Properties

Label 16.28.a.c.1.2
Level $16$
Weight $28$
Character 16.1
Self dual yes
Analytic conductor $73.897$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,28,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8968919741\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1059289}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 264822 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 7 \)
Twist minimal: no (minimal twist has level 4)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-514.109\) of defining polynomial
Character \(\chi\) \(=\) 16.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00840e6 q^{3} +9.02501e8 q^{5} -3.76979e11 q^{7} +1.42486e12 q^{9} +1.19981e14 q^{11} +8.45735e14 q^{13} +2.71508e15 q^{15} -5.80089e16 q^{17} +2.28933e16 q^{19} -1.13410e18 q^{21} +4.11252e18 q^{23} -6.63607e18 q^{25} -1.86543e19 q^{27} -5.09330e19 q^{29} -2.28760e20 q^{31} +3.60949e20 q^{33} -3.40224e20 q^{35} -1.37094e21 q^{37} +2.54431e21 q^{39} +1.26146e21 q^{41} +1.57776e22 q^{43} +1.28593e21 q^{45} -1.74091e22 q^{47} +7.64006e22 q^{49} -1.74514e23 q^{51} -2.42990e23 q^{53} +1.08283e23 q^{55} +6.88720e22 q^{57} +4.33841e23 q^{59} -1.61997e24 q^{61} -5.37140e23 q^{63} +7.63276e23 q^{65} -3.04796e24 q^{67} +1.23721e25 q^{69} +1.33723e24 q^{71} -2.26071e25 q^{73} -1.99639e25 q^{75} -4.52302e25 q^{77} -2.50702e25 q^{79} -6.69849e25 q^{81} -2.43633e25 q^{83} -5.23531e25 q^{85} -1.53227e26 q^{87} +3.08582e26 q^{89} -3.18824e26 q^{91} -6.88202e26 q^{93} +2.06612e25 q^{95} -2.50167e26 q^{97} +1.70955e26 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 483720 q^{3} + 145079100 q^{5} - 60475251760 q^{7} + 173252390058 q^{9} + 24840277565400 q^{11} - 79026950880020 q^{13} + 46\!\cdots\!00 q^{15} - 57\!\cdots\!40 q^{17} + 35\!\cdots\!72 q^{19} - 19\!\cdots\!88 q^{21}+ \cdots + 29\!\cdots\!00 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00840e6 1.08943 0.544714 0.838622i \(-0.316638\pi\)
0.544714 + 0.838622i \(0.316638\pi\)
\(4\) 0 0
\(5\) 9.02501e8 0.330638 0.165319 0.986240i \(-0.447135\pi\)
0.165319 + 0.986240i \(0.447135\pi\)
\(6\) 0 0
\(7\) −3.76979e11 −1.47060 −0.735298 0.677744i \(-0.762958\pi\)
−0.735298 + 0.677744i \(0.762958\pi\)
\(8\) 0 0
\(9\) 1.42486e12 0.186852
\(10\) 0 0
\(11\) 1.19981e14 1.04788 0.523938 0.851756i \(-0.324462\pi\)
0.523938 + 0.851756i \(0.324462\pi\)
\(12\) 0 0
\(13\) 8.45735e14 0.774460 0.387230 0.921983i \(-0.373432\pi\)
0.387230 + 0.921983i \(0.373432\pi\)
\(14\) 0 0
\(15\) 2.71508e15 0.360206
\(16\) 0 0
\(17\) −5.80089e16 −1.42048 −0.710239 0.703961i \(-0.751413\pi\)
−0.710239 + 0.703961i \(0.751413\pi\)
\(18\) 0 0
\(19\) 2.28933e16 0.124892 0.0624459 0.998048i \(-0.480110\pi\)
0.0624459 + 0.998048i \(0.480110\pi\)
\(20\) 0 0
\(21\) −1.13410e18 −1.60211
\(22\) 0 0
\(23\) 4.11252e18 1.70131 0.850653 0.525728i \(-0.176207\pi\)
0.850653 + 0.525728i \(0.176207\pi\)
\(24\) 0 0
\(25\) −6.63607e18 −0.890679
\(26\) 0 0
\(27\) −1.86543e19 −0.885866
\(28\) 0 0
\(29\) −5.09330e19 −0.921779 −0.460889 0.887458i \(-0.652470\pi\)
−0.460889 + 0.887458i \(0.652470\pi\)
\(30\) 0 0
\(31\) −2.28760e20 −1.68266 −0.841332 0.540518i \(-0.818228\pi\)
−0.841332 + 0.540518i \(0.818228\pi\)
\(32\) 0 0
\(33\) 3.60949e20 1.14158
\(34\) 0 0
\(35\) −3.40224e20 −0.486235
\(36\) 0 0
\(37\) −1.37094e21 −0.925328 −0.462664 0.886534i \(-0.653106\pi\)
−0.462664 + 0.886534i \(0.653106\pi\)
\(38\) 0 0
\(39\) 2.54431e21 0.843718
\(40\) 0 0
\(41\) 1.26146e21 0.212957 0.106479 0.994315i \(-0.466042\pi\)
0.106479 + 0.994315i \(0.466042\pi\)
\(42\) 0 0
\(43\) 1.57776e22 1.40029 0.700144 0.714002i \(-0.253119\pi\)
0.700144 + 0.714002i \(0.253119\pi\)
\(44\) 0 0
\(45\) 1.28593e21 0.0617802
\(46\) 0 0
\(47\) −1.74091e22 −0.465004 −0.232502 0.972596i \(-0.574691\pi\)
−0.232502 + 0.972596i \(0.574691\pi\)
\(48\) 0 0
\(49\) 7.64006e22 1.16265
\(50\) 0 0
\(51\) −1.74514e23 −1.54751
\(52\) 0 0
\(53\) −2.42990e23 −1.28193 −0.640964 0.767571i \(-0.721465\pi\)
−0.640964 + 0.767571i \(0.721465\pi\)
\(54\) 0 0
\(55\) 1.08283e23 0.346467
\(56\) 0 0
\(57\) 6.88720e22 0.136061
\(58\) 0 0
\(59\) 4.33841e23 0.538057 0.269029 0.963132i \(-0.413297\pi\)
0.269029 + 0.963132i \(0.413297\pi\)
\(60\) 0 0
\(61\) −1.61997e24 −1.28102 −0.640508 0.767951i \(-0.721276\pi\)
−0.640508 + 0.767951i \(0.721276\pi\)
\(62\) 0 0
\(63\) −5.37140e23 −0.274783
\(64\) 0 0
\(65\) 7.63276e23 0.256066
