Properties

Label 1596.1.dt.d.1259.1
Level $1596$
Weight $1$
Character 1596.1259
Analytic conductor $0.797$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -84
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1596,1,Mod(251,1596)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1596, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 9, 9, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1596.251");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1596 = 2^{2} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1596.dt (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.796507760162\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{9} - \cdots)\)

Embedding invariants

Embedding label 1259.1
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 1596.1259
Dual form 1596.1.dt.d.251.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 + 0.342020i) q^{2} +(-0.173648 + 0.984808i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.266044 - 0.223238i) q^{5} +(-0.173648 - 0.984808i) q^{6} +(0.500000 + 0.866025i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.939693 - 0.342020i) q^{9} +(0.326352 + 0.118782i) q^{10} +(0.939693 - 1.62760i) q^{11} +(0.500000 + 0.866025i) q^{12} +(-0.766044 - 0.642788i) q^{14} +(0.266044 - 0.223238i) q^{15} +(0.173648 - 0.984808i) q^{16} +(1.43969 - 0.524005i) q^{17} +1.00000 q^{18} +(0.939693 + 0.342020i) q^{19} -0.347296 q^{20} +(-0.939693 + 0.342020i) q^{21} +(-0.326352 + 1.85083i) q^{22} +(-0.766044 + 0.642788i) q^{23} +(-0.766044 - 0.642788i) q^{24} +(-0.152704 - 0.866025i) q^{25} +(0.500000 - 0.866025i) q^{27} +(0.939693 + 0.342020i) q^{28} +(-0.173648 + 0.300767i) q^{30} +(-0.500000 - 0.866025i) q^{31} +(0.173648 + 0.984808i) q^{32} +(1.43969 + 1.20805i) q^{33} +(-1.17365 + 0.984808i) q^{34} +(0.0603074 - 0.342020i) q^{35} +(-0.939693 + 0.342020i) q^{36} +1.53209 q^{37} -1.00000 q^{38} +(0.326352 - 0.118782i) q^{40} +(-0.266044 + 1.50881i) q^{41} +(0.766044 - 0.642788i) q^{42} +(-0.326352 - 1.85083i) q^{44} +(0.173648 + 0.300767i) q^{45} +(0.500000 - 0.866025i) q^{46} +(0.939693 + 0.342020i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(0.439693 + 0.761570i) q^{50} +(0.266044 + 1.50881i) q^{51} +(-0.173648 + 0.984808i) q^{54} +(-0.613341 + 0.223238i) q^{55} -1.00000 q^{56} +(-0.500000 + 0.866025i) q^{57} +(0.0603074 - 0.342020i) q^{60} +(0.766044 + 0.642788i) q^{62} +(-0.173648 - 0.984808i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(-1.76604 - 0.642788i) q^{66} +(0.766044 - 1.32683i) q^{68} +(-0.500000 - 0.866025i) q^{69} +(0.0603074 + 0.342020i) q^{70} +(-0.766044 - 0.642788i) q^{71} +(0.766044 - 0.642788i) q^{72} +(-1.43969 + 0.524005i) q^{74} +0.879385 q^{75} +(0.939693 - 0.342020i) q^{76} +1.87939 q^{77} +(-0.266044 + 0.223238i) q^{80} +(0.766044 + 0.642788i) q^{81} +(-0.266044 - 1.50881i) q^{82} +(-0.500000 + 0.866025i) q^{84} +(-0.500000 - 0.181985i) q^{85} +(0.939693 + 1.62760i) q^{88} +(-0.0603074 - 0.342020i) q^{89} +(-0.266044 - 0.223238i) q^{90} +(-0.173648 + 0.984808i) q^{92} +(0.939693 - 0.342020i) q^{93} +(-0.173648 - 0.300767i) q^{95} -1.00000 q^{96} +(0.173648 - 0.984808i) q^{98} +(-1.43969 + 1.20805i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 3 q^{7} - 3 q^{8} + 3 q^{10} + 3 q^{12} - 3 q^{15} + 3 q^{17} + 6 q^{18} - 3 q^{22} - 3 q^{25} + 3 q^{27} - 3 q^{31} + 3 q^{33} - 6 q^{34} + 6 q^{35} - 6 q^{38} + 3 q^{40} + 3 q^{41} - 3 q^{44}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1596\mathbb{Z}\right)^\times\).

