Properties

Label 1587.2.a.s
Level $1587$
Weight $2$
Character orbit 1587.a
Self dual yes
Analytic conductor $12.672$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1587,2,Mod(1,1587)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1587, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1587.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1587.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.6722588008\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.2803712.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 6x^{4} + 8x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + q^{3} + (\beta_{4} - \beta_{2} + 1) q^{4} + \beta_{5} q^{5} - \beta_{2} q^{6} + ( - \beta_{5} - \beta_{3}) q^{7} + (\beta_{4} - 2 \beta_{2} + 2) q^{8} + q^{9} + ( - \beta_{5} - 2 \beta_{3}) q^{10}+ \cdots + 2 \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 6 q^{3} + 10 q^{4} + 2 q^{6} + 18 q^{8} + 6 q^{9} + 10 q^{12} + 8 q^{13} + 26 q^{16} + 2 q^{18} + 18 q^{24} + 2 q^{25} - 40 q^{26} + 6 q^{27} + 12 q^{29} + 12 q^{31} + 58 q^{32} - 32 q^{35}+ \cdots - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 6x^{4} + 8x^{2} - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 4\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 5\nu^{3} + 4\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{4} + 6\nu^{2} - 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{5} + 6\nu^{3} - 6\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{3} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + \beta_{2} + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} + 2\beta_{3} - \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{4} + 3\beta_{2} + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{5} + 9\beta_{3} - 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.05288
2.05288
0.569973
−0.569973
−1.20864
1.20864
−1.90321 1.00000 1.62222 −3.13152 −1.90321 4.54573 0.719004 1.00000 5.95995
1.2 −1.90321 1.00000 1.62222 3.13152 −1.90321 −4.54573 0.719004 1.00000 −5.95995
1.3 0.193937 1.00000 −1.96239 −2.36899 0.193937 0.954779 −0.768452 1.00000 −0.459434
1.4 0.193937 1.00000 −1.96239 2.36899 0.193937 −0.954779 −0.768452 1.00000 0.459434
1.5 2.70928 1.00000 5.34017 −0.762528 2.70928 −0.651685 9.04945 1.00000 −2.06590
1.6 2.70928 1.00000 5.34017 0.762528 2.70928 0.651685 9.04945 1.00000 2.06590
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(23\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1587.2.a.s 6
3.b odd 2 1 4761.2.a.bs 6
23.b odd 2 1 inner 1587.2.a.s 6
69.c even 2 1 4761.2.a.bs 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1587.2.a.s 6 1.a even 1 1 trivial
1587.2.a.s 6 23.b odd 2 1 inner
4761.2.a.bs 6 3.b odd 2 1
4761.2.a.bs 6 69.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1587))\):

\( T_{2}^{3} - T_{2}^{2} - 5T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{6} - 16T_{5}^{4} + 64T_{5}^{2} - 32 \) Copy content Toggle raw display
\( T_{7}^{6} - 22T_{7}^{4} + 28T_{7}^{2} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{3} - T^{2} - 5 T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 16 T^{4} + \cdots - 32 \) Copy content Toggle raw display
$7$ \( T^{6} - 22 T^{4} + \cdots - 8 \) Copy content Toggle raw display
$11$ \( T^{6} - 56 T^{4} + \cdots - 512 \) Copy content Toggle raw display
$13$ \( (T^{3} - 4 T^{2} - 16 T + 32)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} - 40 T^{4} + \cdots - 32 \) Copy content Toggle raw display
$19$ \( T^{6} - 86 T^{4} + \cdots - 6728 \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( (T^{3} - 6 T^{2} - 4 T + 8)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} - 6 T^{2} - 4 T + 40)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} - 86 T^{4} + \cdots - 2888 \) Copy content Toggle raw display
$41$ \( (T^{3} - 2 T^{2} - 52 T + 40)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} - 70 T^{4} + \cdots - 2312 \) Copy content Toggle raw display
$47$ \( (T^{3} - 4 T^{2} - 88 T - 16)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} - 200 T^{4} + \cdots - 143648 \) Copy content Toggle raw display
$59$ \( (T^{3} - 28 T^{2} + \cdots - 688)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} - 70 T^{4} + \cdots - 7688 \) Copy content Toggle raw display
$67$ \( T^{6} - 150 T^{4} + \cdots - 10952 \) Copy content Toggle raw display
$71$ \( (T + 4)^{6} \) Copy content Toggle raw display
$73$ \( (T^{3} - 20 T^{2} + \cdots + 64)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} - 134 T^{4} + \cdots - 2888 \) Copy content Toggle raw display
$83$ \( T^{6} - 344 T^{4} + \cdots - 86528 \) Copy content Toggle raw display
$89$ \( T^{6} - 240 T^{4} + \cdots - 5408 \) Copy content Toggle raw display
$97$ \( T^{6} - 214 T^{4} + \cdots - 29768 \) Copy content Toggle raw display
show more
show less