Properties

Label 16.28.a.c.1.2
Level 1616
Weight 2828
Character 16.1
Self dual yes
Analytic conductor 73.89773.897
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,28,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: N N == 16=24 16 = 2^{4}
Weight: k k == 28 28
Character orbit: [χ][\chi] == 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 73.896891974173.8968919741
Analytic rank: 11
Dimension: 22
Coefficient field: Q(1059289)\Q(\sqrt{1059289})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x264822 x^{2} - x - 264822 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2837 2^{8}\cdot 3\cdot 7
Twist minimal: no (minimal twist has level 4)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 514.109-514.109 of defining polynomial
Character χ\chi == 16.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+3.00840e6q3+9.02501e8q53.76979e11q7+1.42486e12q9+1.19981e14q11+8.45735e14q13+2.71508e15q155.80089e16q17+2.28933e16q191.13410e18q21+4.11252e18q236.63607e18q251.86543e19q275.09330e19q292.28760e20q31+3.60949e20q333.40224e20q351.37094e21q37+2.54431e21q39+1.26146e21q41+1.57776e22q43+1.28593e21q451.74091e22q47+7.64006e22q491.74514e23q512.42990e23q53+1.08283e23q55+6.88720e22q57+4.33841e23q591.61997e24q615.37140e23q63+7.63276e23q653.04796e24q67+1.23721e25q69+1.33723e24q712.26071e25q731.99639e25q754.52302e25q772.50702e25q796.69849e25q812.43633e25q835.23531e25q851.53227e26q87+3.08582e26q893.18824e26q916.88202e26q93+2.06612e25q952.50167e26q97+1.70955e26q99+O(q100)q+3.00840e6 q^{3} +9.02501e8 q^{5} -3.76979e11 q^{7} +1.42486e12 q^{9} +1.19981e14 q^{11} +8.45735e14 q^{13} +2.71508e15 q^{15} -5.80089e16 q^{17} +2.28933e16 q^{19} -1.13410e18 q^{21} +4.11252e18 q^{23} -6.63607e18 q^{25} -1.86543e19 q^{27} -5.09330e19 q^{29} -2.28760e20 q^{31} +3.60949e20 q^{33} -3.40224e20 q^{35} -1.37094e21 q^{37} +2.54431e21 q^{39} +1.26146e21 q^{41} +1.57776e22 q^{43} +1.28593e21 q^{45} -1.74091e22 q^{47} +7.64006e22 q^{49} -1.74514e23 q^{51} -2.42990e23 q^{53} +1.08283e23 q^{55} +6.88720e22 q^{57} +4.33841e23 q^{59} -1.61997e24 q^{61} -5.37140e23 q^{63} +7.63276e23 q^{65} -3.04796e24 q^{67} +1.23721e25 q^{69} +1.33723e24 q^{71} -2.26071e25 q^{73} -1.99639e25 q^{75} -4.52302e25 q^{77} -2.50702e25 q^{79} -6.69849e25 q^{81} -2.43633e25 q^{83} -5.23531e25 q^{85} -1.53227e26 q^{87} +3.08582e26 q^{89} -3.18824e26 q^{91} -6.88202e26 q^{93} +2.06612e25 q^{95} -2.50167e26 q^{97} +1.70955e26 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+483720q3+145079100q560475251760q7+173252390058q9+24840277565400q1179026950880020q13+46 ⁣ ⁣00q1557 ⁣ ⁣40q17+35 ⁣ ⁣72q1919 ⁣ ⁣88q21++29 ⁣ ⁣00q99+O(q100) 2 q + 483720 q^{3} + 145079100 q^{5} - 60475251760 q^{7} + 173252390058 q^{9} + 24840277565400 q^{11} - 79026950880020 q^{13} + 46\!\cdots\!00 q^{15} - 57\!\cdots\!40 q^{17} + 35\!\cdots\!72 q^{19} - 19\!\cdots\!88 q^{21}+ \cdots + 29\!\cdots\!00 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 3.00840e6 1.08943 0.544714 0.838622i 0.316638π-0.316638\pi
0.544714 + 0.838622i 0.316638π0.316638\pi
44 0 0
55 9.02501e8 0.330638 0.165319 0.986240i 0.447135π-0.447135\pi
0.165319 + 0.986240i 0.447135π0.447135\pi
66 0 0
77 −3.76979e11 −1.47060 −0.735298 0.677744i 0.762958π-0.762958\pi
−0.735298 + 0.677744i 0.762958π0.762958\pi
88 0 0
99 1.42486e12 0.186852
1010 0 0
1111 1.19981e14 1.04788 0.523938 0.851756i 0.324462π-0.324462\pi
0.523938 + 0.851756i 0.324462π0.324462\pi
1212 0 0
1313 8.45735e14 0.774460 0.387230 0.921983i 0.373432π-0.373432\pi
0.387230 + 0.921983i 0.373432π0.373432\pi
1414 0 0
1515 2.71508e15 0.360206
1616 0 0
1717 −5.80089e16 −1.42048 −0.710239 0.703961i 0.751413π-0.751413\pi
−0.710239 + 0.703961i 0.751413π0.751413\pi
1818 0 0
1919 2.28933e16 0.124892 0.0624459 0.998048i 0.480110π-0.480110\pi
0.0624459 + 0.998048i 0.480110π0.480110\pi
2020 0 0
2121 −1.13410e18 −1.60211
2222 0 0
2323 4.11252e18 1.70131 0.850653 0.525728i 0.176207π-0.176207\pi
0.850653 + 0.525728i 0.176207π0.176207\pi
2424 0 0
2525 −6.63607e18 −0.890679
2626 0 0
2727 −1.86543e19 −0.885866
2828 0 0
2929 −5.09330e19 −0.921779 −0.460889 0.887458i 0.652470π-0.652470\pi
−0.460889 + 0.887458i 0.652470π0.652470\pi
3030 0 0
3131 −2.28760e20 −1.68266 −0.841332 0.540518i 0.818228π-0.818228\pi
−0.841332 + 0.540518i 0.818228π0.818228\pi
3232 0 0
3333 3.60949e20 1.14158
3434 0 0
3535 −3.40224e20 −0.486235
3636 0 0
3737 −1.37094e21 −0.925328 −0.462664 0.886534i 0.653106π-0.653106\pi
−0.462664 + 0.886534i 0.653106π0.653106\pi
3838 0 0
3939 2.54431e21 0.843718
4040 0 0
4141 1.26146e21 0.212957 0.106479 0.994315i 0.466042π-0.466042\pi