\(66\) 0 0
\(67\) −3.04796e24 −0.679203 −0.339601 0.940569i \(-0.610292\pi\)
−0.339601 + 0.940569i \(0.610292\pi\)
\(68\) 0 0
\(69\) 1.23721e25 1.85345
\(70\) 0 0
\(71\) 1.33723e24 0.136212 0.0681062 0.997678i \(-0.478304\pi\)
0.0681062 + 0.997678i \(0.478304\pi\)
\(72\) 0 0
\(73\) −2.26071e25 −1.58265 −0.791326 0.611394i \(-0.790609\pi\)
−0.791326 + 0.611394i \(0.790609\pi\)
\(74\) 0 0
\(75\) −1.99639e25 −0.970330
\(76\) 0 0
\(77\) −4.52302e25 −1.54100
\(78\) 0 0
\(79\) −2.50702e25 −0.604217 −0.302108 0.953274i \(-0.597690\pi\)
−0.302108 + 0.953274i \(0.597690\pi\)
\(80\) 0 0
\(81\) −6.69849e25 −1.15194
\(82\) 0 0
\(83\) −2.43633e25 −0.301427 −0.150714 0.988577i \(-0.548157\pi\)
−0.150714 + 0.988577i \(0.548157\pi\)
\(84\) 0 0
\(85\) −5.23531e25 −0.469664
\(86\) 0 0
\(87\) −1.53227e26 −1.00421
\(88\) 0 0
\(89\) 3.08582e26 1.48801 0.744004 0.668175i \(-0.232924\pi\)
0.744004 + 0.668175i \(0.232924\pi\)
\(90\) 0 0
\(91\) −3.18824e26 −1.13892
\(92\) 0 0
\(93\) −6.88202e26 −1.83314
\(94\) 0 0
\(95\) 2.06612e25 0.0412939
\(96\) 0 0
\(97\) −2.50167e26 −0.377408 −0.188704 0.982034i \(-0.560429\pi\)
−0.188704 + 0.982034i \(0.560429\pi\)
\(98\) 0 0
\(99\) 1.70955e26 0.195797
\(100\) 0 0
\(101\) −1.27747e27 −1.11690 −0.558449 0.829539i \(-0.688603\pi\)
−0.558449 + 0.829539i \(0.688603\pi\)
\(102\) 0 0
\(103\) −1.21454e27 −0.814910 −0.407455 0.913225i \(-0.633584\pi\)
−0.407455 + 0.913225i \(0.633584\pi\)
\(104\) 0 0
\(105\) −1.02353e27 −0.529717
\(106\) 0 0
\(107\) −1.12588e27 −0.451661 −0.225830 0.974167i \(-0.572510\pi\)
−0.225830 + 0.974167i \(0.572510\pi\)
\(108\) 0 0
\(109\) −8.86361e26 −0.276919 −0.138460 0.990368i \(-0.544215\pi\)
−0.138460 + 0.990368i \(0.544215\pi\)
\(110\) 0 0
\(111\) −4.12434e27 −1.00808
\(112\) 0 0
\(113\) 9.53256e27 1.83084 0.915421 0.402499i \(-0.131858\pi\)
0.915421 + 0.402499i \(0.131858\pi\)
\(114\) 0 0
\(115\) 3.71155e27 0.562516
\(116\) 0 0
\(117\) 1.20505e27 0.144709
\(118\) 0 0
\(119\) 2.18681e28 2.08895
\(120\) 0 0
\(121\) 1.28536e27 0.0980445
\(122\) 0 0
\(123\) 3.79499e27 0.232002
\(124\) 0 0
\(125\) −1.27132e28 −0.625130
\(126\) 0 0
\(127\) 1.16152e27 0.0460972 0.0230486 0.999734i \(-0.492663\pi\)
0.0230486 + 0.999734i \(0.492663\pi\)
\(128\) 0 0
\(129\) 4.74654e28 1.52551
\(130\) 0 0
\(131\) 2.58218e28 0.674255 0.337127 0.941459i \(-0.390545\pi\)
0.337127 + 0.941459i \(0.390545\pi\)
\(132\) 0 0
\(133\) −8.63027e27 −0.183665
\(134\) 0 0
\(135\) −1.68355e28 −0.292901
\(136\) 0 0
\(137\) 1.02664e29 1.46451 0.732253 0.681033i \(-0.238469\pi\)
0.732253 + 0.681033i \(0.238469\pi\)
\(138\) 0 0
\(139\) −7.13626e28 −0.837088 −0.418544 0.908197i \(-0.637459\pi\)
−0.418544 + 0.908197i \(0.637459\pi\)
\(140\) 0 0
\(141\) −5.23736e28 −0.506588
\(142\) 0 0
\(143\) 1.01472e29 0.811538
\(144\) 0 0
\(145\) −4.59671e28 −0.304775
\(146\) 0 0
\(147\) 2.29843e29 1.26663
\(148\) 0 0
\(149\) −4.81525e28 −0.221108 −0.110554 0.993870i \(-0.535262\pi\)
−0.110554 + 0.993870i \(0.535262\pi\)
\(150\) 0 0
\(151\) 2.75466e28 0.105652 0.0528261 0.998604i \(-0.483177\pi\)
0.0528261 + 0.998604i \(0.483177\pi\)
\(152\) 0 0
\(153\) −8.26544e28 −0.265419
\(154\) 0 0
\(155\) −2.06456e29 −0.556353
\(156\) 0 0
\(157\) 5.34419e29 1.21126 0.605629 0.795747i \(-0.292921\pi\)
0.605629 + 0.795747i \(0.292921\pi\)
\(158\) 0 0
\(159\) −7.31010e29 −1.39657
\(160\) 0 0
\(161\) −1.55033e30 −2.50193
\(162\) 0 0
\(163\) −9.07370e29 −1.23951 −0.619757 0.784794i \(-0.712769\pi\)
−0.619757 + 0.784794i \(0.712769\pi\)
\(164\) 0 0
\(165\) 3.25757e29 0.377451
\(166\) 0 0
\(167\) −8.15269e29 −0.802839 −0.401420 0.915894i \(-0.631483\pi\)
−0.401420 + 0.915894i \(0.631483\pi\)
\(168\) 0 0
\(169\) −4.77266e29 −0.400212
\(170\) 0 0
\(171\) 3.26196e28 0.0233362
\(172\) 0 0
\(173\) −1.82838e30 −1.11801 −0.559003 0.829166i \(-0.688816\pi\)
−0.559003 + 0.829166i \(0.688816\pi\)
\(174\) 0 0
\(175\) 2.50166e30 1.30983
\(176\) 0 0
\(177\) 1.30517e30 0.586174
\(178\) 0 0
\(179\) 3.64275e30 1.40577 0.702885 0.711304i \(-0.251895\pi\)
0.702885 + 0.711304i \(0.251895\pi\)
\(180\) 0 0
\(181\) 9.83969e29 0.326829 0.163414 0.986558i \(-0.447749\pi\)
0.163414 + 0.986558i \(0.447749\pi\)
\(182\) 0 0
\(183\) −4.87352e30 −1.39557
\(184\) 0 0
\(185\) −1.23728e30 −0.305948
\(186\) 0 0
\(187\) −6.95995e30 −1.48849
\(188\) 0 0
\(189\) 7.03227e30 1.30275
\(190\) 0 0
\(191\) 1.23099e31 1.97836 0.989178 0.146721i \(-0.0468720\pi\)