\(n\) \(533\) \(799\) \(913\) \(1009\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(3\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(4\) 0.766044 0.642788i 0.766044 0.642788i
\(5\) −0.266044 0.223238i −0.266044 0.223238i 0.500000 0.866025i \(-0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(6\) −0.173648 0.984808i −0.173648 0.984808i
\(7\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(8\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(9\) −0.939693 0.342020i −0.939693 0.342020i
\(10\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(11\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(12\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(13\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(14\) −0.766044 0.642788i −0.766044 0.642788i
\(15\) 0.266044 0.223238i 0.266044 0.223238i
\(16\) 0.173648 0.984808i 0.173648 0.984808i
\(17\) 1.43969 0.524005i 1.43969 0.524005i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(18\) 1.00000 1.00000
\(19\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(20\) −0.347296 −0.347296
\(21\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(22\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(23\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(24\) −0.766044 0.642788i −0.766044 0.642788i
\(25\) −0.152704 0.866025i −0.152704 0.866025i
\(26\) 0 0
\(27\) 0.500000 0.866025i 0.500000 0.866025i
\(28\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(29\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(30\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(31\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(32\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(33\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(34\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(35\) 0.0603074 0.342020i 0.0603074 0.342020i
\(36\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(37\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(38\) −1.00000 −1.00000
\(39\) 0 0
\(40\) 0.326352 0.118782i 0.326352 0.118782i
\(41\) −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i \(0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(42\) 0.766044 0.642788i 0.766044 0.642788i
\(43\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(44\) −0.326352 1.85083i −0.326352 1.85083i
\(45\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(46\) 0.500000 0.866025i 0.500000 0.866025i
\(47\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(48\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(49\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(50\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(51\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(52\) 0 0
\(53\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(54\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(55\) −0.613341 + 0.223238i −0.613341 + 0.223238i
\(56\) −1.00000 −1.00000
\(57\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(58\) 0 0
\(59\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(60\) 0.0603074 0.342020i 0.0603074 0.342020i
\(61\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(62\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(63\) −0.173648 0.984808i −0.173648 0.984808i
\(64\) −0.500000 0.866025i −0.500000 0.866025i
\(65\) 0 0
\(66\) −1.76604 0.642788i −1.76604 0.642788i
\(67\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(68\) 0.766044 1.32683i 0.766044 1.32683i
\(69\) −0.500000 0.866025i −0.500000 0.866025i
\(70\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(71\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(72\) 0.766044 0.642788i 0.766044 0.642788i
\(73\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(74\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(75\) 0.879385 0.879385
\(76\) 0.939693 0.342020i 0.939693 0.342020i
\(77\) 1.87939 1.87939
\(78\) 0 0
\(79\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(80\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(81\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(82\) −0.266044 1.50881i −0.266044 1.50881i
\(83\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(84\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(85\) −0.500000 0.181985i −0.500000 0.181985i
\(86\) 0 0
\(87\) 0 0
\(88\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(89\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(90\) −0.266044 0.223238i −0.266044 0.223238i
\(91\) 0 0
\(92\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(93\) 0.939693 0.342020i 0.939693 0.342020i
\(94\) 0 0
\(95\) −0.173648 0.300767i −0.173648 0.300767i
\(96\) −1.00000 −1.00000
\(97\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(98\) 0.173648 0.984808i 0.173648 0.984808i
\(99\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(100\) −0.673648 0.565258i −0.673648 0.565258i
\(101\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(102\) −0.766044 1.32683i −0.766044 1.32683i
\(103\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(104\) 0 0
\(105\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(106\) 0 0
\(107\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) −0.173648 0.984808i −0.173648 0.984808i