0.106479 + 0.994315i 0.466042π0.466042\pi
4242 0 0
4343 1.57776e22 1.40029 0.700144 0.714002i 0.253119π-0.253119\pi
0.700144 + 0.714002i 0.253119π0.253119\pi
4444 0 0
4545 1.28593e21 0.0617802
4646 0 0
4747 −1.74091e22 −0.465004 −0.232502 0.972596i 0.574691π-0.574691\pi
−0.232502 + 0.972596i 0.574691π0.574691\pi
4848 0 0
4949 7.64006e22 1.16265
5050 0 0
5151 −1.74514e23 −1.54751
5252 0 0
5353 −2.42990e23 −1.28193 −0.640964 0.767571i 0.721465π-0.721465\pi
−0.640964 + 0.767571i 0.721465π0.721465\pi
5454 0 0
5555 1.08283e23 0.346467
5656 0 0
5757 6.88720e22 0.136061
5858 0 0
5959 4.33841e23 0.538057 0.269029 0.963132i 0.413297π-0.413297\pi
0.269029 + 0.963132i 0.413297π0.413297\pi
6060 0 0
6161 −1.61997e24 −1.28102 −0.640508 0.767951i 0.721276π-0.721276\pi
−0.640508 + 0.767951i 0.721276π0.721276\pi
6262 0 0
6363 −5.37140e23 −0.274783
6464 0 0
6565 7.63276e23 0.256066
6666 0 0
6767 −3.04796e24 −0.679203 −0.339601 0.940569i 0.610292π-0.610292\pi
−0.339601 + 0.940569i 0.610292π0.610292\pi
6868 0 0
6969 1.23721e25 1.85345
7070 0 0
7171 1.33723e24 0.136212 0.0681062 0.997678i 0.478304π-0.478304\pi
0.0681062 + 0.997678i 0.478304π0.478304\pi
7272 0 0
7373 −2.26071e25 −1.58265 −0.791326 0.611394i 0.790609π-0.790609\pi
−0.791326 + 0.611394i 0.790609π0.790609\pi
7474 0 0
7575 −1.99639e25 −0.970330
7676 0 0
7777 −4.52302e25 −1.54100
7878 0 0
7979 −2.50702e25 −0.604217 −0.302108 0.953274i 0.597690π-0.597690\pi
−0.302108 + 0.953274i 0.597690π0.597690\pi
8080 0 0
8181 −6.69849e25 −1.15194
8282 0 0
8383 −2.43633e25 −0.301427 −0.150714 0.988577i 0.548157π-0.548157\pi
−0.150714 + 0.988577i 0.548157π0.548157\pi
8484 0 0
8585 −5.23531e25 −0.469664
8686 0 0
8787 −1.53227e26 −1.00421
8888 0 0
8989 3.08582e26 1.48801 0.744004 0.668175i 0.232924π-0.232924\pi
0.744004 + 0.668175i 0.232924π0.232924\pi
9090 0 0
9191 −3.18824e26 −1.13892
9292 0 0
9393 −6.88202e26 −1.83314
9494 0 0
9595 2.06612e25 0.0412939
9696 0 0
9797 −2.50167e26 −0.377408 −0.188704 0.982034i 0.560429π-0.560429\pi
−0.188704 + 0.982034i 0.560429π0.560429\pi
9898 0 0
9999 1.70955e26 0.195797
100100 0 0
101101 −1.27747e27 −1.11690 −0.558449 0.829539i 0.688603π-0.688603\pi
−0.558449 + 0.829539i 0.688603π0.688603\pi
102102 0 0
103103 −1.21454e27 −0.814910 −0.407455 0.913225i 0.633584π-0.633584\pi
−0.407455 + 0.913225i 0.633584π0.633584\pi
104104 0 0
105105 −1.02353e27 −0.529717
106106 0 0
107107 −1.12588e27 −0.451661 −0.225830 0.974167i 0.572510π-0.572510\pi
−0.225830 + 0.974167i 0.572510π0.572510\pi
108108 0 0
109109 −8.86361e26 −0.276919 −0.138460 0.990368i 0.544215π-0.544215\pi
−0.138460 + 0.990368i 0.544215π0.544215\pi
110110 0 0
111111 −4.12434e27 −1.00808
112112 0 0
113113 9.53256e27 1.83084 0.915421 0.402499i 0.131858π-0.131858\pi
0.915421 + 0.402499i 0.131858π0.131858\pi
114114 0 0
115115 3.71155e27 0.562516
116116 0 0
117117 1.20505e27 0.144709
118118 0 0
119119 2.18681e28 2.08895
120120 0 0
121121 1.28536e27 0.0980445
122122 0 0
123123 3.79499e27 0.232002
124124 0 0
125125 −1.27132e28 −0.625130
126126 0 0
127127 1.16152e27 0.0460972 0.0230486 0.999734i 0.492663π-0.492663\pi
0.0230486 + 0.999734i 0.492663π0.492663\pi
128128 0 0
129129 4.74654e28 1.52551
130130 0 0
131131 2.58218e28 0.674255 0.337127 0.941459i 0.390545π-0.390545\pi
0.337127 + 0.941459i 0.390545π0.390545\pi
132132 0 0
133133 −8.63027e27 −0.183665
134134 0 0
135135 −1.68355e28 −0.292901
136136 0 0
137137 1.02664e29 1.46451 0.732253 0.681033i 0.238469π-0.238469\pi
0.732253 + 0.681033i 0.238469π0.238469\pi
138138 0 0
139139 −7.13626e28 −0.837088 −0.418544 0.908197i 0.637459π-0.637459\pi
−0.418544 + 0.908197i 0.637459π0.637459\pi
140140 0 0
141141 −5.23736e28 −0.506588
142142 0 0
143143 1.01472e29 0.811538
144144 0 0
145145 −4.59671e28 −0.304775
146146 0 0
147147 2.29843e29 1.26663
148148 0 0
149149 −4.81525e28 −0.221108 −0.110554 0.993870i 0.535262π-0.535262\pi
−0.110554 + 0.993870i 0.535262π0.535262\pi
150150 0 0
151151 2.75466e28 0.105652 0.0528261 0.998604i 0.483177π-0.483177\pi
0.0528261 + 0.998604i 0.483177π0.483177\pi
152152 0 0
153153 −8.26544e28 −0.265419
154154 0 0
155155 −2.06456e29 −0.556353
156156 0 0
157157 5.34419e29 1.21126 0.605629 0.795747i 0.292921π-0.292921\pi
0.605629 + 0.795747i 0.292921π0.292921\pi
158158 0 0
159159 −7.31010e29 −1.39657
160160 0 0
161161 −1.55033e30 −2.50193
162162 0 0
163163 −9.07370e29 −1.23951 −0.619757 0.784794i 0.712769π-0.712769\pi
−0.619757 + 0.784794i 0.712769π0.712769\pi
164164 0 0
165165 3.25757e29 0.377451
166166 0 0
167167 −8.15269e29 −0.802839 −0.401420 0.915894i 0.631483π-0.631483\pi
−0.401420 + 0.915894i 0.631483π0.631483\pi