0.989178 + 0.146721i \(0.0468720\pi\)
\(192\) 0 0
\(193\) 4.96173e30 0.692803 0.346402 0.938086i \(-0.387403\pi\)
0.346402 + 0.938086i \(0.387403\pi\)
\(194\) 0 0
\(195\) 2.29624e30 0.278965
\(196\) 0 0
\(197\) 1.42433e29 0.0150771 0.00753853 0.999972i \(-0.497600\pi\)
0.00753853 + 0.999972i \(0.497600\pi\)
\(198\) 0 0
\(199\) −8.43469e30 −0.779027 −0.389514 0.921021i \(-0.627357\pi\)
−0.389514 + 0.921021i \(0.627357\pi\)
\(200\) 0 0
\(201\) −9.16947e30 −0.739942
\(202\) 0 0
\(203\) 1.92007e31 1.35556
\(204\) 0 0
\(205\) 1.13847e30 0.0704118
\(206\) 0 0
\(207\) 5.85975e30 0.317892
\(208\) 0 0
\(209\) 2.74675e30 0.130871
\(210\) 0 0
\(211\) 1.64953e31 0.691111 0.345555 0.938398i \(-0.387691\pi\)
0.345555 + 0.938398i \(0.387691\pi\)
\(212\) 0 0
\(213\) 4.02290e30 0.148394
\(214\) 0 0
\(215\) 1.42393e31 0.462988
\(216\) 0 0
\(217\) 8.62377e31 2.47452
\(218\) 0 0
\(219\) −6.80110e31 −1.72419
\(220\) 0 0
\(221\) −4.90602e31 −1.10010
\(222\) 0 0
\(223\) −2.32346e31 −0.461339 −0.230670 0.973032i \(-0.574092\pi\)
−0.230670 + 0.973032i \(0.574092\pi\)
\(224\) 0 0
\(225\) −9.45545e30 −0.166425
\(226\) 0 0
\(227\) 6.90063e31 1.07780 0.538902 0.842369i \(-0.318839\pi\)
0.538902 + 0.842369i \(0.318839\pi\)
\(228\) 0 0
\(229\) −9.88419e31 −1.37139 −0.685697 0.727887i \(-0.740502\pi\)
−0.685697 + 0.727887i \(0.740502\pi\)
\(230\) 0 0
\(231\) −1.36070e32 −1.67881
\(232\) 0 0
\(233\) −8.98268e31 −0.986509 −0.493254 0.869885i \(-0.664193\pi\)
−0.493254 + 0.869885i \(0.664193\pi\)
\(234\) 0 0
\(235\) −1.57118e31 −0.153748
\(236\) 0 0
\(237\) −7.54213e31 −0.658250
\(238\) 0 0
\(239\) 4.92530e31 0.383761 0.191880 0.981418i \(-0.438541\pi\)
0.191880 + 0.981418i \(0.438541\pi\)
\(240\) 0 0
\(241\) −2.98565e31 −0.207878 −0.103939 0.994584i \(-0.533145\pi\)
−0.103939 + 0.994584i \(0.533145\pi\)
\(242\) 0 0
\(243\) −5.92670e31 −0.369087
\(244\) 0 0
\(245\) 6.89516e31 0.384417
\(246\) 0 0
\(247\) 1.93616e31 0.0967237
\(248\) 0 0
\(249\) −7.32946e31 −0.328383
\(250\) 0 0
\(251\) −2.50757e32 −1.00846 −0.504228 0.863570i \(-0.668223\pi\)
−0.504228 + 0.863570i \(0.668223\pi\)
\(252\) 0 0
\(253\) 4.93423e32 1.78276
\(254\) 0 0
\(255\) −1.57499e32 −0.511664
\(256\) 0 0
\(257\) −5.26158e30 −0.0153822 −0.00769111 0.999970i \(-0.502448\pi\)
−0.00769111 + 0.999970i \(0.502448\pi\)
\(258\) 0 0
\(259\) 5.16816e32 1.36078
\(260\) 0 0
\(261\) −7.25722e31 −0.172236
\(262\) 0 0
\(263\) 2.18683e32 0.468179 0.234090 0.972215i \(-0.424789\pi\)
0.234090 + 0.972215i \(0.424789\pi\)
\(264\) 0 0
\(265\) −2.19299e32 −0.423854
\(266\) 0 0
\(267\) 9.28337e32 1.62108
\(268\) 0 0
\(269\) 5.35651e32 0.845720 0.422860 0.906195i \(-0.361026\pi\)
0.422860 + 0.906195i \(0.361026\pi\)
\(270\) 0 0
\(271\) −3.03296e32 −0.433292 −0.216646 0.976250i \(-0.569512\pi\)
−0.216646 + 0.976250i \(0.569512\pi\)
\(272\) 0 0
\(273\) −9.59149e32 −1.24077
\(274\) 0 0
\(275\) −7.96200e32 −0.933321
\(276\) 0 0
\(277\) −6.54386e31 −0.0695596 −0.0347798 0.999395i \(-0.511073\pi\)
−0.0347798 + 0.999395i \(0.511073\pi\)
\(278\) 0 0
\(279\) −3.25950e32 −0.314409
\(280\) 0 0
\(281\) 2.00731e33 1.75824 0.879121 0.476598i \(-0.158130\pi\)
0.879121 + 0.476598i \(0.158130\pi\)
\(282\) 0 0
\(283\) 2.05262e33 1.63378 0.816888 0.576796i \(-0.195697\pi\)
0.816888 + 0.576796i \(0.195697\pi\)
\(284\) 0 0
\(285\) 6.21570e31 0.0449867
\(286\) 0 0
\(287\) −4.75545e32 −0.313174
\(288\) 0 0
\(289\) 1.69733e33 1.01776
\(290\) 0 0
\(291\) −7.52601e32 −0.411158
\(292\) 0 0
\(293\) 2.23798e33 1.11466 0.557331 0.830290i \(-0.311825\pi\)
0.557331 + 0.830290i \(0.311825\pi\)
\(294\) 0 0
\(295\) 3.91542e32 0.177902
\(296\) 0 0
\(297\) −2.23815e33 −0.928278
\(298\) 0 0
\(299\) 3.47810e33 1.31759
\(300\) 0 0
\(301\) −5.94783e33 −2.05926
\(302\) 0 0
\(303\) −3.84315e33 −1.21678
\(304\) 0 0
\(305\) −1.46203e33 −0.423553
\(306\) 0 0
\(307\) 1.56124e32 0.0414097 0.0207049 0.999786i \(-0.493409\pi\)
0.0207049 + 0.999786i \(0.493409\pi\)
\(308\) 0 0
\(309\) −3.65382e33 −0.887785
\(310\) 0 0
\(311\) −5.69789e33 −1.26896 −0.634481 0.772939i \(-0.718786\pi\)
−0.634481 + 0.772939i \(0.718786\pi\)
\(312\) 0 0
\(313\) 3.46371e32 0.0707445 0.0353723 0.999374i \(-0.488738\pi\)
0.0353723 + 0.999374i \(0.488738\pi\)
\(314\) 0 0
\(315\) −4.84769e32 −0.0908537
\(316\) 0 0
\(317\) 6.10550e33 1.05056 0.525281 0.850929i \(-0.323960\pi\)
0.525281 + 0.850929i \(0.323960\pi\)
\(318\) 0 0