\(109\) 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0.500000 0.419550i 0.500000 0.419550i
\(111\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(112\) 0.939693 0.342020i 0.939693 0.342020i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0.173648 0.984808i 0.173648 0.984808i
\(115\) 0.347296 0.347296
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(120\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(121\) −1.26604 2.19285i −1.26604 2.19285i
\(122\) 0 0
\(123\) −1.43969 0.524005i −1.43969 0.524005i
\(124\) −0.939693 0.342020i −0.939693 0.342020i
\(125\) −0.326352 + 0.565258i −0.326352 + 0.565258i
\(126\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(127\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(128\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(132\) 1.87939 1.87939
\(133\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(134\) 0 0
\(135\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(136\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(137\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(138\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(139\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(140\) −0.173648 0.300767i −0.173648 0.300767i
\(141\) 0 0
\(142\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(143\) 0 0
\(144\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.766044 0.642788i −0.766044 0.642788i
\(148\) 1.17365 0.984808i 1.17365 0.984808i
\(149\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(150\) −0.826352 + 0.300767i −0.826352 + 0.300767i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(153\) −1.53209 −1.53209
\(154\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(155\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(156\) 0 0
\(157\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.173648 0.300767i 0.173648 0.300767i
\(161\) −0.939693 0.342020i −0.939693 0.342020i
\(162\) −0.939693 0.342020i −0.939693 0.342020i
\(163\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(165\) −0.113341 0.642788i −0.113341 0.642788i
\(166\) 0 0
\(167\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(168\) 0.173648 0.984808i 0.173648 0.984808i
\(169\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(170\) 0.532089 0.532089
\(171\) −0.766044 0.642788i −0.766044 0.642788i
\(172\) 0 0
\(173\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(174\) 0 0
\(175\) 0.673648 0.565258i 0.673648 0.565258i
\(176\) −1.43969 1.20805i −1.43969 1.20805i
\(177\) 0 0
\(178\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(179\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(180\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(181\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.173648 0.984808i −0.173648 0.984808i
\(185\) −0.407604 0.342020i −0.407604 0.342020i
\(186\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(187\) 0.500000 2.83564i 0.500000 2.83564i
\(188\) 0 0
\(189\) 1.00000 1.00000
\(190\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(191\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(192\) 0.939693 0.342020i 0.939693 0.342020i
\(193\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) 0.939693 1.62760i 0.939693 1.62760i
\(199\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(200\) 0.826352 + 0.300767i 0.826352 + 0.300767i
\(201\) 0 0
\(202\) −0.939693 1.62760i −0.939693 1.62760i
\(203\) 0 0
\(204\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(205\) 0.407604 0.342020i 0.407604 0.342020i
\(206\) 0.326352 1.85083i 0.326352 1.85083i
\(207\) 0.939693 0.342020i 0.939693 0.342020i
\(208\) 0 0
\(209\) 1.43969 1.20805i 1.43969 1.20805i
\(210\) −0.347296 −0.347296
\(211\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(212\) 0 0
\(213\) 0.766044 0.642788i 0.766044 0.642788i
\(214\) −0.766044 0.642788i −0.766044 0.642788i
\(215\) 0 0
\(216\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(217\) 0.500000 0.866025i 0.500000 0.866025i
\(218\) −0.326352 0.118782i −0.326352 0.118782i
\(219\) 0 0
\(220\) −0.326352 + 0.565258i −0.326352 + 0.565258i
\(221\) 0 0
\(222\) −0.266044 1.50881i −0.266044 1.50881i
\(223\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(224\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(225\) −0.152704 + 0.866025i −0.152704 + 0.866025i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(231\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(232\) 0 0
\(233\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) −1.43969 0.524005i −1.43969 0.524005i
\(239\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(240\) −0.173648 0.300767i −0.173648 0.300767i
\(241\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(242\) 1.93969 + 1.62760i 1.93969 + 1.62760i
\(243\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(244\) 0 0
\(245\) 0.326352 0.118782i 0.326352 0.118782i
\(246\) 1.53209 1.53209
\(247\) 0 0
\(248\) 1.00000 1.00000
\(249\) 0 0
\(250\) 0.113341 0.642788i 0.113341 0.642788i
\(251\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(252\) −0.766044 0.642788i −0.766044 0.642788i