168168 0 0
169169 −4.77266e29 −0.400212
170170 0 0
171171 3.26196e28 0.0233362
172172 0 0
173173 −1.82838e30 −1.11801 −0.559003 0.829166i 0.688816π-0.688816\pi
−0.559003 + 0.829166i 0.688816π0.688816\pi
174174 0 0
175175 2.50166e30 1.30983
176176 0 0
177177 1.30517e30 0.586174
178178 0 0
179179 3.64275e30 1.40577 0.702885 0.711304i 0.251895π-0.251895\pi
0.702885 + 0.711304i 0.251895π0.251895\pi
180180 0 0
181181 9.83969e29 0.326829 0.163414 0.986558i 0.447749π-0.447749\pi
0.163414 + 0.986558i 0.447749π0.447749\pi
182182 0 0
183183 −4.87352e30 −1.39557
184184 0 0
185185 −1.23728e30 −0.305948
186186 0 0
187187 −6.95995e30 −1.48849
188188 0 0
189189 7.03227e30 1.30275
190190 0 0
191191 1.23099e31 1.97836 0.989178 0.146721i 0.0468720π-0.0468720\pi
0.989178 + 0.146721i 0.0468720π0.0468720\pi
192192 0 0
193193 4.96173e30 0.692803 0.346402 0.938086i 0.387403π-0.387403\pi
0.346402 + 0.938086i 0.387403π0.387403\pi
194194 0 0
195195 2.29624e30 0.278965
196196 0 0
197197 1.42433e29 0.0150771 0.00753853 0.999972i 0.497600π-0.497600\pi
0.00753853 + 0.999972i 0.497600π0.497600\pi
198198 0 0
199199 −8.43469e30 −0.779027 −0.389514 0.921021i 0.627357π-0.627357\pi
−0.389514 + 0.921021i 0.627357π0.627357\pi
200200 0 0
201201 −9.16947e30 −0.739942
202202 0 0
203203 1.92007e31 1.35556
204204 0 0
205205 1.13847e30 0.0704118
206206 0 0
207207 5.85975e30 0.317892
208208 0 0
209209 2.74675e30 0.130871
210210 0 0
211211 1.64953e31 0.691111 0.345555 0.938398i 0.387691π-0.387691\pi
0.345555 + 0.938398i 0.387691π0.387691\pi
212212 0 0
213213 4.02290e30 0.148394
214214 0 0
215215 1.42393e31 0.462988
216216 0 0
217217 8.62377e31 2.47452
218218 0 0
219219 −6.80110e31 −1.72419
220220 0 0
221221 −4.90602e31 −1.10010
222222 0 0
223223 −2.32346e31 −0.461339 −0.230670 0.973032i 0.574092π-0.574092\pi
−0.230670 + 0.973032i 0.574092π0.574092\pi
224224 0 0
225225 −9.45545e30 −0.166425
226226 0 0
227227 6.90063e31 1.07780 0.538902 0.842369i 0.318839π-0.318839\pi
0.538902 + 0.842369i 0.318839π0.318839\pi
228228 0 0
229229 −9.88419e31 −1.37139 −0.685697 0.727887i 0.740502π-0.740502\pi
−0.685697 + 0.727887i 0.740502π0.740502\pi
230230 0 0
231231 −1.36070e32 −1.67881
232232 0 0
233233 −8.98268e31 −0.986509 −0.493254 0.869885i 0.664193π-0.664193\pi
−0.493254 + 0.869885i 0.664193π0.664193\pi
234234 0 0
235235 −1.57118e31 −0.153748
236236 0 0
237237 −7.54213e31 −0.658250
238238 0 0
239239 4.92530e31 0.383761 0.191880 0.981418i 0.438541π-0.438541\pi
0.191880 + 0.981418i 0.438541π0.438541\pi
240240 0 0
241241 −2.98565e31 −0.207878 −0.103939 0.994584i 0.533145π-0.533145\pi
−0.103939 + 0.994584i 0.533145π0.533145\pi
242242 0 0
243243 −5.92670e31 −0.369087
244244 0 0
245245 6.89516e31 0.384417
246246 0 0
247247 1.93616e31 0.0967237
248248 0 0
249249 −7.32946e31 −0.328383
250250 0 0
251251 −2.50757e32 −1.00846 −0.504228 0.863570i 0.668223π-0.668223\pi
−0.504228 + 0.863570i 0.668223π0.668223\pi
252252 0 0
253253 4.93423e32 1.78276
254254 0 0
255255 −1.57499e32 −0.511664
256256 0 0
257257 −5.26158e30 −0.0153822 −0.00769111 0.999970i 0.502448π-0.502448\pi
−0.00769111 + 0.999970i 0.502448π0.502448\pi
258258 0 0
259259 5.16816e32 1.36078
260260 0 0
261261 −7.25722e31 −0.172236
262262 0 0
263263 2.18683e32 0.468179 0.234090 0.972215i 0.424789π-0.424789\pi
0.234090 + 0.972215i 0.424789π0.424789\pi
264264 0 0
265265 −2.19299e32 −0.423854
266266 0 0
267267 9.28337e32 1.62108
268268 0 0
269269 5.35651e32 0.845720 0.422860 0.906195i 0.361026π-0.361026\pi
0.422860 + 0.906195i 0.361026π0.361026\pi
270270 0 0
271271 −3.03296e32 −0.433292 −0.216646 0.976250i 0.569512π-0.569512\pi
−0.216646 + 0.976250i 0.569512π0.569512\pi
272272 0 0
273273 −9.59149e32 −1.24077
274274 0 0
275275 −7.96200e32 −0.933321
276276 0 0
277277 −6.54386e31 −0.0695596 −0.0347798 0.999395i 0.511073π-0.511073\pi
−0.0347798 + 0.999395i 0.511073π0.511073\pi
278278 0 0
279279 −3.25950e32 −0.314409
280280 0 0
281281 2.00731e33 1.75824 0.879121 0.476598i 0.158130π-0.158130\pi
0.879121 + 0.476598i 0.158130π0.158130\pi
282282 0 0
283283 2.05262e33 1.63378 0.816888 0.576796i 0.195697π-0.195697\pi
0.816888 + 0.576796i 0.195697π0.195697\pi
284284 0 0
285285 6.21570e31 0.0449867
286286 0 0
287287 −4.75545e32 −0.313174
288288 0 0
289289 1.69733e33 1.01776
290290 0 0
291291 −7.52601e32 −0.411158
292292 0 0
293293 2.23798e33 1.11466 0.557331 0.830290i 0.311825π-0.311825\pi
0.557331 + 0.830290i 0.311825π0.311825\pi
294294 0 0
295295 3.91542e32 0.177902
296296 0 0
297297 −2.23815e33 −0.928278
298298 0 0
299299 3.47810e33 1.31759
300300 0 0
301301 −5.94783e33 −2.05926