\(319\) −6.11098e33 −0.965910
\(320\) 0 0
\(321\) −3.38711e33 −0.492052
\(322\) 0 0
\(323\) −1.32801e33 −0.177406
\(324\) 0 0
\(325\) −5.61236e33 −0.689795
\(326\) 0 0
\(327\) −2.66653e33 −0.301683
\(328\) 0 0
\(329\) 6.56288e33 0.683832
\(330\) 0 0
\(331\) 4.78257e33 0.459181 0.229590 0.973287i \(-0.426261\pi\)
0.229590 + 0.973287i \(0.426261\pi\)
\(332\) 0 0
\(333\) −1.95339e33 −0.172899
\(334\) 0 0
\(335\) −2.75079e33 −0.224570
\(336\) 0 0
\(337\) 1.28316e34 0.966666 0.483333 0.875437i \(-0.339426\pi\)
0.483333 + 0.875437i \(0.339426\pi\)
\(338\) 0 0
\(339\) 2.86777e34 1.99457
\(340\) 0 0
\(341\) −2.74468e34 −1.76322
\(342\) 0 0
\(343\) −4.02925e33 −0.239196
\(344\) 0 0
\(345\) 1.11658e34 0.612820
\(346\) 0 0
\(347\) 3.03623e34 1.54130 0.770649 0.637260i \(-0.219932\pi\)
0.770649 + 0.637260i \(0.219932\pi\)
\(348\) 0 0
\(349\) 2.98480e34 1.40208 0.701039 0.713123i \(-0.252720\pi\)
0.701039 + 0.713123i \(0.252720\pi\)
\(350\) 0 0
\(351\) −1.57766e34 −0.686068
\(352\) 0 0
\(353\) −1.86056e34 −0.749351 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(354\) 0 0
\(355\) 1.20685e33 0.0450370
\(356\) 0 0
\(357\) 6.57881e34 2.27576
\(358\) 0 0
\(359\) −5.56754e34 −1.78603 −0.893014 0.450029i \(-0.851413\pi\)
−0.893014 + 0.450029i \(0.851413\pi\)
\(360\) 0 0
\(361\) −3.30765e34 −0.984402
\(362\) 0 0
\(363\) 3.86688e33 0.106812
\(364\) 0 0
\(365\) −2.04029e34 −0.523285
\(366\) 0 0
\(367\) 1.68674e34 0.401843 0.200921 0.979607i \(-0.435606\pi\)
0.200921 + 0.979607i \(0.435606\pi\)
\(368\) 0 0
\(369\) 1.79740e33 0.0397915
\(370\) 0 0
\(371\) 9.16020e34 1.88520
\(372\) 0 0
\(373\) 7.35219e34 1.40717 0.703586 0.710610i \(-0.251581\pi\)
0.703586 + 0.710610i \(0.251581\pi\)
\(374\) 0 0
\(375\) −3.82464e34 −0.681033
\(376\) 0 0
\(377\) −4.30758e34 −0.713881
\(378\) 0 0
\(379\) 4.43586e34 0.684461 0.342231 0.939616i \(-0.388818\pi\)
0.342231 + 0.939616i \(0.388818\pi\)
\(380\) 0 0
\(381\) 3.49430e33 0.0502196
\(382\) 0 0
\(383\) 3.92129e34 0.525104 0.262552 0.964918i \(-0.415436\pi\)
0.262552 + 0.964918i \(0.415436\pi\)
\(384\) 0 0
\(385\) −4.08203e34 −0.509514
\(386\) 0 0
\(387\) 2.24808e34 0.261646
\(388\) 0 0
\(389\) −1.27767e35 −1.38708 −0.693539 0.720420i \(-0.743949\pi\)
−0.693539 + 0.720420i \(0.743949\pi\)
\(390\) 0 0
\(391\) −2.38563e35 −2.41667
\(392\) 0 0
\(393\) 7.76822e34 0.734551
\(394\) 0 0
\(395\) −2.26259e34 −0.199777
\(396\) 0 0
\(397\) −1.02565e35 −0.845914 −0.422957 0.906150i \(-0.639008\pi\)
−0.422957 + 0.906150i \(0.639008\pi\)
\(398\) 0 0
\(399\) −2.59633e34 −0.200090
\(400\) 0 0
\(401\) 2.02460e35 1.45844 0.729221 0.684278i \(-0.239883\pi\)
0.729221 + 0.684278i \(0.239883\pi\)
\(402\) 0 0
\(403\) −1.93470e35 −1.30316
\(404\) 0 0
\(405\) −6.04539e34 −0.380874
\(406\) 0 0
\(407\) −1.64486e35 −0.969629
\(408\) 0 0
\(409\) −1.85908e35 −1.02573 −0.512866 0.858469i \(-0.671416\pi\)
−0.512866 + 0.858469i \(0.671416\pi\)
\(410\) 0 0
\(411\) 3.08854e35 1.59547
\(412\) 0 0
\(413\) −1.63549e35 −0.791265
\(414\) 0 0
\(415\) −2.19879e34 −0.0996633
\(416\) 0 0
\(417\) −2.14687e35 −0.911946
\(418\) 0 0
\(419\) −3.36370e34 −0.133945 −0.0669727 0.997755i \(-0.521334\pi\)
−0.0669727 + 0.997755i \(0.521334\pi\)
\(420\) 0 0
\(421\) −6.56415e33 −0.0245115 −0.0122558 0.999925i \(-0.503901\pi\)
−0.0122558 + 0.999925i \(0.503901\pi\)
\(422\) 0 0
\(423\) −2.48055e34 −0.0868867
\(424\) 0 0
\(425\) 3.84952e35 1.26519
\(426\) 0 0
\(427\) 6.10695e35 1.88386
\(428\) 0 0
\(429\) 3.05267e35 0.884112
\(430\) 0 0
\(431\) 1.92022e35 0.522285 0.261143 0.965300i \(-0.415901\pi\)
0.261143 + 0.965300i \(0.415901\pi\)
\(432\) 0 0
\(433\) 2.53533e35 0.647810 0.323905 0.946090i \(-0.395004\pi\)
0.323905 + 0.946090i \(0.395004\pi\)
\(434\) 0 0
\(435\) −1.38287e35 −0.332030
\(436\) 0 0
\(437\) 9.41490e34 0.212479
\(438\) 0 0
\(439\) 1.34689e35 0.285799 0.142900 0.989737i \(-0.454357\pi\)
0.142900 + 0.989737i \(0.454357\pi\)
\(440\) 0 0
\(441\) 1.08860e35 0.217244
\(442\) 0 0
\(443\) −4.59219e35 −0.862124 −0.431062 0.902322i \(-0.641861\pi\)
−0.431062 + 0.902322i \(0.641861\pi\)
\(444\) 0 0
\(445\) 2.78495e35 0.491992
\(446\) 0 0
\(447\) −1.44862e35 −0.240881
\(448\) 0 0
\(449\) 3.59402e35 0.562672 0.281336 0.959609i \(-0.409222\pi\)
0.281336 + 0.959609i \(0.409222\pi\)
\(450\) 0 0
\(451\) 1.51351e35 0.223153
\(452\) 0 0
\(453\) 8.28710e34 0.115100
\(454\) 0 0
\(455\) −2.87739e35 −0.376569
\(456\) 0 0