\(253\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(254\) 0 0
\(255\) 0.266044 0.460802i 0.266044 0.460802i
\(256\) −0.939693 0.342020i −0.939693 0.342020i
\(257\) −1.76604 0.642788i −1.76604 0.642788i −0.766044 0.642788i \(-0.777778\pi\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(264\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(265\) 0 0
\(266\) −0.500000 0.866025i −0.500000 0.866025i
\(267\) 0.347296 0.347296
\(268\) 0 0
\(269\) 0.326352 1.85083i 0.326352 1.85083i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(270\) 0.266044 0.223238i 0.266044 0.223238i
\(271\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(272\) −0.266044 1.50881i −0.266044 1.50881i
\(273\) 0 0
\(274\) 0 0
\(275\) −1.55303 0.565258i −1.55303 0.565258i
\(276\) −0.939693 0.342020i −0.939693 0.342020i
\(277\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(278\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(279\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(280\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(281\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(282\) 0 0
\(283\) 1.43969 0.524005i 1.43969 0.524005i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(284\) −1.00000 −1.00000
\(285\) 0.326352 0.118782i 0.326352 0.118782i
\(286\) 0 0
\(287\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(288\) 0.173648 0.984808i 0.173648 0.984808i
\(289\) 1.03209 0.866025i 1.03209 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(294\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(295\) 0 0
\(296\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(297\) −0.939693 1.62760i −0.939693 1.62760i
\(298\) 0 0
\(299\) 0 0
\(300\) 0.673648 0.565258i 0.673648 0.565258i
\(301\) 0 0
\(302\) 0 0
\(303\) −1.87939 −1.87939
\(304\) 0.500000 0.866025i 0.500000 0.866025i
\(305\) 0 0
\(306\) 1.43969 0.524005i 1.43969 0.524005i
\(307\) 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(308\) 1.43969 1.20805i 1.43969 1.20805i
\(309\) −1.43969 1.20805i −1.43969 1.20805i
\(310\) −0.0603074 0.342020i −0.0603074 0.342020i
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(314\) 0 0
\(315\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(316\) 0 0
\(317\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(321\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(322\) 1.00000 1.00000
\(323\) 1.53209 1.53209
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(328\) −1.17365 0.984808i −1.17365 0.984808i
\(329\) 0 0
\(330\) 0.326352 + 0.565258i 0.326352 + 0.565258i
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 0 0
\(333\) −1.43969 0.524005i −1.43969 0.524005i
\(334\) 0 0
\(335\) 0 0
\(336\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(337\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(338\) 0.766044 0.642788i 0.766044 0.642788i
\(339\) 0 0
\(340\) −0.500000 + 0.181985i −0.500000 + 0.181985i
\(341\) −1.87939 −1.87939
\(342\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(343\) −1.00000 −1.00000
\(344\) 0 0
\(345\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(346\) 0.766044 0.642788i 0.766044 0.642788i
\(347\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(348\) 0 0
\(349\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(350\) −0.439693 + 0.761570i −0.439693 + 0.761570i
\(351\) 0 0
\(352\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(353\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(354\) 0 0
\(355\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(356\) −0.266044 0.223238i −0.266044 0.223238i
\(357\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(358\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(359\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(360\) −0.347296 −0.347296
\(361\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(362\) 0 0
\(363\) 2.37939 0.866025i 2.37939 0.866025i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(368\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(369\) 0.766044 1.32683i 0.766044 1.32683i
\(370\) 0.500000 + 0.181985i 0.500000 + 0.181985i
\(371\) 0 0
\(372\) 0.500000 0.866025i 0.500000 0.866025i
\(373\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(374\) 0.500000 + 2.83564i 0.500000 + 2.83564i
\(375\) −0.500000 0.419550i −0.500000 0.419550i
\(376\) 0 0
\(377\) 0 0
\(378\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −0.326352 0.118782i −0.326352 0.118782i
\(381\) 0 0
\(382\) −1.87939 + 0.684040i −1.87939 + 0.684040i
\(383\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(384\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(385\) −0.500000 0.419550i −0.500000 0.419550i
\(386\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(390\) 0 0
\(391\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(392\) −0.500000 0.866025i −0.500000 0.866025i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(397\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(398\) 1.00000 1.00000
\(399\) −1.00000 −1.00000
\(400\) −0.879385 −0.879385
\(401\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(405\) −0.0603074 0.342020i −0.0603074 0.342020i
\(406\) 0 0