302302 0 0
303303 −3.84315e33 −1.21678
304304 0 0
305305 −1.46203e33 −0.423553
306306 0 0
307307 1.56124e32 0.0414097 0.0207049 0.999786i 0.493409π-0.493409\pi
0.0207049 + 0.999786i 0.493409π0.493409\pi
308308 0 0
309309 −3.65382e33 −0.887785
310310 0 0
311311 −5.69789e33 −1.26896 −0.634481 0.772939i 0.718786π-0.718786\pi
−0.634481 + 0.772939i 0.718786π0.718786\pi
312312 0 0
313313 3.46371e32 0.0707445 0.0353723 0.999374i 0.488738π-0.488738\pi
0.0353723 + 0.999374i 0.488738π0.488738\pi
314314 0 0
315315 −4.84769e32 −0.0908537
316316 0 0
317317 6.10550e33 1.05056 0.525281 0.850929i 0.323960π-0.323960\pi
0.525281 + 0.850929i 0.323960π0.323960\pi
318318 0 0
319319 −6.11098e33 −0.965910
320320 0 0
321321 −3.38711e33 −0.492052
322322 0 0
323323 −1.32801e33 −0.177406
324324 0 0
325325 −5.61236e33 −0.689795
326326 0 0
327327 −2.66653e33 −0.301683
328328 0 0
329329 6.56288e33 0.683832
330330 0 0
331331 4.78257e33 0.459181 0.229590 0.973287i 0.426261π-0.426261\pi
0.229590 + 0.973287i 0.426261π0.426261\pi
332332 0 0
333333 −1.95339e33 −0.172899
334334 0 0
335335 −2.75079e33 −0.224570
336336 0 0
337337 1.28316e34 0.966666 0.483333 0.875437i 0.339426π-0.339426\pi
0.483333 + 0.875437i 0.339426π0.339426\pi
338338 0 0
339339 2.86777e34 1.99457
340340 0 0
341341 −2.74468e34 −1.76322
342342 0 0
343343 −4.02925e33 −0.239196
344344 0 0
345345 1.11658e34 0.612820
346346 0 0
347347 3.03623e34 1.54130 0.770649 0.637260i 0.219932π-0.219932\pi
0.770649 + 0.637260i 0.219932π0.219932\pi
348348 0 0
349349 2.98480e34 1.40208 0.701039 0.713123i 0.252720π-0.252720\pi
0.701039 + 0.713123i 0.252720π0.252720\pi
350350 0 0
351351 −1.57766e34 −0.686068
352352 0 0
353353 −1.86056e34 −0.749351 −0.374675 0.927156i 0.622246π-0.622246\pi
−0.374675 + 0.927156i 0.622246π0.622246\pi
354354 0 0
355355 1.20685e33 0.0450370
356356 0 0
357357 6.57881e34 2.27576
358358 0 0
359359 −5.56754e34 −1.78603 −0.893014 0.450029i 0.851413π-0.851413\pi
−0.893014 + 0.450029i 0.851413π0.851413\pi
360360 0 0
361361 −3.30765e34 −0.984402
362362 0 0
363363 3.86688e33 0.106812
364364 0 0
365365 −2.04029e34 −0.523285
366366 0 0
367367 1.68674e34 0.401843 0.200921 0.979607i 0.435606π-0.435606\pi
0.200921 + 0.979607i 0.435606π0.435606\pi
368368 0 0
369369 1.79740e33 0.0397915
370370 0 0
371371 9.16020e34 1.88520
372372 0 0
373373 7.35219e34 1.40717 0.703586 0.710610i 0.251581π-0.251581\pi
0.703586 + 0.710610i 0.251581π0.251581\pi
374374 0 0
375375 −3.82464e34 −0.681033
376376 0 0
377377 −4.30758e34 −0.713881
378378 0 0
379379 4.43586e34 0.684461 0.342231 0.939616i 0.388818π-0.388818\pi
0.342231 + 0.939616i 0.388818π0.388818\pi
380380 0 0
381381 3.49430e33 0.0502196
382382 0 0
383383 3.92129e34 0.525104 0.262552 0.964918i 0.415436π-0.415436\pi
0.262552 + 0.964918i 0.415436π0.415436\pi
384384 0 0
385385 −4.08203e34 −0.509514
386386 0 0
387387 2.24808e34 0.261646
388388 0 0
389389 −1.27767e35 −1.38708 −0.693539 0.720420i 0.743949π-0.743949\pi
−0.693539 + 0.720420i 0.743949π0.743949\pi
390390 0 0
391391 −2.38563e35 −2.41667
392392 0 0
393393 7.76822e34 0.734551
394394 0 0
395395 −2.26259e34 −0.199777
396396 0 0
397397 −1.02565e35 −0.845914 −0.422957 0.906150i 0.639008π-0.639008\pi
−0.422957 + 0.906150i 0.639008π0.639008\pi
398398 0 0
399399 −2.59633e34 −0.200090
400400 0 0
401401 2.02460e35 1.45844 0.729221 0.684278i 0.239883π-0.239883\pi
0.729221 + 0.684278i 0.239883π0.239883\pi
402402 0 0
403403 −1.93470e35 −1.30316
404404 0 0
405405 −6.04539e34 −0.380874
406406 0 0
407407 −1.64486e35 −0.969629
408408 0 0
409409 −1.85908e35 −1.02573 −0.512866 0.858469i 0.671416π-0.671416\pi
−0.512866 + 0.858469i 0.671416π0.671416\pi
410410 0 0
411411 3.08854e35 1.59547
412412 0 0
413413 −1.63549e35 −0.791265
414414 0 0
415415 −2.19879e34 −0.0996633
416416 0 0
417417 −2.14687e35 −0.911946
418418 0 0
419419 −3.36370e34 −0.133945 −0.0669727 0.997755i 0.521334π-0.521334\pi
−0.0669727 + 0.997755i 0.521334π0.521334\pi
420420 0 0
421421 −6.56415e33 −0.0245115 −0.0122558 0.999925i 0.503901π-0.503901\pi
−0.0122558 + 0.999925i 0.503901π0.503901\pi
422422 0 0
423423 −2.48055e34 −0.0868867
424424 0 0
425425 3.84952e35 1.26519
426426 0 0
427427 6.10695e35 1.88386
428428 0 0
429429 3.05267e35 0.884112
430430 0 0
431431 1.92022e35 0.522285 0.261143 0.965300i 0.415901π-0.415901\pi
0.261143 + 0.965300i 0.415901π0.415901\pi
432432 0 0
433433 2.53533e35 0.647810 0.323905 0.946090i 0.395004π-0.395004\pi
0.323905 + 0.946090i 0.395004π0.395004\pi
434434 0 0
435435 −1.38287e35 −0.332030
436436 0 0
437437 9.41490e34 0.212479
438438 0 0
439439 1.34689e35 0.285799 0.142900 0.989737i 0.454357π-0.454357\pi