\(457\) −1.11556e36 −1.37602 −0.688008 0.725704i \(-0.741514\pi\)
−0.688008 + 0.725704i \(0.741514\pi\)
\(458\) 0 0
\(459\) 1.08212e36 1.25835
\(460\) 0 0
\(461\) −7.21038e35 −0.790670 −0.395335 0.918537i \(-0.629372\pi\)
−0.395335 + 0.918537i \(0.629372\pi\)
\(462\) 0 0
\(463\) 1.02072e36 1.05575 0.527876 0.849321i \(-0.322988\pi\)
0.527876 + 0.849321i \(0.322988\pi\)
\(464\) 0 0
\(465\) −6.21102e35 −0.606106
\(466\) 0 0
\(467\) −1.40942e36 −1.29796 −0.648980 0.760805i \(-0.724804\pi\)
−0.648980 + 0.760805i \(0.724804\pi\)
\(468\) 0 0
\(469\) 1.14902e36 0.998832
\(470\) 0 0
\(471\) 1.60775e36 1.31958
\(472\) 0 0
\(473\) 1.89301e36 1.46733
\(474\) 0 0
\(475\) −1.51921e35 −0.111238
\(476\) 0 0
\(477\) −3.46225e35 −0.239531
\(478\) 0 0
\(479\) 8.04487e34 0.0526005 0.0263002 0.999654i \(-0.491627\pi\)
0.0263002 + 0.999654i \(0.491627\pi\)
\(480\) 0 0
\(481\) −1.15945e36 −0.716629
\(482\) 0 0
\(483\) −4.66402e36 −2.72567
\(484\) 0 0
\(485\) −2.25776e35 −0.124785
\(486\) 0 0
\(487\) −1.44084e36 −0.753310 −0.376655 0.926354i \(-0.622926\pi\)
−0.376655 + 0.926354i \(0.622926\pi\)
\(488\) 0 0
\(489\) −2.72973e36 −1.35036
\(490\) 0 0
\(491\) 2.03452e36 0.952494 0.476247 0.879311i \(-0.341997\pi\)
0.476247 + 0.879311i \(0.341997\pi\)
\(492\) 0 0
\(493\) 2.95457e36 1.30937
\(494\) 0 0
\(495\) 1.54287e35 0.0647380
\(496\) 0 0
\(497\) −5.04105e35 −0.200313
\(498\) 0 0
\(499\) −2.09784e36 −0.789615 −0.394808 0.918764i \(-0.629189\pi\)
−0.394808 + 0.918764i \(0.629189\pi\)
\(500\) 0 0
\(501\) −2.45265e36 −0.874635
\(502\) 0 0
\(503\) −3.01251e35 −0.101803 −0.0509016 0.998704i \(-0.516209\pi\)
−0.0509016 + 0.998704i \(0.516209\pi\)
\(504\) 0 0
\(505\) −1.15292e36 −0.369289
\(506\) 0 0
\(507\) −1.43581e36 −0.436002
\(508\) 0 0
\(509\) −3.84477e36 −1.10708 −0.553541 0.832822i \(-0.686724\pi\)
−0.553541 + 0.832822i \(0.686724\pi\)
\(510\) 0 0
\(511\) 8.52239e36 2.32744
\(512\) 0 0
\(513\) −4.27058e35 −0.110637
\(514\) 0 0
\(515\) −1.09612e36 −0.269440
\(516\) 0 0
\(517\) −2.08876e36 −0.487266
\(518\) 0 0
\(519\) −5.50049e36 −1.21799
\(520\) 0 0
\(521\) 5.89950e35 0.124024 0.0620120 0.998075i \(-0.480248\pi\)
0.0620120 + 0.998075i \(0.480248\pi\)
\(522\) 0 0
\(523\) −8.51690e36 −1.70023 −0.850117 0.526594i \(-0.823469\pi\)
−0.850117 + 0.526594i \(0.823469\pi\)
\(524\) 0 0
\(525\) 7.52598e36 1.42696
\(526\) 0 0
\(527\) 1.32701e37 2.39019
\(528\) 0 0
\(529\) 1.10696e37 1.89444
\(530\) 0 0
\(531\) 6.18161e35 0.100537
\(532\) 0 0
\(533\) 1.06686e36 0.164927
\(534\) 0 0
\(535\) −1.01611e36 −0.149336
\(536\) 0 0
\(537\) 1.09589e37 1.53148
\(538\) 0 0
\(539\) 9.16660e36 1.21832
\(540\) 0 0
\(541\) −8.17889e36 −1.03403 −0.517013 0.855978i \(-0.672956\pi\)
−0.517013 + 0.855978i \(0.672956\pi\)
\(542\) 0 0
\(543\) 2.96017e36 0.356056
\(544\) 0 0
\(545\) −7.99941e35 −0.0915599
\(546\) 0 0
\(547\) 2.25930e36 0.246119 0.123059 0.992399i \(-0.460729\pi\)
0.123059 + 0.992399i \(0.460729\pi\)
\(548\) 0 0
\(549\) −2.30823e36 −0.239360
\(550\) 0 0
\(551\) −1.16602e36 −0.115123
\(552\) 0 0
\(553\) 9.45095e36 0.888559
\(554\) 0 0
\(555\) −3.72222e36 −0.333309
\(556\) 0 0
\(557\) −1.44303e37 −1.23092 −0.615462 0.788167i \(-0.711030\pi\)
−0.615462 + 0.788167i \(0.711030\pi\)
\(558\) 0 0
\(559\) 1.33437e37 1.08447
\(560\) 0 0
\(561\) −2.09383e37 −1.62160
\(562\) 0 0
\(563\) −2.56319e37 −1.89198 −0.945992 0.324191i \(-0.894908\pi\)
−0.945992 + 0.324191i \(0.894908\pi\)
\(564\) 0 0
\(565\) 8.60314e36 0.605345
\(566\) 0 0
\(567\) 2.52519e37 1.69404
\(568\) 0 0
\(569\) −1.26520e37 −0.809366 −0.404683 0.914457i \(-0.632618\pi\)
−0.404683 + 0.914457i \(0.632618\pi\)
\(570\) 0 0
\(571\) −1.18072e37 −0.720376 −0.360188 0.932880i \(-0.617287\pi\)
−0.360188 + 0.932880i \(0.617287\pi\)
\(572\) 0 0
\(573\) 3.70331e37 2.15527
\(574\) 0 0
\(575\) −2.72910e37 −1.51532
\(576\) 0 0
\(577\) −7.88254e36 −0.417631 −0.208816 0.977955i \(-0.566961\pi\)
−0.208816 + 0.977955i \(0.566961\pi\)
\(578\) 0 0
\(579\) 1.49269e37 0.754758
\(580\) 0 0
\(581\) 9.18446e36 0.443278
\(582\) 0 0
\(583\) −2.91541e37 −1.34330
\(584\) 0 0
\(585\) 1.08756e36 0.0478463
\(586\) 0 0
\(587\) 1.23694e36 0.0519677 0.0259838 0.999662i \(-0.491728\pi\)
0.0259838 + 0.999662i \(0.491728\pi\)
\(588\) 0 0
\(589\) −5.23707e36 −0.210151
\(590\) 0 0
\(591\) 4.28495e35 0.0164254
\(592\) 0 0
\(593\) −1.16613e37 −0.427081 −0.213540 0.976934i \(-0.568499\pi\)