\(407\) 1.43969 2.49362i 1.43969 2.49362i
\(408\) −1.43969 0.524005i −1.43969 0.524005i
\(409\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(410\) −0.266044 + 0.460802i −0.266044 + 0.460802i
\(411\) 0 0
\(412\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(413\) 0 0
\(414\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(415\) 0 0
\(416\) 0 0
\(417\) 0.347296 0.347296
\(418\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0.326352 0.118782i 0.326352 0.118782i
\(421\) −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i \(0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.673648 1.16679i −0.673648 1.16679i
\(426\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(427\) 0 0
\(428\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(429\) 0 0
\(430\) 0 0
\(431\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) −0.766044 0.642788i −0.766044 0.642788i
\(433\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(434\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(435\) 0 0
\(436\) 0.347296 0.347296
\(437\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(438\) 0 0
\(439\) −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i \(0.777778\pi\)
−1.00000 \(1.00000\pi\)
\(440\) 0.113341 0.642788i 0.113341 0.642788i
\(441\) 0.766044 0.642788i 0.766044 0.642788i
\(442\) 0 0
\(443\) 0.347296 + 1.96962i 0.347296 + 1.96962i 0.173648 + 0.984808i \(0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(444\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(445\) −0.0603074 + 0.104455i −0.0603074 + 0.104455i
\(446\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(447\) 0 0
\(448\) 0.500000 0.866025i 0.500000 0.866025i
\(449\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(450\) −0.152704 0.866025i −0.152704 0.866025i
\(451\) 2.20574 + 1.85083i 2.20574 + 1.85083i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) −0.500000 0.866025i −0.500000 0.866025i
\(457\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(458\) 0 0
\(459\) 0.266044 1.50881i 0.266044 1.50881i
\(460\) 0.266044 0.223238i 0.266044 0.223238i
\(461\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(462\) −0.326352 1.85083i −0.326352 1.85083i
\(463\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(464\) 0 0
\(465\) −0.326352 0.118782i −0.326352 0.118782i
\(466\) 0 0
\(467\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.152704 0.866025i 0.152704 0.866025i
\(476\) 1.53209 1.53209
\(477\) 0 0
\(478\) 0.0603074 0.342020i 0.0603074 0.342020i
\(479\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(480\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(481\) 0 0
\(482\) 0 0
\(483\) 0.500000 0.866025i 0.500000 0.866025i
\(484\) −2.37939 0.866025i −2.37939 0.866025i
\(485\) 0 0
\(486\) 0.500000 0.866025i 0.500000 0.866025i
\(487\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(491\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(492\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(493\) 0 0
\(494\) 0 0
\(495\) 0.652704 0.652704
\(496\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(497\) 0.173648 0.984808i 0.173648 0.984808i
\(498\) 0 0
\(499\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(500\) 0.113341 + 0.642788i 0.113341 + 0.642788i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(504\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(505\) 0.326352 0.565258i 0.326352 0.565258i
\(506\) −0.939693 1.62760i −0.939693 1.62760i
\(507\) −0.173648 0.984808i −0.173648 0.984808i
\(508\) 0 0
\(509\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(510\) −0.0923963 + 0.524005i −0.0923963 + 0.524005i
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0.766044 0.642788i 0.766044 0.642788i
\(514\) 1.87939 1.87939
\(515\) 0.613341 0.223238i 0.613341 0.223238i
\(516\) 0 0
\(517\) 0 0
\(518\) −1.17365 0.984808i −1.17365 0.984808i
\(519\) −0.173648 0.984808i −0.173648 0.984808i
\(520\) 0 0
\(521\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(524\) 0 0
\(525\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(526\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(527\) −1.17365 0.984808i −1.17365 0.984808i
\(528\) 1.43969 1.20805i 1.43969 1.20805i
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(533\) 0 0
\(534\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(535\) 0.0603074 0.342020i 0.0603074 0.342020i
\(536\) 0 0
\(537\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(538\) 0.326352 + 1.85083i 0.326352 + 1.85083i
\(539\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(540\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(541\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(543\) 0 0
\(544\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(545\) −0.0209445 0.118782i −0.0209445 0.118782i
\(546\) 0 0
\(547\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.65270 1.65270
\(551\) 0 0
\(552\) 1.00000 1.00000
\(553\) 0 0
\(554\) 0.0603074 0.342020i 0.0603074 0.342020i
\(555\) 0.407604 0.342020i 0.407604 0.342020i
\(556\) −0.266044 0.223238i −0.266044 0.223238i
\(557\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(558\) −0.500000 0.866025i −0.500000 0.866025i