0.142900 + 0.989737i 0.454357π0.454357\pi
440440 0 0
441441 1.08860e35 0.217244
442442 0 0
443443 −4.59219e35 −0.862124 −0.431062 0.902322i 0.641861π-0.641861\pi
−0.431062 + 0.902322i 0.641861π0.641861\pi
444444 0 0
445445 2.78495e35 0.491992
446446 0 0
447447 −1.44862e35 −0.240881
448448 0 0
449449 3.59402e35 0.562672 0.281336 0.959609i 0.409222π-0.409222\pi
0.281336 + 0.959609i 0.409222π0.409222\pi
450450 0 0
451451 1.51351e35 0.223153
452452 0 0
453453 8.28710e34 0.115100
454454 0 0
455455 −2.87739e35 −0.376569
456456 0 0
457457 −1.11556e36 −1.37602 −0.688008 0.725704i 0.741514π-0.741514\pi
−0.688008 + 0.725704i 0.741514π0.741514\pi
458458 0 0
459459 1.08212e36 1.25835
460460 0 0
461461 −7.21038e35 −0.790670 −0.395335 0.918537i 0.629372π-0.629372\pi
−0.395335 + 0.918537i 0.629372π0.629372\pi
462462 0 0
463463 1.02072e36 1.05575 0.527876 0.849321i 0.322988π-0.322988\pi
0.527876 + 0.849321i 0.322988π0.322988\pi
464464 0 0
465465 −6.21102e35 −0.606106
466466 0 0
467467 −1.40942e36 −1.29796 −0.648980 0.760805i 0.724804π-0.724804\pi
−0.648980 + 0.760805i 0.724804π0.724804\pi
468468 0 0
469469 1.14902e36 0.998832
470470 0 0
471471 1.60775e36 1.31958
472472 0 0
473473 1.89301e36 1.46733
474474 0 0
475475 −1.51921e35 −0.111238
476476 0 0
477477 −3.46225e35 −0.239531
478478 0 0
479479 8.04487e34 0.0526005 0.0263002 0.999654i 0.491627π-0.491627\pi
0.0263002 + 0.999654i 0.491627π0.491627\pi
480480 0 0
481481 −1.15945e36 −0.716629
482482 0 0
483483 −4.66402e36 −2.72567
484484 0 0
485485 −2.25776e35 −0.124785
486486 0 0
487487 −1.44084e36 −0.753310 −0.376655 0.926354i 0.622926π-0.622926\pi
−0.376655 + 0.926354i 0.622926π0.622926\pi
488488 0 0
489489 −2.72973e36 −1.35036
490490 0 0
491491 2.03452e36 0.952494 0.476247 0.879311i 0.341997π-0.341997\pi
0.476247 + 0.879311i 0.341997π0.341997\pi
492492 0 0
493493 2.95457e36 1.30937
494494 0 0
495495 1.54287e35 0.0647380
496496 0 0
497497 −5.04105e35 −0.200313
498498 0 0
499499 −2.09784e36 −0.789615 −0.394808 0.918764i 0.629189π-0.629189\pi
−0.394808 + 0.918764i 0.629189π0.629189\pi
500500 0 0
501501 −2.45265e36 −0.874635
502502 0 0
503503 −3.01251e35 −0.101803 −0.0509016 0.998704i 0.516209π-0.516209\pi
−0.0509016 + 0.998704i 0.516209π0.516209\pi
504504 0 0
505505 −1.15292e36 −0.369289
506506 0 0
507507 −1.43581e36 −0.436002
508508 0 0
509509 −3.84477e36 −1.10708 −0.553541 0.832822i 0.686724π-0.686724\pi
−0.553541 + 0.832822i 0.686724π0.686724\pi
510510 0 0
511511 8.52239e36 2.32744
512512 0 0
513513 −4.27058e35 −0.110637
514514 0 0
515515 −1.09612e36 −0.269440
516516 0 0
517517 −2.08876e36 −0.487266
518518 0 0
519519 −5.50049e36 −1.21799
520520 0 0
521521 5.89950e35 0.124024 0.0620120 0.998075i 0.480248π-0.480248\pi
0.0620120 + 0.998075i 0.480248π0.480248\pi
522522 0 0
523523 −8.51690e36 −1.70023 −0.850117 0.526594i 0.823469π-0.823469\pi
−0.850117 + 0.526594i 0.823469π0.823469\pi
524524 0 0
525525 7.52598e36 1.42696
526526 0 0
527527 1.32701e37 2.39019
528528 0 0
529529 1.10696e37 1.89444
530530 0 0
531531 6.18161e35 0.100537
532532 0 0
533533 1.06686e36 0.164927
534534 0 0
535535 −1.01611e36 −0.149336
536536 0 0
537537 1.09589e37 1.53148
538538 0 0
539539 9.16660e36 1.21832
540540 0 0
541541 −8.17889e36 −1.03403 −0.517013 0.855978i 0.672956π-0.672956\pi
−0.517013 + 0.855978i 0.672956π0.672956\pi
542542 0 0
543543 2.96017e36 0.356056
544544 0 0
545545 −7.99941e35 −0.0915599
546546 0 0
547547 2.25930e36 0.246119 0.123059 0.992399i 0.460729π-0.460729\pi
0.123059 + 0.992399i 0.460729π0.460729\pi
548548 0 0
549549 −2.30823e36 −0.239360
550550 0 0
551551 −1.16602e36 −0.115123
552552 0 0
553553 9.45095e36 0.888559
554554 0 0
555555 −3.72222e36 −0.333309
556556 0 0
557557 −1.44303e37 −1.23092 −0.615462 0.788167i 0.711030π-0.711030\pi
−0.615462 + 0.788167i 0.711030π0.711030\pi
558558 0 0
559559 1.33437e37 1.08447
560560 0 0
561561 −2.09383e37 −1.62160
562562 0 0
563563 −2.56319e37 −1.89198 −0.945992 0.324191i 0.894908π-0.894908\pi
−0.945992 + 0.324191i 0.894908π0.894908\pi
564564 0 0
565565 8.60314e36 0.605345
566566 0 0
567567 2.52519e37 1.69404
568568 0 0
569569 −1.26520e37 −0.809366 −0.404683 0.914457i 0.632618π-0.632618\pi
−0.404683 + 0.914457i 0.632618π0.632618\pi
570570 0 0
571571 −1.18072e37 −0.720376 −0.360188 0.932880i 0.617287π-0.617287\pi
−0.360188 + 0.932880i 0.617287π0.617287\pi
572572 0 0
573573 3.70331e37 2.15527
574574 0 0
575575 −2.72910e37 −1.51532
576576 0 0
577577 −7.88254e36 −0.417631 −0.208816 0.977955i 0.566961π-0.566961\pi
−0.208816 + 0.977955i 0.566961π0.566961\pi
578578 0 0
579579 1.49269e37 0.754758