−0.213540 + 0.976934i \(0.568499\pi\)
\(594\) 0 0
\(595\) 1.97360e37 0.690686
\(596\) 0 0
\(597\) −2.53749e37 −0.848693
\(598\) 0 0
\(599\) 3.54285e35 0.0113264 0.00566319 0.999984i \(-0.498197\pi\)
0.00566319 + 0.999984i \(0.498197\pi\)
\(600\) 0 0
\(601\) −6.27911e37 −1.91908 −0.959539 0.281575i \(-0.909143\pi\)
−0.959539 + 0.281575i \(0.909143\pi\)
\(602\) 0 0
\(603\) −4.34290e36 −0.126910
\(604\) 0 0
\(605\) 1.16004e36 0.0324172
\(606\) 0 0
\(607\) −6.16722e36 −0.164832 −0.0824161 0.996598i \(-0.526264\pi\)
−0.0824161 + 0.996598i \(0.526264\pi\)
\(608\) 0 0
\(609\) 5.77633e37 1.47679
\(610\) 0 0
\(611\) −1.47235e37 −0.360127
\(612\) 0 0
\(613\) −1.58191e37 −0.370225 −0.185112 0.982717i \(-0.559265\pi\)
−0.185112 + 0.982717i \(0.559265\pi\)
\(614\) 0 0
\(615\) 3.42498e36 0.0767085
\(616\) 0 0
\(617\) −6.89426e35 −0.0147788 −0.00738938 0.999973i \(-0.502352\pi\)
−0.00738938 + 0.999973i \(0.502352\pi\)
\(618\) 0 0
\(619\) 5.16416e37 1.05968 0.529842 0.848097i \(-0.322251\pi\)
0.529842 + 0.848097i \(0.322251\pi\)
\(620\) 0 0
\(621\) −7.67162e37 −1.50713
\(622\) 0 0
\(623\) −1.16329e38 −2.18826
\(624\) 0 0
\(625\) 3.79689e37 0.683987
\(626\) 0 0
\(627\) 8.26331e36 0.142575
\(628\) 0 0
\(629\) 7.95269e37 1.31441
\(630\) 0 0
\(631\) 2.90903e37 0.460630 0.230315 0.973116i \(-0.426024\pi\)
0.230315 + 0.973116i \(0.426024\pi\)
\(632\) 0 0
\(633\) 4.96245e37 0.752915
\(634\) 0 0
\(635\) 1.04827e36 0.0152415
\(636\) 0 0
\(637\) 6.46147e37 0.900428
\(638\) 0 0
\(639\) 1.90535e36 0.0254515
\(640\) 0 0
\(641\) −3.34459e37 −0.428311 −0.214155 0.976800i \(-0.568700\pi\)
−0.214155 + 0.976800i \(0.568700\pi\)
\(642\) 0 0
\(643\) 5.66150e37 0.695158 0.347579 0.937651i \(-0.387004\pi\)
0.347579 + 0.937651i \(0.387004\pi\)
\(644\) 0 0
\(645\) 4.28375e37 0.504392
\(646\) 0 0
\(647\) 6.66099e37 0.752196 0.376098 0.926580i \(-0.377266\pi\)
0.376098 + 0.926580i \(0.377266\pi\)
\(648\) 0 0
\(649\) 5.20525e37 0.563817
\(650\) 0 0
\(651\) 2.59437e38 2.69581
\(652\) 0 0
\(653\) 5.83600e36 0.0581818 0.0290909 0.999577i \(-0.490739\pi\)
0.0290909 + 0.999577i \(0.490739\pi\)
\(654\) 0 0
\(655\) 2.33042e37 0.222934
\(656\) 0 0
\(657\) −3.22118e37 −0.295721
\(658\) 0 0
\(659\) 6.15562e37 0.542399 0.271200 0.962523i \(-0.412580\pi\)
0.271200 + 0.962523i \(0.412580\pi\)
\(660\) 0 0
\(661\) −9.28033e37 −0.784953 −0.392476 0.919762i \(-0.628382\pi\)
−0.392476 + 0.919762i \(0.628382\pi\)
\(662\) 0 0
\(663\) −1.47593e38 −1.19848
\(664\) 0 0
\(665\) −7.78883e36 −0.0607267
\(666\) 0 0
\(667\) −2.09463e38 −1.56823
\(668\) 0 0
\(669\) −6.98990e37 −0.502595
\(670\) 0 0
\(671\) −1.94365e38 −1.34235
\(672\) 0 0
\(673\) 1.13009e38 0.749736 0.374868 0.927078i \(-0.377688\pi\)
0.374868 + 0.927078i \(0.377688\pi\)
\(674\) 0 0
\(675\) 1.23791e38 0.789022
\(676\) 0 0
\(677\) −1.47748e38 −0.904844 −0.452422 0.891804i \(-0.649440\pi\)
−0.452422 + 0.891804i \(0.649440\pi\)
\(678\) 0 0
\(679\) 9.43075e37 0.555015
\(680\) 0 0
\(681\) 2.07598e38 1.17419
\(682\) 0 0
\(683\) −9.59633e37 −0.521706 −0.260853 0.965379i \(-0.584004\pi\)
−0.260853 + 0.965379i \(0.584004\pi\)
\(684\) 0 0
\(685\) 9.26544e37 0.484221
\(686\) 0 0
\(687\) −2.97356e38 −1.49403
\(688\) 0 0
\(689\) −2.05505e38 −0.992803
\(690\) 0 0
\(691\) 1.85005e38 0.859467 0.429733 0.902956i \(-0.358608\pi\)
0.429733 + 0.902956i \(0.358608\pi\)
\(692\) 0 0
\(693\) −6.44464e37 −0.287939
\(694\) 0 0
\(695\) −6.44048e37 −0.276773
\(696\) 0 0
\(697\) −7.31762e37 −0.302501
\(698\) 0 0
\(699\) −2.70235e38 −1.07473
\(700\) 0 0
\(701\) −2.12622e38 −0.813608 −0.406804 0.913515i \(-0.633357\pi\)
−0.406804 + 0.913515i \(0.633357\pi\)
\(702\) 0 0
\(703\) −3.13853e37 −0.115566
\(704\) 0 0
\(705\) −4.72672e37 −0.167497
\(706\) 0 0
\(707\) 4.81580e38 1.64251
\(708\) 0 0
\(709\) 2.32594e38 0.763614 0.381807 0.924242i \(-0.375302\pi\)
0.381807 + 0.924242i \(0.375302\pi\)
\(710\) 0 0
\(711\) −3.57215e37 −0.112899
\(712\) 0 0
\(713\) −9.40781e38 −2.86273
\(714\) 0 0
\(715\) 9.15784e37 0.268325
\(716\) 0 0
\(717\) 1.48172e38 0.418080
\(718\) 0 0
\(719\) 1.04280e38 0.283375 0.141688 0.989911i \(-0.454747\pi\)
0.141688 + 0.989911i \(0.454747\pi\)
\(720\) 0 0
\(721\) 4.57856e38 1.19840
\(722\) 0 0
\(723\) −8.98203e37 −0.226468
\(724\) 0 0
\(725\) 3.37995e38 0.821009
\(726\) 0 0
\(727\) −8.31544e37 −0.194613 −0.0973063 0.995254i \(-0.531023\pi\)
−0.0973063 + 0.995254i \(0.531023\pi\)
\(728\) 0 0