\(559\) 0 0
\(560\) −0.326352 0.118782i −0.326352 0.118782i
\(561\) 2.70574 + 0.984808i 2.70574 + 0.984808i
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(567\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(568\) 0.939693 0.342020i 0.939693 0.342020i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −0.347296 + 1.96962i −0.347296 + 1.96962i
\(574\) 1.17365 0.984808i 1.17365 0.984808i
\(575\) 0.673648 + 0.565258i 0.673648 + 0.565258i
\(576\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) −0.673648 + 1.16679i −0.673648 + 1.16679i
\(579\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(587\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(588\) −1.00000 −1.00000
\(589\) −0.173648 0.984808i −0.173648 0.984808i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.266044 1.50881i 0.266044 1.50881i
\(593\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(594\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(595\) −0.0923963 0.524005i −0.0923963 0.524005i
\(596\) 0 0
\(597\) 0.500000 0.866025i 0.500000 0.866025i
\(598\) 0 0
\(599\) −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(600\) −0.439693 + 0.761570i −0.439693 + 0.761570i
\(601\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.152704 + 0.866025i −0.152704 + 0.866025i
\(606\) 1.76604 0.642788i 1.76604 0.642788i
\(607\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(613\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(614\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(615\) 0.266044 + 0.460802i 0.266044 + 0.460802i
\(616\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(617\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(618\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(619\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(620\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(621\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(622\) 0 0
\(623\) 0.266044 0.223238i 0.266044 0.223238i
\(624\) 0 0
\(625\) −0.613341 + 0.223238i −0.613341 + 0.223238i
\(626\) 0 0
\(627\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(628\) 0 0
\(629\) 2.20574 0.802823i 2.20574 0.802823i
\(630\) 0.0603074 0.342020i 0.0603074 0.342020i
\(631\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(640\) −0.0603074 0.342020i −0.0603074 0.342020i
\(641\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(642\) 0.766044 0.642788i 0.766044 0.642788i
\(643\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i 0.939693 + 0.342020i \(0.111111\pi\)
−1.00000 \(\pi\)
\(644\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(645\) 0 0
\(646\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(649\) 0 0
\(650\) 0 0
\(651\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0.173648 0.300767i 0.173648 0.300767i
\(655\) 0 0
\(656\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(657\) 0 0
\(658\) 0 0
\(659\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(660\) −0.500000 0.419550i −0.500000 0.419550i
\(661\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.173648 0.300767i 0.173648 0.300767i
\(666\) 1.53209 1.53209
\(667\) 0 0
\(668\) 0 0
\(669\) 1.17365 0.984808i 1.17365 0.984808i
\(670\) 0 0
\(671\) 0 0
\(672\) −0.500000 0.866025i −0.500000 0.866025i
\(673\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(674\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(675\) −0.826352 0.300767i −0.826352 0.300767i
\(676\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(677\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.407604 0.342020i 0.407604 0.342020i
\(681\) 0 0
\(682\) 1.76604 0.642788i 1.76604 0.642788i
\(683\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(684\) −1.00000 −1.00000
\(685\) 0 0
\(686\) 0.939693 0.342020i 0.939693 0.342020i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) −0.0603074 0.342020i −0.0603074 0.342020i
\(691\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(692\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(693\) −1.76604 0.642788i −1.76604 0.642788i
\(694\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(695\) −0.0603074 + 0.104455i −0.0603074 + 0.104455i
\(696\) 0 0
\(697\) 0.407604 + 2.31164i 0.407604 + 2.31164i
\(698\) 0 0
\(699\) 0 0
\(700\) 0.152704 0.866025i 0.152704 0.866025i
\(701\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(702\) 0 0
\(703\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(704\) −1.87939 −1.87939
\(705\) 0 0
\(706\) 0.326352 1.85083i 0.326352 1.85083i
\(707\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(708\) 0 0
\(709\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(710\) −0.173648 0.300767i −0.173648 0.300767i
\(711\) 0 0
\(712\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(713\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(714\) 0.766044 1.32683i 0.766044 1.32683i
\(715\) 0 0
\(716\) −0.326352 1.85083i −0.326352 1.85083i
\(717\) −0.266044 0.223238i −0.266044 0.223238i
\(718\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(719\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(720\) 0.326352 0.118782i 0.326352 0.118782i
\(721\) −1.87939 −1.87939