580580 0 0
581581 9.18446e36 0.443278
582582 0 0
583583 −2.91541e37 −1.34330
584584 0 0
585585 1.08756e36 0.0478463
586586 0 0
587587 1.23694e36 0.0519677 0.0259838 0.999662i 0.491728π-0.491728\pi
0.0259838 + 0.999662i 0.491728π0.491728\pi
588588 0 0
589589 −5.23707e36 −0.210151
590590 0 0
591591 4.28495e35 0.0164254
592592 0 0
593593 −1.16613e37 −0.427081 −0.213540 0.976934i 0.568499π-0.568499\pi
−0.213540 + 0.976934i 0.568499π0.568499\pi
594594 0 0
595595 1.97360e37 0.690686
596596 0 0
597597 −2.53749e37 −0.848693
598598 0 0
599599 3.54285e35 0.0113264 0.00566319 0.999984i 0.498197π-0.498197\pi
0.00566319 + 0.999984i 0.498197π0.498197\pi
600600 0 0
601601 −6.27911e37 −1.91908 −0.959539 0.281575i 0.909143π-0.909143\pi
−0.959539 + 0.281575i 0.909143π0.909143\pi
602602 0 0
603603 −4.34290e36 −0.126910
604604 0 0
605605 1.16004e36 0.0324172
606606 0 0
607607 −6.16722e36 −0.164832 −0.0824161 0.996598i 0.526264π-0.526264\pi
−0.0824161 + 0.996598i 0.526264π0.526264\pi
608608 0 0
609609 5.77633e37 1.47679
610610 0 0
611611 −1.47235e37 −0.360127
612612 0 0
613613 −1.58191e37 −0.370225 −0.185112 0.982717i 0.559265π-0.559265\pi
−0.185112 + 0.982717i 0.559265π0.559265\pi
614614 0 0
615615 3.42498e36 0.0767085
616616 0 0
617617 −6.89426e35 −0.0147788 −0.00738938 0.999973i 0.502352π-0.502352\pi
−0.00738938 + 0.999973i 0.502352π0.502352\pi
618618 0 0
619619 5.16416e37 1.05968 0.529842 0.848097i 0.322251π-0.322251\pi
0.529842 + 0.848097i 0.322251π0.322251\pi
620620 0 0
621621 −7.67162e37 −1.50713
622622 0 0
623623 −1.16329e38 −2.18826
624624 0 0
625625 3.79689e37 0.683987
626626 0 0
627627 8.26331e36 0.142575
628628 0 0
629629 7.95269e37 1.31441
630630 0 0
631631 2.90903e37 0.460630 0.230315 0.973116i 0.426024π-0.426024\pi
0.230315 + 0.973116i 0.426024π0.426024\pi
632632 0 0
633633 4.96245e37 0.752915
634634 0 0
635635 1.04827e36 0.0152415
636636 0 0
637637 6.46147e37 0.900428
638638 0 0
639639 1.90535e36 0.0254515
640640 0 0
641641 −3.34459e37 −0.428311 −0.214155 0.976800i 0.568700π-0.568700\pi
−0.214155 + 0.976800i 0.568700π0.568700\pi
642642 0 0
643643 5.66150e37 0.695158 0.347579 0.937651i 0.387004π-0.387004\pi
0.347579 + 0.937651i 0.387004π0.387004\pi
644644 0 0
645645 4.28375e37 0.504392
646646 0 0
647647 6.66099e37 0.752196 0.376098 0.926580i 0.377266π-0.377266\pi
0.376098 + 0.926580i 0.377266π0.377266\pi
648648 0 0
649649 5.20525e37 0.563817
650650 0 0
651651 2.59437e38 2.69581
652652 0 0
653653 5.83600e36 0.0581818 0.0290909 0.999577i 0.490739π-0.490739\pi
0.0290909 + 0.999577i 0.490739π0.490739\pi
654654 0 0
655655 2.33042e37 0.222934
656656 0 0
657657 −3.22118e37 −0.295721
658658 0 0
659659 6.15562e37 0.542399 0.271200 0.962523i 0.412580π-0.412580\pi
0.271200 + 0.962523i 0.412580π0.412580\pi
660660 0 0
661661 −9.28033e37 −0.784953 −0.392476 0.919762i 0.628382π-0.628382\pi
−0.392476 + 0.919762i 0.628382π0.628382\pi
662662 0 0
663663 −1.47593e38 −1.19848
664664 0 0
665665 −7.78883e36 −0.0607267
666666 0 0
667667 −2.09463e38 −1.56823
668668 0 0
669669 −6.98990e37 −0.502595
670670 0 0
671671 −1.94365e38 −1.34235
672672 0 0
673673 1.13009e38 0.749736 0.374868 0.927078i 0.377688π-0.377688\pi
0.374868 + 0.927078i 0.377688π0.377688\pi
674674 0 0
675675 1.23791e38 0.789022
676676 0 0
677677 −1.47748e38 −0.904844 −0.452422 0.891804i 0.649440π-0.649440\pi
−0.452422 + 0.891804i 0.649440π0.649440\pi
678678 0 0
679679 9.43075e37 0.555015
680680 0 0
681681 2.07598e38 1.17419
682682 0 0
683683 −9.59633e37 −0.521706 −0.260853 0.965379i 0.584004π-0.584004\pi
−0.260853 + 0.965379i 0.584004π0.584004\pi
684684 0 0
685685 9.26544e37 0.484221
686686 0 0
687687 −2.97356e38 −1.49403
688688 0 0
689689 −2.05505e38 −0.992803
690690 0 0
691691 1.85005e38 0.859467 0.429733 0.902956i 0.358608π-0.358608\pi
0.429733 + 0.902956i 0.358608π0.358608\pi
692692 0 0
693693 −6.44464e37 −0.287939
694694 0 0
695695 −6.44048e37 −0.276773
696696 0 0
697697 −7.31762e37 −0.302501
698698 0 0
699699 −2.70235e38 −1.07473
700700 0 0
701701 −2.12622e38 −0.813608 −0.406804 0.913515i 0.633357π-0.633357\pi
−0.406804 + 0.913515i 0.633357π0.633357\pi
702702 0 0
703703 −3.13853e37 −0.115566
704704 0 0
705705 −4.72672e37 −0.167497
706706 0 0
707707 4.81580e38 1.64251
708708 0 0
709709 2.32594e38 0.763614 0.381807 0.924242i 0.375302π-0.375302\pi
0.381807 + 0.924242i 0.375302π0.375302\pi
710710 0 0
711711 −3.57215e37 −0.112899
712712 0 0
713713 −9.40781e38 −2.86273
714714 0 0
715715 9.15784e37 0.268325
716716 0 0
717717 1.48172e38 0.418080
718718 0 0
719719 1.04280e38 0.283375 0.141688 0.989911i 0.454747π-0.454747\pi
