \(\beta_{12}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
170.1
−1.35693 + 0.398430i
1.35693 0.398430i
0.926113 + 1.06879i
−0.926113 1.06879i
−0.201264 1.39982i
0.201264 + 1.39982i
−1.18971 + 0.764582i
1.18971 0.764582i
−0.587486 + 1.28641i
0.587486 1.28641i
−0.587486 1.28641i
0.587486 + 1.28641i
0.926113 1.06879i
−0.926113 + 1.06879i
−1.18971 0.764582i
1.18971 + 0.764582i
−0.201264 + 1.39982i
0.201264 1.39982i
−1.35693 0.398430i
1.35693 + 0.398430i
0 0.654861 + 0.755750i 0.841254 0.540641i 0 0 −0.587486 + 1.28641i 0 −0.142315 + 0.989821i 0
170.2 0 0.654861 + 0.755750i 0.841254 0.540641i 0 0 0.587486 1.28641i 0 −0.142315 + 0.989821i 0
266.1 0 −0.841254 0.540641i −0.142315 + 0.989821i 0 0 −1.35693 0.398430i 0 0.415415 + 0.909632i 0
266.2 0 −0.841254 0.540641i −0.142315 + 0.989821i 0 0 1.35693 + 0.398430i 0 0.415415 + 0.909632i 0
647.1 0 −0.415415 + 0.909632i −0.959493 + 0.281733i 0 0 −1.18971 + 0.764582i 0 −0.654861 0.755750i 0
647.2 0 −0.415415 + 0.909632i −0.959493 + 0.281733i 0 0 1.18971 0.764582i 0 −0.654861 0.755750i 0
863.1 0 0.142315 0.989821i 0.415415 0.909632i 0 0 −0.926113 1.06879i 0 −0.959493 0.281733i 0
863.2 0 0.142315 0.989821i 0.415415 0.909632i 0 0 0.926113 + 1.06879i 0 −0.959493 0.281733i 0
995.1 0 0.959493 + 0.281733i −0.654861 0.755750i 0 0 −0.201264 + 1.39982i 0 0.841254 + 0.540641i 0
995.2 0 0.959493 + 0.281733i −0.654861 0.755750i 0 0 0.201264 1.39982i 0 0.841254 + 0.540641i 0
1016.1 0 0.959493 0.281733i −0.654861 + 0.755750i 0 0 −0.201264 1.39982i 0 0.841254 0.540641i 0
1016.2 0 0.959493 0.281733i −0.654861 + 0.755750i 0 0 0.201264 + 1.39982i 0 0.841254 0.540641i 0
1235.1 0 −0.841254 + 0.540641i −0.142315 0.989821i 0 0 −1.35693 + 0.398430i 0 0.415415 0.909632i 0
1235.2 0 −0.841254 + 0.540641i −0.142315 0.989821i 0 0 1.35693 0.398430i 0 0.415415 0.909632i 0
1313.1 0 0.142315 + 0.989821i 0.415415 + 0.909632i 0 0 −0.926113 + 1.06879i 0 −0.959493 + 0.281733i 0
1313.2 0 0.142315 + 0.989821i 0.415415 + 0.909632i 0 0 0.926113 1.06879i 0 −0.959493 + 0.281733i 0
1457.1 0 −0.415415 0.909632i −0.959493 0.281733i 0 0 −1.18971 0.764582i 0 −0.654861 + 0.755750i 0
1457.2 0 −0.415415 0.909632i −0.959493 0.281733i 0 0 1.18971 + 0.764582i 0 −0.654861 + 0.755750i 0
1559.1 0 0.654861 0.755750i 0.841254 + 0.540641i 0 0 −0.587486 1.28641i 0 −0.142315 0.989821i 0
1559.2 0 0.654861 0.755750i 0.841254 + 0.540641i 0 0 0.587486 + 1.28641i 0 −0.142315 0.989821i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 170.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
23.b odd 2 1 inner
23.c even 11 9 inner
23.d odd 22 9 inner
69.c even 2 1 inner
69.g even 22 9 inner
69.h odd 22 9 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1587.1.h.c 20
3.b odd 2 1 CM 1587.1.h.c 20
23.b odd 2 1 inner 1587.1.h.c 20
23.c even 11 1 1587.1.b.b 2
23.c even 11 9 inner 1587.1.h.c 20
23.d odd 22 1 1587.1.b.b 2
23.d odd 22 9 inner 1587.1.h.c 20
69.c even 2 1 inner 1587.1.h.c 20
69.g even 22 1 1587.1.b.b 2
69.g even 22 9 inner 1587.1.h.c 20
69.h odd 22 1 1587.1.b.b 2
69.h odd 22 9 inner 1587.1.h.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1587.1.b.b 2 23.c even 11 1
1587.1.b.b 2 23.d odd 22 1
1587.1.b.b 2 69.g even 22 1
1587.1.b.b 2 69.h odd 22 1
1587.1.h.c 20 1.a even 1 1 trivial
1587.1.h.c 20 3.b odd 2 1 CM
1587.1.h.c 20 23.b odd 2 1 inner
1587.1.h.c 20 23.c even 11 9 inner
1587.1.h.c 20 23.d odd 22 9 inner
1587.1.h.c 20 69.c even 2 1 inner
1587.1.h.c 20 69.g even 22 9 inner
1587.1.h.c 20 69.h odd 22 9 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1587, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{7}^{20} + 2 T_{7}^{18} + 4 T_{7}^{16} + 8 T_{7}^{14} + 16 T_{7}^{12} + 32 T_{7}^{10} + 64 T_{7}^{8} + \cdots + 1024 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( (T^{10} - T^{9} + T^{8} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{20} \) Copy content Toggle raw display
$7$ \( T^{20} + 2 T^{18} + \cdots + 1024 \) Copy content Toggle raw display
$11$ \( T^{20} \) Copy content Toggle raw display
$13$ \( T^{20} \) Copy content Toggle raw display
$17$ \( T^{20} \) Copy content Toggle raw display
$19$ \( T^{20} + 2 T^{18} + \cdots + 1024 \) Copy content Toggle raw display
$23$ \( T^{20} \) Copy content Toggle raw display
$29$ \( T^{20} \) Copy content Toggle raw display
$31$ \( T^{20} \) Copy content Toggle raw display
$37$ \( T^{20} + 2 T^{18} + \cdots + 1024 \) Copy content Toggle raw display
$41$ \( T^{20} \) Copy content Toggle raw display
$43$ \( T^{20} + 2 T^{18} + \cdots + 1024 \) Copy content Toggle raw display
$47$ \( T^{20} \) Copy content Toggle raw display
$53$ \( T^{20} \) Copy content Toggle raw display
$59$ \( T^{20} \) Copy content Toggle raw display
$61$ \( T^{20} + 2 T^{18} + \cdots + 1024 \) Copy content Toggle raw display
$67$ \( T^{20} + 2 T^{18} + \cdots + 1024 \) Copy content Toggle raw display
$71$ \( T^{20} \) Copy content Toggle raw display
$73$ \( T^{20} \) Copy content Toggle raw display
$79$ \( T^{20} + 2 T^{18} + \cdots + 1024 \) Copy content Toggle raw display
$83$ \( T^{20} \) Copy content Toggle raw display
$89$ \( T^{20} \) Copy content Toggle raw display
$97$ \( T^{20} + 2 T^{18} + \cdots + 1024 \) Copy content Toggle raw display
show more
show less