Properties

Label 1587.1.h.c
Level 15871587
Weight 11
Character orbit 1587.h
Analytic conductor 0.7920.792
Analytic rank 00
Dimension 2020
Projective image D4D_{4}
CM discriminant -3
Inner twists 4040

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1587,1,Mod(170,1587)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1587, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1587.170");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1587=3232 1587 = 3 \cdot 23^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1587.h (of order 2222, degree 1010, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7920161750490.792016175049
Analytic rank: 00
Dimension: 2020
Relative dimension: 22 over Q(ζ22)\Q(\zeta_{22})
Coefficient field: 20.0.5969915757478328440239161344.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x20+2x18+4x16+8x14+16x12+32x10+64x8+128x6+256x4+512x2+1024 x^{20} + 2x^{18} + 4x^{16} + 8x^{14} + 16x^{12} + 32x^{10} + 64x^{8} + 128x^{6} + 256x^{4} + 512x^{2} + 1024 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.36501.1
Artin image: C11×D8C_{11}\times D_8
Artin field: Galois closure of Q[x]/(x88)\mathbb{Q}[x]/(x^{88} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ8q3+β2q4β15q7+β16q9β10q12+β4q16+β13q19+β1q21+β12q25β2q27β17q28++β17q97+O(q100) q - \beta_{8} q^{3} + \beta_{2} q^{4} - \beta_{15} q^{7} + \beta_{16} q^{9} - \beta_{10} q^{12} + \beta_{4} q^{16} + \beta_{13} q^{19} + \beta_1 q^{21} + \beta_{12} q^{25} - \beta_{2} q^{27} - \beta_{17} q^{28}+ \cdots + \beta_{17} q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+2q32q42q9+2q122q162q25+2q272q36+2q482q492q64+2q752q81+O(q100) 20 q + 2 q^{3} - 2 q^{4} - 2 q^{9} + 2 q^{12} - 2 q^{16} - 2 q^{25} + 2 q^{27} - 2 q^{36} + 2 q^{48} - 2 q^{49} - 2 q^{64} + 2 q^{75} - 2 q^{81}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x20+2x18+4x16+8x14+16x12+32x10+64x8+128x6+256x4+512x2+1024 x^{20} + 2x^{18} + 4x^{16} + 8x^{14} + 16x^{12} + 32x^{10} + 64x^{8} + 128x^{6} + 256x^{4} + 512x^{2} + 1024 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
β4\beta_{4}== (ν4)/4 ( \nu^{4} ) / 4 Copy content Toggle raw display
β5\beta_{5}== (ν5)/4 ( \nu^{5} ) / 4 Copy content Toggle raw display
β6\beta_{6}== (ν6)/8 ( \nu^{6} ) / 8 Copy content Toggle raw display
β7\beta_{7}== (ν7)/8 ( \nu^{7} ) / 8 Copy content Toggle raw display
β8\beta_{8}== (ν8)/16 ( \nu^{8} ) / 16 Copy content Toggle raw display
β9\beta_{9}== (ν9)/16 ( \nu^{9} ) / 16 Copy content Toggle raw display
β10\beta_{10}== (ν10)/32 ( \nu^{10} ) / 32 Copy content Toggle raw display
β11\beta_{11}== (ν11)/32 ( \nu^{11} ) / 32 Copy content Toggle raw display
β12\beta_{12}== (ν12)/64 ( \nu^{12} ) / 64 Copy content Toggle raw display
β13\beta_{13}== (ν13)/64 ( \nu^{13} ) / 64 Copy content Toggle raw display
β14\beta_{14}== (ν14)/128 ( \nu^{14} ) / 128 Copy content Toggle raw display
β15\beta_{15}== (ν15)/128 ( \nu^{15} ) / 128 Copy content Toggle raw display
β16\beta_{16}== (ν16)/256 ( \nu^{16} ) / 256 Copy content Toggle raw display
β17\beta_{17}== (ν17)/256 ( \nu^{17} ) / 256 Copy content Toggle raw display
β18\beta_{18}== (ν18)/512 ( \nu^{18} ) / 512 Copy content Toggle raw display
β19\beta_{19}== (ν19)/512 ( \nu^{19} ) / 512 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display
ν4\nu^{4}== 4β4 4\beta_{4} Copy content Toggle raw display
ν5\nu^{5}== 4β5 4\beta_{5} Copy content Toggle raw display
ν6\nu^{6}== 8β6 8\beta_{6} Copy content Toggle raw display
ν7\nu^{7}== 8β7 8\beta_{7} Copy content Toggle raw display
ν8\nu^{8}== 16β8 16\beta_{8} Copy content Toggle raw display
ν9\nu^{9}== 16β9 16\beta_{9} Copy content Toggle raw display
ν10\nu^{10}== 32β10 32\beta_{10} Copy content Toggle raw display
ν11\nu^{11}== 32β11 32\beta_{11} Copy content Toggle raw display
ν12\nu^{12}== 64β12 64\beta_{12} Copy content Toggle raw display
ν13\nu^{13}== 64β13 64\beta_{13} Copy content Toggle raw display
ν14\nu^{14}== 128β14 128\beta_{14} Copy content Toggle raw display
ν15\nu^{15}== 128β15 128\beta_{15} Copy content Toggle raw display
ν16\nu^{16}== 256β16 256\beta_{16} Copy content Toggle raw display
ν17\nu^{17}== 256β17 256\beta_{17} Copy content Toggle raw display
ν18\nu^{18}== 512β18 512\beta_{18} Copy content Toggle raw display
ν19\nu^{19}== 512β19 512\beta_{19} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1587Z)×\left(\mathbb{Z}/1587\mathbb{Z}\right)^\times.