\(729\) 3.32501e38 0.749845
\(730\) 0 0
\(731\) −9.15243e38 −1.98908
\(732\) 0 0
\(733\) 1.51696e38 0.317738 0.158869 0.987300i \(-0.449215\pi\)
0.158869 + 0.987300i \(0.449215\pi\)
\(734\) 0 0
\(735\) 2.07434e38 0.418794
\(736\) 0 0
\(737\) −3.65696e38 −0.711720
\(738\) 0 0
\(739\) 2.89991e38 0.544107 0.272053 0.962282i \(-0.412297\pi\)
0.272053 + 0.962282i \(0.412297\pi\)
\(740\) 0 0
\(741\) 5.82474e37 0.105373
\(742\) 0 0
\(743\) 4.53556e37 0.0791193 0.0395596 0.999217i \(-0.487404\pi\)
0.0395596 + 0.999217i \(0.487404\pi\)
\(744\) 0 0
\(745\) −4.34577e37 −0.0731066
\(746\) 0 0
\(747\) −3.47142e37 −0.0563222
\(748\) 0 0
\(749\) 4.24434e38 0.664211
\(750\) 0 0
\(751\) −8.41113e37 −0.126974 −0.0634870 0.997983i \(-0.520222\pi\)
−0.0634870 + 0.997983i \(0.520222\pi\)
\(752\) 0 0
\(753\) −7.54376e38 −1.09864
\(754\) 0 0
\(755\) 2.48608e37 0.0349326
\(756\) 0 0
\(757\) −1.31808e38 −0.178709 −0.0893544 0.996000i \(-0.528480\pi\)
−0.0893544 + 0.996000i \(0.528480\pi\)
\(758\) 0 0
\(759\) 1.48441e39 1.94218
\(760\) 0 0
\(761\) 1.16038e39 1.46524 0.732618 0.680640i \(-0.238298\pi\)
0.732618 + 0.680640i \(0.238298\pi\)
\(762\) 0 0
\(763\) 3.34139e38 0.407236
\(764\) 0 0
\(765\) −7.45956e37 −0.0877574
\(766\) 0 0
\(767\) 3.66914e38 0.416704
\(768\) 0 0
\(769\) 7.10302e38 0.778821 0.389410 0.921064i \(-0.372679\pi\)
0.389410 + 0.921064i \(0.372679\pi\)
\(770\) 0 0
\(771\) −1.58289e37 −0.0167578
\(772\) 0 0
\(773\) −1.17473e39 −1.20092 −0.600461 0.799654i \(-0.705016\pi\)
−0.600461 + 0.799654i \(0.705016\pi\)
\(774\) 0 0
\(775\) 1.51807e39 1.49871
\(776\) 0 0
\(777\) 1.55479e39 1.48247
\(778\) 0 0
\(779\) 2.88790e37 0.0265966
\(780\) 0 0
\(781\) 1.60441e38 0.142734
\(782\) 0 0
\(783\) 9.50120e38 0.816572
\(784\) 0 0
\(785\) 4.82314e38 0.400488
\(786\) 0 0
\(787\) −2.33439e39 −1.87290 −0.936449 0.350805i \(-0.885908\pi\)
−0.936449 + 0.350805i \(0.885908\pi\)
\(788\) 0 0
\(789\) 6.57885e38 0.510047
\(790\) 0 0
\(791\) −3.59357e39 −2.69243
\(792\) 0 0
\(793\) −1.37007e39 −0.992096
\(794\) 0 0
\(795\) −6.59737e38 −0.461758
\(796\) 0 0
\(797\) −1.54886e39 −1.04791 −0.523957 0.851745i \(-0.675545\pi\)
−0.523957 + 0.851745i \(0.675545\pi\)
\(798\) 0 0
\(799\) 1.00989e39 0.660527
\(800\) 0 0
\(801\) 4.39685e38 0.278037
\(802\) 0 0
\(803\) −2.71241e39 −1.65842
\(804\) 0 0
\(805\) −1.39918e39 −0.827234
\(806\) 0 0
\(807\) 1.61145e39 0.921350
\(808\) 0 0
\(809\) −8.27333e38 −0.457484 −0.228742 0.973487i \(-0.573461\pi\)
−0.228742 + 0.973487i \(0.573461\pi\)
\(810\) 0 0
\(811\) 2.60639e39 1.39399 0.696993 0.717078i \(-0.254521\pi\)
0.696993 + 0.717078i \(0.254521\pi\)
\(812\) 0 0
\(813\) −9.12434e38 −0.472040
\(814\) 0 0
\(815\) −8.18902e38 −0.409830
\(816\) 0 0
\(817\) 3.61201e38 0.174885
\(818\) 0 0
\(819\) −4.54278e38 −0.212809
\(820\) 0 0
\(821\) −1.98954e39 −0.901822 −0.450911 0.892569i \(-0.648901\pi\)
−0.450911 + 0.892569i \(0.648901\pi\)
\(822\) 0 0
\(823\) 2.42547e39 1.06389 0.531947 0.846778i \(-0.321460\pi\)
0.531947 + 0.846778i \(0.321460\pi\)
\(824\) 0 0
\(825\) −2.39529e39 −1.01679
\(826\) 0 0
\(827\) −4.67442e39 −1.92045 −0.960226 0.279226i \(-0.909922\pi\)
−0.960226 + 0.279226i \(0.909922\pi\)
\(828\) 0 0
\(829\) 3.96570e39 1.57701 0.788504 0.615030i \(-0.210856\pi\)
0.788504 + 0.615030i \(0.210856\pi\)
\(830\) 0 0
\(831\) −1.96865e38 −0.0757801
\(832\) 0 0
\(833\) −4.43192e39 −1.65152
\(834\) 0 0
\(835\) −7.35781e38 −0.265449
\(836\) 0 0
\(837\) 4.26736e39 1.49062
\(838\) 0 0
\(839\) 5.00134e38 0.169161 0.0845804 0.996417i \(-0.473045\pi\)
0.0845804 + 0.996417i \(0.473045\pi\)
\(840\) 0 0
\(841\) −4.58959e38 −0.150324
\(842\) 0 0
\(843\) 6.03878e39 1.91548
\(844\) 0 0
\(845\) −4.30733e38 −0.132325
\(846\) 0 0
\(847\) −4.84554e38 −0.144184
\(848\) 0 0
\(849\) 6.17511e39 1.77988
\(850\) 0 0
\(851\) −5.63803e39 −1.57427
\(852\) 0 0
\(853\) 1.96601e39 0.531831 0.265915 0.963996i \(-0.414326\pi\)
0.265915 + 0.963996i \(0.414326\pi\)
\(854\) 0 0
\(855\) 2.94392e37 0.00771584
\(856\) 0 0
\(857\) 1.84272e39 0.467969 0.233985 0.972240i \(-0.424823\pi\)
0.233985 + 0.972240i \(0.424823\pi\)
\(858\) 0 0
\(859\) −2.19919e39 −0.541197 −0.270598 0.962692i \(-0.587222\pi\)
−0.270598 + 0.962692i \(0.587222\pi\)
\(860\) 0 0
\(861\) −1.43063e39 −0.341181
\(862\) 0 0
\(863\) 2.64850e39 0.612144 0.306072 0.952008i \(-0.400985\pi\)
0.306072 + 0.952008i \(0.400985\pi\)
\(864\) 0 0
\(865\) −1.65011e39 −0.369655