\(722\) −0.939693 0.342020i −0.939693 0.342020i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −1.93969 + 1.62760i −1.93969 + 1.62760i
\(727\) 1.43969 + 1.20805i 1.43969 + 1.20805i 0.939693 + 0.342020i \(0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 0 0
\(729\) −0.500000 0.866025i −0.500000 0.866025i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(734\) −0.939693 1.62760i −0.939693 1.62760i
\(735\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(736\) −0.766044 0.642788i −0.766044 0.642788i
\(737\) 0 0
\(738\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(739\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(740\) −0.532089 −0.532089
\(741\) 0 0
\(742\) 0 0
\(743\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(745\) 0 0
\(746\) −1.43969 1.20805i −1.43969 1.20805i
\(747\) 0 0
\(748\) −1.43969 2.49362i −1.43969 2.49362i
\(749\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(750\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(751\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0.766044 0.642788i 0.766044 0.642788i
\(757\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(758\) 0 0
\(759\) −1.87939 −1.87939
\(760\) 0.347296 0.347296
\(761\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 0 0
\(763\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(764\) 1.53209 1.28558i 1.53209 1.28558i
\(765\) 0.407604 + 0.342020i 0.407604 + 0.342020i
\(766\) 0 0
\(767\) 0 0
\(768\) 0.500000 0.866025i 0.500000 0.866025i
\(769\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(770\) 0.613341 + 0.223238i 0.613341 + 0.223238i
\(771\) 0.939693 1.62760i 0.939693 1.62760i
\(772\) −0.173648 0.300767i −0.173648 0.300767i
\(773\) −0.266044 1.50881i −0.266044 1.50881i −0.766044 0.642788i \(-0.777778\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(774\) 0 0
\(775\) −0.673648 + 0.565258i −0.673648 + 0.565258i
\(776\) 0 0
\(777\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(778\) 0 0
\(779\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(780\) 0 0
\(781\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(782\) 0.266044 1.50881i 0.266044 1.50881i
\(783\) 0 0
\(784\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(785\) 0 0
\(786\) 0 0
\(787\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(788\) 0 0
\(789\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(790\) 0 0
\(791\) 0 0
\(792\) −0.326352 1.85083i −0.326352 1.85083i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(797\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(798\) 0.939693 0.342020i 0.939693 0.342020i
\(799\) 0 0
\(800\) 0.826352 0.300767i 0.826352 0.300767i
\(801\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(806\) 0 0
\(807\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(808\) −1.76604 0.642788i −1.76604 0.642788i
\(809\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(811\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 1.17365 0.984808i 1.17365 0.984808i
\(814\) −0.500000 + 2.83564i −0.500000 + 2.83564i
\(815\) 0 0
\(816\) 1.53209 1.53209
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0.0923963 0.524005i 0.0923963 0.524005i
\(821\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(822\) 0 0
\(823\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(824\) −0.939693 1.62760i −0.939693 1.62760i
\(825\) 0.826352 1.43128i 0.826352 1.43128i
\(826\) 0 0
\(827\) −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(828\) 0.500000 0.866025i 0.500000 0.866025i
\(829\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) −0.266044 0.223238i −0.266044 0.223238i
\(832\) 0 0
\(833\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(834\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(835\) 0 0
\(836\) 0.326352 1.85083i 0.326352 1.85083i
\(837\) −1.00000 −1.00000
\(838\) 0 0
\(839\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(840\) −0.266044 + 0.223238i −0.266044 + 0.223238i
\(841\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(842\) −0.326352 1.85083i −0.326352 1.85083i
\(843\) 0 0
\(844\) 0 0
\(845\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(846\) 0 0
\(847\) 1.26604 2.19285i 1.26604 2.19285i
\(848\) 0 0
\(849\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(850\) 1.03209 + 0.866025i 1.03209 + 0.866025i
\(851\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(852\) 0.173648 0.984808i 0.173648 0.984808i
\(853\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(854\) 0 0
\(855\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(856\) −1.00000 −1.00000
\(857\) 1.43969 0.524005i 1.43969 0.524005i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(858\) 0 0
\(859\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) −0.266044 1.50881i −0.266044 1.50881i
\(862\) −0.766044 1.32683i −0.766044 1.32683i
\(863\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(864\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(865\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(866\) 0 0
\(867\) 0.673648 + 1.16679i 0.673648 + 1.16679i
\(868\) −0.173648 0.984808i −0.173648 0.984808i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(873\) 0 0