nn 530530 10631063
χ(n)\chi(n) 1-1 β12\beta_{12}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
170.1
−1.35693 + 0.398430i
1.35693 0.398430i
0.926113 + 1.06879i
−0.926113 1.06879i
−0.201264 1.39982i
0.201264 + 1.39982i
−1.18971 + 0.764582i
1.18971 0.764582i
−0.587486 + 1.28641i
0.587486 1.28641i
−0.587486 1.28641i
0.587486 + 1.28641i
0.926113 1.06879i
−0.926113 + 1.06879i
−1.18971 0.764582i
1.18971 + 0.764582i
−0.201264 + 1.39982i
0.201264 1.39982i
−1.35693 0.398430i
1.35693 + 0.398430i
0 0.654861 + 0.755750i 0.841254 0.540641i 0 0 −0.587486 + 1.28641i 0 −0.142315 + 0.989821i 0
170.2 0 0.654861 + 0.755750i 0.841254 0.540641i 0 0 0.587486 1.28641i 0 −0.142315 + 0.989821i 0
266.1 0 −0.841254 0.540641i −0.142315 + 0.989821i 0 0 −1.35693 0.398430i 0 0.415415 + 0.909632i 0
266.2 0 −0.841254 0.540641i −0.142315 + 0.989821i 0 0 1.35693 + 0.398430i 0 0.415415 + 0.909632i 0
647.1 0 −0.415415 + 0.909632i −0.959493 + 0.281733i 0 0 −1.18971 + 0.764582i 0 −0.654861 0.755750i 0
647.2 0 −0.415415 + 0.909632i −0.959493 + 0.281733i 0 0 1.18971 0.764582i 0 −0.654861 0.755750i 0
863.1 0 0.142315 0.989821i 0.415415 0.909632i 0 0 −0.926113 1.06879i 0 −0.959493 0.281733i 0
863.2 0 0.142315 0.989821i 0.415415 0.909632i 0 0 0.926113 + 1.06879i 0 −0.959493 0.281733i 0
995.1 0 0.959493 + 0.281733i −0.654861 0.755750i 0 0 −0.201264 + 1.39982i 0 0.841254 + 0.540641i 0
995.2 0 0.959493 + 0.281733i −0.654861 0.755750i 0 0 0.201264 1.39982i 0 0.841254 + 0.540641i 0
1016.1 0 0.959493 0.281733i −0.654861 + 0.755750i 0 0 −0.201264 1.39982i 0 0.841254 0.540641i 0
1016.2 0 0.959493 0.281733i −0.654861 + 0.755750i 0 0 0.201264 + 1.39982i 0 0.841254 0.540641i 0
1235.1 0 −0.841254 + 0.540641i −0.142315 0.989821i 0 0 −1.35693 + 0.398430i 0 0.415415 0.909632i 0
1235.2 0 −0.841254 + 0.540641i −0.142315 0.989821i 0 0 1.35693 0.398430i 0 0.415415 0.909632i 0
1313.1 0 0.142315 + 0.989821i 0.415415 + 0.909632i 0 0 −0.926113 + 1.06879i 0 −0.959493 + 0.281733i 0
1313.2 0 0.142315 + 0.989821i 0.415415 + 0.909632i 0 0 0.926113 1.06879i 0 −0.959493 + 0.281733i 0
1457.1 0 −0.415415 0.909632i −0.959493 0.281733i 0 0 −1.18971 0.764582i 0 −0.654861 + 0.755750i 0
1457.2 0 −0.415415 0.909632i −0.959493 0.281733i 0 0 1.18971 + 0.764582i 0 −0.654861 + 0.755750i 0
1559.1 0 0.654861 0.755750i 0.841254 + 0.540641i 0 0 −0.587486 1.28641i 0 −0.142315 0.989821i 0
1559.2 0 0.654861 0.755750i 0.841254 + 0.540641i 0 0 0.587486 + 1.28641i 0 −0.142315 0.989821i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 170.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
23.b odd 2 1 inner
23.c even 11 9 inner
23.d odd 22 9 inner
69.c even 2 1 inner
69.g even 22 9 inner
69.h odd 22 9 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1587.1.h.c 20