0.141688 + 0.989911i 0.454747π0.454747\pi
720720 0 0
721721 4.57856e38 1.19840
722722 0 0
723723 −8.98203e37 −0.226468
724724 0 0
725725 3.37995e38 0.821009
726726 0 0
727727 −8.31544e37 −0.194613 −0.0973063 0.995254i 0.531023π-0.531023\pi
−0.0973063 + 0.995254i 0.531023π0.531023\pi
728728 0 0
729729 3.32501e38 0.749845
730730 0 0
731731 −9.15243e38 −1.98908
732732 0 0
733733 1.51696e38 0.317738 0.158869 0.987300i 0.449215π-0.449215\pi
0.158869 + 0.987300i 0.449215π0.449215\pi
734734 0 0
735735 2.07434e38 0.418794
736736 0 0
737737 −3.65696e38 −0.711720
738738 0 0
739739 2.89991e38 0.544107 0.272053 0.962282i 0.412297π-0.412297\pi
0.272053 + 0.962282i 0.412297π0.412297\pi
740740 0 0
741741 5.82474e37 0.105373
742742 0 0
743743 4.53556e37 0.0791193 0.0395596 0.999217i 0.487404π-0.487404\pi
0.0395596 + 0.999217i 0.487404π0.487404\pi
744744 0 0
745745 −4.34577e37 −0.0731066
746746 0 0
747747 −3.47142e37 −0.0563222
748748 0 0
749749 4.24434e38 0.664211
750750 0 0
751751 −8.41113e37 −0.126974 −0.0634870 0.997983i 0.520222π-0.520222\pi
−0.0634870 + 0.997983i 0.520222π0.520222\pi
752752 0 0
753753 −7.54376e38 −1.09864
754754 0 0
755755 2.48608e37 0.0349326
756756 0 0
757757 −1.31808e38 −0.178709 −0.0893544 0.996000i 0.528480π-0.528480\pi
−0.0893544 + 0.996000i 0.528480π0.528480\pi
758758 0 0
759759 1.48441e39 1.94218
760760 0 0
761761 1.16038e39 1.46524 0.732618 0.680640i 0.238298π-0.238298\pi
0.732618 + 0.680640i 0.238298π0.238298\pi
762762 0 0
763763 3.34139e38 0.407236
764764 0 0
765765 −7.45956e37 −0.0877574
766766 0 0
767767 3.66914e38 0.416704
768768 0 0
769769 7.10302e38 0.778821 0.389410 0.921064i 0.372679π-0.372679\pi
0.389410 + 0.921064i 0.372679π0.372679\pi
770770 0 0
771771 −1.58289e37 −0.0167578
772772 0 0
773773 −1.17473e39 −1.20092 −0.600461 0.799654i 0.705016π-0.705016\pi
−0.600461 + 0.799654i 0.705016π0.705016\pi
774774 0 0
775775 1.51807e39 1.49871
776776 0 0
777777 1.55479e39 1.48247
778778 0 0
779779 2.88790e37 0.0265966
780780 0 0
781781 1.60441e38 0.142734
782782 0 0
783783 9.50120e38 0.816572
784784 0 0
785785 4.82314e38 0.400488
786786 0 0
787787 −2.33439e39 −1.87290 −0.936449 0.350805i 0.885908π-0.885908\pi
−0.936449 + 0.350805i 0.885908π0.885908\pi
788788 0 0
789789 6.57885e38 0.510047
790790 0 0
791791 −3.59357e39 −2.69243
792792 0 0
793793 −1.37007e39 −0.992096
794794 0 0
795795 −6.59737e38 −0.461758
796796 0 0
797797 −1.54886e39 −1.04791 −0.523957 0.851745i 0.675545π-0.675545\pi
−0.523957 + 0.851745i 0.675545π0.675545\pi
798798 0 0
799799 1.00989e39 0.660527
800800 0 0
801801 4.39685e38 0.278037
802802 0 0
803803 −2.71241e39 −1.65842
804804 0 0
805805 −1.39918e39 −0.827234
806806 0 0
807807 1.61145e39 0.921350
808808 0 0
809809 −8.27333e38 −0.457484 −0.228742 0.973487i 0.573461π-0.573461\pi
−0.228742 + 0.973487i 0.573461π0.573461\pi
810810 0 0
811811 2.60639e39 1.39399 0.696993 0.717078i 0.254521π-0.254521\pi
0.696993 + 0.717078i 0.254521π0.254521\pi
812812 0 0
813813 −9.12434e38 −0.472040
814814 0 0
815815 −8.18902e38 −0.409830
816816 0 0
817817 3.61201e38 0.174885
818818 0 0
819819 −4.54278e38 −0.212809
820820 0 0
821821 −1.98954e39 −0.901822 −0.450911 0.892569i 0.648901π-0.648901\pi
−0.450911 + 0.892569i 0.648901π0.648901\pi
822822 0 0
823823 2.42547e39 1.06389 0.531947 0.846778i 0.321460π-0.321460\pi
0.531947 + 0.846778i 0.321460π0.321460\pi
824824 0 0
825825 −2.39529e39 −1.01679
826826 0 0
827827 −4.67442e39 −1.92045 −0.960226 0.279226i 0.909922π-0.909922\pi
−0.960226 + 0.279226i 0.909922π0.909922\pi
828828 0 0
829829 3.96570e39 1.57701 0.788504 0.615030i 0.210856π-0.210856\pi
0.788504 + 0.615030i 0.210856π0.210856\pi
830830 0 0
831831 −1.96865e38 −0.0757801
832832 0 0
833833 −4.43192e39 −1.65152
834834 0 0
835835 −7.35781e38 −0.265449
836836 0 0
837837 4.26736e39 1.49062
838838 0 0
839839 5.00134e38 0.169161 0.0845804 0.996417i 0.473045π-0.473045\pi
0.0845804 + 0.996417i 0.473045π0.473045\pi
840840 0 0
841841 −4.58959e38 −0.150324
842842 0 0
843843 6.03878e39 1.91548
844844 0 0
845845 −4.30733e38 −0.132325
846846 0 0
847847 −4.84554e38 −0.144184
848848 0 0
849849 6.17511e39 1.77988
850850 0 0
851851 −5.63803e39 −1.57427
852852 0 0
853853 1.96601e39 0.531831 0.265915 0.963996i 0.414326π-0.414326\pi
0.265915 + 0.963996i 0.414326π0.414326\pi
854854 0 0
855855 2.94392e37 0.00771584
856856 0 0
857857 1.84272e39 0.467969 0.233985 0.972240i 0.424823π-0.424823\pi
0.233985 + 0.972240i 0.424823π0.424823\pi
858858 0 0
859859 −2.19919e39 −0.541197 −0.270598 0.962692i 0.587222π-0.587222\pi
−0.270598 + 0.962692i 0.587222π0.587222\pi
860860 0 0
861861 −1.43063e39 −0.341181