\(866\) 0 0
\(867\) 5.10623e39 1.10877
\(868\) 0 0
\(869\) −3.00794e39 −0.633144
\(870\) 0 0
\(871\) −2.57776e39 −0.526015
\(872\) 0 0
\(873\) −3.56451e38 −0.0705193
\(874\) 0 0
\(875\) 4.79261e39 0.919313
\(876\) 0 0
\(877\) 8.30033e38 0.154384 0.0771918 0.997016i \(-0.475405\pi\)
0.0771918 + 0.997016i \(0.475405\pi\)
\(878\) 0 0
\(879\) 6.73273e39 1.21434
\(880\) 0 0
\(881\) −4.48294e39 −0.784130 −0.392065 0.919938i \(-0.628239\pi\)
−0.392065 + 0.919938i \(0.628239\pi\)
\(882\) 0 0
\(883\) 1.55764e38 0.0264239 0.0132119 0.999913i \(-0.495794\pi\)
0.0132119 + 0.999913i \(0.495794\pi\)
\(884\) 0 0
\(885\) 1.17791e39 0.193811
\(886\) 0 0
\(887\) 1.61984e37 0.00258525 0.00129262 0.999999i \(-0.499589\pi\)
0.00129262 + 0.999999i \(0.499589\pi\)
\(888\) 0 0
\(889\) −4.37867e38 −0.0677904
\(890\) 0 0
\(891\) −8.03689e39 −1.20709
\(892\) 0 0
\(893\) −3.98552e38 −0.0580751
\(894\) 0 0
\(895\) 3.28759e39 0.464800
\(896\) 0 0
\(897\) 1.04635e40 1.43542
\(898\) 0 0
\(899\) 1.16515e40 1.55104
\(900\) 0 0
\(901\) 1.40956e40 1.82095
\(902\) 0 0
\(903\) −1.78934e40 −2.24341
\(904\) 0 0
\(905\) 8.88032e38 0.108062
\(906\) 0 0
\(907\) 1.48316e40 1.75182 0.875912 0.482472i \(-0.160261\pi\)
0.875912 + 0.482472i \(0.160261\pi\)
\(908\) 0 0
\(909\) −1.82022e39 −0.208694
\(910\) 0 0
\(911\) 7.22078e38 0.0803685 0.0401843 0.999192i \(-0.487206\pi\)
0.0401843 + 0.999192i \(0.487206\pi\)
\(912\) 0 0
\(913\) −2.92313e39 −0.315858
\(914\) 0 0
\(915\) −4.39836e39 −0.461430
\(916\) 0 0
\(917\) −9.73427e39 −0.991556
\(918\) 0 0
\(919\) −1.77181e40 −1.75250 −0.876248 0.481861i \(-0.839961\pi\)
−0.876248 + 0.481861i \(0.839961\pi\)
\(920\) 0 0
\(921\) 4.69684e38 0.0451129
\(922\) 0 0
\(923\) 1.13094e39 0.105491
\(924\) 0 0
\(925\) 9.09767e39 0.824170
\(926\) 0 0
\(927\) −1.73055e39 −0.152267
\(928\) 0 0
\(929\) −8.24704e39 −0.704832 −0.352416 0.935843i \(-0.614640\pi\)
−0.352416 + 0.935843i \(0.614640\pi\)
\(930\) 0 0
\(931\) 1.74906e39 0.145206
\(932\) 0 0
\(933\) −1.71415e40 −1.38244
\(934\) 0 0
\(935\) −6.28136e39 −0.492149
\(936\) 0 0
\(937\) −1.37250e40 −1.04478 −0.522392 0.852705i \(-0.674960\pi\)
−0.522392 + 0.852705i \(0.674960\pi\)
\(938\) 0 0
\(939\) 1.04202e39 0.0770710
\(940\) 0 0
\(941\) −1.35387e40 −0.973012 −0.486506 0.873677i \(-0.661729\pi\)
−0.486506 + 0.873677i \(0.661729\pi\)
\(942\) 0 0
\(943\) 5.18780e39 0.362306
\(944\) 0 0
\(945\) 6.34663e39 0.430739
\(946\) 0 0
\(947\) −1.23594e40 −0.815218 −0.407609 0.913156i \(-0.633637\pi\)
−0.407609 + 0.913156i \(0.633637\pi\)
\(948\) 0 0
\(949\) −1.91196e40 −1.22570
\(950\) 0 0
\(951\) 1.83678e40 1.14451
\(952\) 0 0
\(953\) 1.59950e40 0.968794 0.484397 0.874848i \(-0.339039\pi\)
0.484397 + 0.874848i \(0.339039\pi\)
\(954\) 0 0
\(955\) 1.11097e40 0.654119
\(956\) 0 0
\(957\) −1.83843e40 −1.05229
\(958\) 0 0
\(959\) −3.87022e40 −2.15370
\(960\) 0 0
\(961\) 3.38485e40 1.83136
\(962\) 0 0
\(963\) −1.60422e39 −0.0843936
\(964\) 0 0
\(965\) 4.47797e39 0.229067
\(966\) 0 0
\(967\) −2.71147e40 −1.34880 −0.674399 0.738367i \(-0.735597\pi\)
−0.674399 + 0.738367i \(0.735597\pi\)
\(968\) 0 0
\(969\) −3.99519e39 −0.193271
\(970\) 0 0
\(971\) 6.75635e39 0.317872 0.158936 0.987289i \(-0.449194\pi\)
0.158936 + 0.987289i \(0.449194\pi\)
\(972\) 0 0
\(973\) 2.69022e40 1.23102
\(974\) 0 0
\(975\) −1.68842e40 −0.751481
\(976\) 0 0
\(977\) −2.46931e40 −1.06905 −0.534526 0.845152i \(-0.679510\pi\)
−0.534526 + 0.845152i \(0.679510\pi\)
\(978\) 0 0
\(979\) 3.70239e40 1.55925
\(980\) 0 0
\(981\) −1.26294e39 −0.0517428
\(982\) 0 0
\(983\) 9.26756e39 0.369397 0.184698 0.982795i \(-0.440869\pi\)
0.184698 + 0.982795i \(0.440869\pi\)
\(984\) 0 0
\(985\) 1.28546e38 0.00498504
\(986\) 0 0
\(987\) 1.97437e40 0.744986
\(988\) 0 0
\(989\) 6.48858e40 2.38232
\(990\) 0 0
\(991\) 5.13676e40 1.83525 0.917625 0.397448i \(-0.130104\pi\)
0.917625 + 0.397448i \(0.130104\pi\)
\(992\) 0 0
\(993\) 1.43879e40 0.500244
\(994\) 0 0
\(995\) −7.61231e39 −0.257576
\(996\) 0 0
\(997\) 3.94653e38 0.0129966 0.00649832 0.999979i \(-0.497932\pi\)
0.00649832 + 0.999979i \(0.497932\pi\)
\(998\) 0 0
\(999\) 2.55740e40 0.819717
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 16.28.a.c.1.2 2
4.3 odd 2 4.28.a.a.1.1 2
12.11 even 2 36.28.a.a.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4.28.a.a.1.1 2 4.3 odd 2
16.28.a.c.1.2 2 1.1 even 1 trivial
36.28.a.a.1.1 2 12.11 even 2