3.b odd 2 1 CM 1587.1.h.c 20
23.b odd 2 1 inner 1587.1.h.c 20
23.c even 11 1 1587.1.b.b 2
23.c even 11 9 inner 1587.1.h.c 20
23.d odd 22 1 1587.1.b.b 2
23.d odd 22 9 inner 1587.1.h.c 20
69.c even 2 1 inner 1587.1.h.c 20
69.g even 22 1 1587.1.b.b 2
69.g even 22 9 inner 1587.1.h.c 20
69.h odd 22 1 1587.1.b.b 2
69.h odd 22 9 inner 1587.1.h.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1587.1.b.b 2 23.c even 11 1
1587.1.b.b 2 23.d odd 22 1
1587.1.b.b 2 69.g even 22 1
1587.1.b.b 2 69.h odd 22 1
1587.1.h.c 20 1.a even 1 1 trivial
1587.1.h.c 20 3.b odd 2 1 CM
1587.1.h.c 20 23.b odd 2 1 inner
1587.1.h.c 20 23.c even 11 9 inner
1587.1.h.c 20 23.d odd 22 9 inner
1587.1.h.c 20 69.c even 2 1 inner
1587.1.h.c 20 69.g even 22 9 inner
1587.1.h.c 20 69.h odd 22 9 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(1587,[χ])S_{1}^{\mathrm{new}}(1587, [\chi]):

T2 T_{2} Copy content Toggle raw display
T720+2T718+4T716+8T714+16T712+32T710+64T78++1024 T_{7}^{20} + 2 T_{7}^{18} + 4 T_{7}^{16} + 8 T_{7}^{14} + 16 T_{7}^{12} + 32 T_{7}^{10} + 64 T_{7}^{8} + \cdots + 1024 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T20 T^{20} Copy content Toggle raw display
33 (T10T9+T8++1)2 (T^{10} - T^{9} + T^{8} + \cdots + 1)^{2} Copy content Toggle raw display
55 T20 T^{20} Copy content Toggle raw display
77 T20+2T18++1024 T^{20} + 2 T^{18} + \cdots + 1024 Copy content Toggle raw display
1111 T20 T^{20} Copy content Toggle raw display
1313 T20 T^{20} Copy content Toggle raw display
1717 T20 T^{20} Copy content Toggle raw display
1919 T20+2T18++1024 T^{20} + 2 T^{18} + \cdots + 1024 Copy content Toggle raw display
2323 T20 T^{20} Copy content Toggle raw display
2929 T20 T^{20} Copy content Toggle raw display
3131 T20 T^{20} Copy content Toggle raw display
3737 T20+2T18++1024 T^{20} + 2 T^{18} + \cdots + 1024 Copy content Toggle raw display
4141 T20 T^{20} Copy content Toggle raw display
4343 T20+2T18++1024 T^{20} + 2 T^{18} + \cdots + 1024 Copy content Toggle raw display
4747 T20 T^{20} Copy content Toggle raw display
5353 T20 T^{20} Copy content Toggle raw display
5959 T20 T^{20} Copy content Toggle raw display
6161 T20+2T18++1024 T^{20} + 2 T^{18} + \cdots + 1024 Copy content Toggle raw display
6767 T20+2T18++1024 T^{20} + 2 T^{18} + \cdots + 1024 Copy content Toggle raw display
7171 T20 T^{20} Copy content Toggle raw display
7373 T20 T^{20} Copy content Toggle raw display
7979 T20+2T18++1024 T^{20} + 2 T^{18} + \cdots + 1024 Copy content Toggle raw display
8383 T20 T^{20} Copy content Toggle raw display
8989 T20 T^{20} Copy content Toggle raw display
9797 T20+2T18++1024 T^{20} + 2 T^{18} + \cdots + 1024 Copy content Toggle raw display
show more
show less