862862 0 0
863863 2.64850e39 0.612144 0.306072 0.952008i 0.400985π-0.400985\pi
0.306072 + 0.952008i 0.400985π0.400985\pi
864864 0 0
865865 −1.65011e39 −0.369655
866866 0 0
867867 5.10623e39 1.10877
868868 0 0
869869 −3.00794e39 −0.633144
870870 0 0
871871 −2.57776e39 −0.526015
872872 0 0
873873 −3.56451e38 −0.0705193
874874 0 0
875875 4.79261e39 0.919313
876876 0 0
877877 8.30033e38 0.154384 0.0771918 0.997016i 0.475405π-0.475405\pi
0.0771918 + 0.997016i 0.475405π0.475405\pi
878878 0 0
879879 6.73273e39 1.21434
880880 0 0
881881 −4.48294e39 −0.784130 −0.392065 0.919938i 0.628239π-0.628239\pi
−0.392065 + 0.919938i 0.628239π0.628239\pi
882882 0 0
883883 1.55764e38 0.0264239 0.0132119 0.999913i 0.495794π-0.495794\pi
0.0132119 + 0.999913i 0.495794π0.495794\pi
884884 0 0
885885 1.17791e39 0.193811
886886 0 0
887887 1.61984e37 0.00258525 0.00129262 0.999999i 0.499589π-0.499589\pi
0.00129262 + 0.999999i 0.499589π0.499589\pi
888888 0 0
889889 −4.37867e38 −0.0677904
890890 0 0
891891 −8.03689e39 −1.20709
892892 0 0
893893 −3.98552e38 −0.0580751
894894 0 0
895895 3.28759e39 0.464800
896896 0 0
897897 1.04635e40 1.43542
898898 0 0
899899 1.16515e40 1.55104
900900 0 0
901901 1.40956e40 1.82095
902902 0 0
903903 −1.78934e40 −2.24341
904904 0 0
905905 8.88032e38 0.108062
906906 0 0
907907 1.48316e40 1.75182 0.875912 0.482472i 0.160261π-0.160261\pi
0.875912 + 0.482472i 0.160261π0.160261\pi
908908 0 0
909909 −1.82022e39 −0.208694
910910 0 0
911911 7.22078e38 0.0803685 0.0401843 0.999192i 0.487206π-0.487206\pi
0.0401843 + 0.999192i 0.487206π0.487206\pi
912912 0 0
913913 −2.92313e39 −0.315858
914914 0 0
915915 −4.39836e39 −0.461430
916916 0 0
917917 −9.73427e39 −0.991556
918918 0 0
919919 −1.77181e40 −1.75250 −0.876248 0.481861i 0.839961π-0.839961\pi
−0.876248 + 0.481861i 0.839961π0.839961\pi
920920 0 0
921921 4.69684e38 0.0451129
922922 0 0
923923 1.13094e39 0.105491
924924 0 0
925925 9.09767e39 0.824170
926926 0 0
927927 −1.73055e39 −0.152267
928928 0 0
929929 −8.24704e39 −0.704832 −0.352416 0.935843i 0.614640π-0.614640\pi
−0.352416 + 0.935843i 0.614640π0.614640\pi
930930 0 0
931931 1.74906e39 0.145206
932932 0 0
933933 −1.71415e40 −1.38244
934934 0 0
935935 −6.28136e39 −0.492149
936936 0 0
937937 −1.37250e40 −1.04478 −0.522392 0.852705i 0.674960π-0.674960\pi
−0.522392 + 0.852705i 0.674960π0.674960\pi
938938 0 0
939939 1.04202e39 0.0770710
940940 0 0
941941 −1.35387e40 −0.973012 −0.486506 0.873677i 0.661729π-0.661729\pi
−0.486506 + 0.873677i 0.661729π0.661729\pi
942942 0 0
943943 5.18780e39 0.362306
944944 0 0
945945 6.34663e39 0.430739
946946 0 0
947947 −1.23594e40 −0.815218 −0.407609 0.913156i 0.633637π-0.633637\pi
−0.407609 + 0.913156i 0.633637π0.633637\pi
948948 0 0
949949 −1.91196e40 −1.22570
950950 0 0
951951 1.83678e40 1.14451
952952 0 0
953953 1.59950e40 0.968794 0.484397 0.874848i 0.339039π-0.339039\pi
0.484397 + 0.874848i 0.339039π0.339039\pi
954954 0 0
955955 1.11097e40 0.654119
956956 0 0
957957 −1.83843e40 −1.05229
958958 0 0
959959 −3.87022e40 −2.15370
960960 0 0
961961 3.38485e40 1.83136
962962 0 0
963963 −1.60422e39 −0.0843936
964964 0 0
965965 4.47797e39 0.229067
966966 0 0
967967 −2.71147e40 −1.34880 −0.674399 0.738367i 0.735597π-0.735597\pi
−0.674399 + 0.738367i 0.735597π0.735597\pi
968968 0 0
969969 −3.99519e39 −0.193271
970970 0 0
971971 6.75635e39 0.317872 0.158936 0.987289i 0.449194π-0.449194\pi
0.158936 + 0.987289i 0.449194π0.449194\pi
972972 0 0
973973 2.69022e40 1.23102
974974 0 0
975975 −1.68842e40 −0.751481
976976 0 0
977977 −2.46931e40 −1.06905 −0.534526 0.845152i 0.679510π-0.679510\pi
−0.534526 + 0.845152i 0.679510π0.679510\pi
978978 0 0
979979 3.70239e40 1.55925
980980 0 0
981981 −1.26294e39 −0.0517428
982982 0 0
983983 9.26756e39 0.369397 0.184698 0.982795i 0.440869π-0.440869\pi
0.184698 + 0.982795i 0.440869π0.440869\pi
984984 0 0
985985 1.28546e38 0.00498504
986986 0 0
987987 1.97437e40 0.744986
988988 0 0
989989 6.48858e40 2.38232
990990 0 0
991991 5.13676e40 1.83525 0.917625 0.397448i 0.130104π-0.130104\pi
0.917625 + 0.397448i 0.130104π0.130104\pi
992992 0 0
993993 1.43879e40 0.500244
994994 0 0
995995 −7.61231e39 −0.257576
996996 0 0
997997 3.94653e38 0.0129966 0.00649832 0.999979i 0.497932π-0.497932\pi
0.00649832 + 0.999979i 0.497932π0.497932\pi
998998 0 0
999999 2.55740e40 0.819717
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 16.28.a.c.1.2 2
4.3 odd 2 4.28.a.a.1.1 2
12.11 even 2 36.28.a.a.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4.28.a.a.1.1 2 4.3 odd 2
16.28.a.c.1.2 2 1.1 even 1 trivial
36.28.a.a.1.1 2 12.11 even 2