\(874\) 0.766044 0.642788i 0.766044 0.642788i
\(875\) −0.652704 −0.652704
\(876\) 0 0
\(877\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(878\) 1.43969 1.20805i 1.43969 1.20805i
\(879\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(880\) 0.113341 + 0.642788i 0.113341 + 0.642788i
\(881\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(882\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(883\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.00000 1.73205i −1.00000 1.73205i
\(887\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(888\) −1.17365 0.984808i −1.17365 0.984808i
\(889\) 0 0
\(890\) 0.0209445 0.118782i 0.0209445 0.118782i
\(891\) 1.76604 0.642788i 1.76604 0.642788i
\(892\) −1.53209 −1.53209
\(893\) 0 0
\(894\) 0 0
\(895\) −0.613341 + 0.223238i −0.613341 + 0.223238i
\(896\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.439693 + 0.761570i 0.439693 + 0.761570i
\(901\) 0 0
\(902\) −2.70574 0.984808i −2.70574 0.984808i
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(908\) 0 0
\(909\) 0.326352 1.85083i 0.326352 1.85083i
\(910\) 0 0
\(911\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(912\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(913\) 0 0
\(914\) 1.76604 0.642788i 1.76604 0.642788i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(921\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(922\) 1.43969 + 0.524005i 1.43969 + 0.524005i
\(923\) 0 0
\(924\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(925\) −0.233956 1.32683i −0.233956 1.32683i
\(926\) 0 0
\(927\) 1.43969 1.20805i 1.43969 1.20805i
\(928\) 0 0
\(929\) −1.76604 + 0.642788i −1.76604 + 0.642788i −0.766044 + 0.642788i \(0.777778\pi\)
−1.00000 \(1.00000\pi\)
\(930\) 0.347296 0.347296
\(931\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(936\) 0 0
\(937\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.76604 0.642788i −1.76604 0.642788i −0.766044 0.642788i \(-0.777778\pi\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) −0.766044 1.32683i −0.766044 1.32683i
\(944\) 0 0
\(945\) −0.266044 0.223238i −0.266044 0.223238i
\(946\) 0 0
\(947\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.152704 + 0.866025i 0.152704 + 0.866025i
\(951\) 0 0
\(952\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(953\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(954\) 0 0
\(955\) −0.532089 0.446476i −0.532089 0.446476i
\(956\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.326352 0.118782i −0.326352 0.118782i
\(961\) 0 0
\(962\) 0 0
\(963\) −0.173648 0.984808i −0.173648 0.984808i
\(964\) 0 0
\(965\) −0.0923963 + 0.0775297i −0.0923963 + 0.0775297i
\(966\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(967\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(968\) 2.53209 2.53209
\(969\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(970\) 0 0
\(971\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(972\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(973\) 0.266044 0.223238i 0.266044 0.223238i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) 0 0
\(979\) −0.613341 0.223238i −0.613341 0.223238i
\(980\) 0.173648 0.300767i 0.173648 0.300767i
\(981\) −0.173648 0.300767i −0.173648 0.300767i
\(982\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(983\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(984\) 1.17365 0.984808i 1.17365 0.984808i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.613341 + 0.223238i −0.613341 + 0.223238i
\(991\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(992\) 0.766044 0.642788i 0.766044 0.642788i
\(993\) 0 0
\(994\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(995\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(996\) 0 0
\(997\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(998\) 0 0
\(999\) 0.766044 1.32683i 0.766044 1.32683i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1596.1.dt.d.1259.1 yes 6
3.2 odd 2 1596.1.dt.b.1259.1 yes 6
4.3 odd 2 1596.1.dt.c.1259.1 yes 6
7.6 odd 2 1596.1.dt.a.1259.1 yes 6
12.11 even 2 1596.1.dt.a.1259.1 yes 6
19.4 even 9 inner 1596.1.dt.d.251.1 yes 6
21.20 even 2 1596.1.dt.c.1259.1 yes 6
28.27 even 2 1596.1.dt.b.1259.1 yes 6
57.23 odd 18 1596.1.dt.b.251.1 yes 6
76.23 odd 18 1596.1.dt.c.251.1 yes 6
84.83 odd 2 CM 1596.1.dt.d.1259.1 yes 6
133.118 odd 18 1596.1.dt.a.251.1 6
228.23 even 18 1596.1.dt.a.251.1 6
399.251 even 18 1596.1.dt.c.251.1 yes 6
532.251 even 18 1596.1.dt.b.251.1 yes 6
1596.251 odd 18 inner 1596.1.dt.d.251.1 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1596.1.dt.a.251.1 6 133.118 odd 18
1596.1.dt.a.251.1 6 228.23 even 18
1596.1.dt.a.1259.1 yes 6 7.6 odd 2
1596.1.dt.a.1259.1 yes 6 12.11 even 2
1596.1.dt.b.251.1 yes 6 57.23 odd 18
1596.1.dt.b.251.1 yes 6 532.251 even 18
1596.1.dt.b.1259.1 yes 6 3.2 odd 2
1596.1.dt.b.1259.1 yes 6 28.27 even 2
1596.1.dt.c.251.1 yes 6 76.23 odd 18
1596.1.dt.c.251.1 yes 6 399.251 even 18
1596.1.dt.c.1259.1 yes 6 4.3 odd 2
1596.1.dt.c.1259.1 yes 6 21.20 even 2
1596.1.dt.d.251.1 yes 6 19.4 even 9 inner
1596.1.dt.d.251.1 yes 6 1596.251 odd 18 inner
1596.1.dt.d.1259.1 yes 6 1.1 even 1 trivial
1596.1.dt.d.1259.1 yes 6 84.83 odd 2 CM