[N,k,chi] = [16,30,Mod(1,16)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(16, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 30, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("16.1");
S:= CuspForms(chi, 30);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 3 + 6789276 T 3 2 − 114073987833936 T 3 − 480436149154912885440 T_{3}^{3} + 6789276T_{3}^{2} - 114073987833936T_{3} - 480436149154912885440 T 3 3 + 6 7 8 9 2 7 6 T 3 2 − 1 1 4 0 7 3 9 8 7 8 3 3 9 3 6 T 3 − 4 8 0 4 3 6 1 4 9 1 5 4 9 1 2 8 8 5 4 4 0
T3^3 + 6789276*T3^2 - 114073987833936*T3 - 480436149154912885440
acting on S 30 n e w ( Γ 0 ( 16 ) ) S_{30}^{\mathrm{new}}(\Gamma_0(16)) S 3 0 n e w ( Γ 0 ( 1 6 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 3 T^{3} T 3
T^3
3 3 3
T 3 + ⋯ − 48 ⋯ 40 T^{3} + \cdots - 48\!\cdots\!40 T 3 + ⋯ − 4 8 ⋯ 4 0
T^3 + 6789276*T^2 - 114073987833936*T - 480436149154912885440
5 5 5
T 3 + ⋯ − 19 ⋯ 00 T^{3} + \cdots - 19\!\cdots\!00 T 3 + ⋯ − 1 9 ⋯ 0 0
T^3 + 17231192190*T^2 - 246117382355727772500*T - 1996829770931266412096159375000
7 7 7
T 3 + ⋯ − 44 ⋯ 84 T^{3} + \cdots - 44\!\cdots\!84 T 3 + ⋯ − 4 4 ⋯ 8 4
T^3 + 479336718840*T^2 - 191979674786451020035392*T - 44775085662834674528915629027075584
11 11 1 1
T 3 + ⋯ − 98 ⋯ 16 T^{3} + \cdots - 98\!\cdots\!16 T 3 + ⋯ − 9 8 ⋯ 1 6
T^3 + 1095790254198036*T^2 - 1203612919147278080513987099856*T - 984740220809516550855524947849140874209418816
13 13 1 3
T 3 + ⋯ + 60 ⋯ 48 T^{3} + \cdots + 60\!\cdots\!48 T 3 + ⋯ + 6 0 ⋯ 4 8
T^3 + 9395719012271046*T^2 - 89820145805830423873586107007220*T + 60335544781994317281560560598074149666919837448
17 17 1 7
T 3 + ⋯ + 55 ⋯ 00 T^{3} + \cdots + 55\!\cdots\!00 T 3 + ⋯ + 5 5 ⋯ 0 0
T^3 - 230104394673067638*T^2 - 932063329781931393868309213371116340*T + 55410322744338882061859921652148406830946234935763000
19 19 1 9
T 3 + ⋯ + 36 ⋯ 04 T^{3} + \cdots + 36\!\cdots\!04 T 3 + ⋯ + 3 6 ⋯ 0 4
T^3 - 2792352047895578484*T^2 - 10304606497681667671802367931179285456*T + 3679207720984007390740673138952823079781187362885437504
23 23 2 3
T 3 + ⋯ + 69 ⋯ 24 T^{3} + \cdots + 69\!\cdots\!24 T 3 + ⋯ + 6 9 ⋯ 2 4
T^3 - 27100487402581130520*T^2 - 2717552255605046368547951484270534733632*T + 69368369373172296462355878833292821267086780436738562113024
29 29 2 9
T 3 + ⋯ − 29 ⋯ 52 T^{3} + \cdots - 29\!\cdots\!52 T 3 + ⋯ − 2 9 ⋯ 5 2
T^3 + 2298307146058432367958*T^2 - 3064425334541646583621148062924414103173044*T - 2934924721308322421671472107176350945679011815980869165942125752
31 31 3 1
T 3 + ⋯ + 11 ⋯ 00 T^{3} + \cdots + 11\!\cdots\!00 T 3 + ⋯ + 1 1 ⋯ 0 0
T^3 - 5018849875397488231968*T^2 - 37399186593146851151054766097087730706600960*T + 119161499227786370010525381660783144564730280650339046387565363200
37 37 3 7
T 3 + ⋯ + 46 ⋯ 76 T^{3} + \cdots + 46\!\cdots\!76 T 3 + ⋯ + 4 6 ⋯ 7 6
T^3 - 3703979203240558724706*T^2 - 6991446771257974409972788654886744387235856596*T + 46602919240401032708695440780183499936453933136276397460291695475176
41 41 4 1
T 3 + ⋯ + 17 ⋯ 44 T^{3} + \cdots + 17\!\cdots\!44 T 3 + ⋯ + 1 7 ⋯ 4 4
T^3 + 459998129854300609354722*T^2 + 59233502254882946932033299932806809258058567980*T + 1715084305004576113357345729114163572370582149671899698775868569349144
43 43 4 3
T 3 + ⋯ − 10 ⋯ 92 T^{3} + \cdots - 10\!\cdots\!92 T 3 + ⋯ − 1 0 ⋯ 9 2
T^3 - 570966042804973431629580*T^2 - 185614434004169926234946675835201529840396240848*T - 10162404725978352150119357179896302218367287453907403878580047424483392
47 47 4 7
T 3 + ⋯ − 70 ⋯ 84 T^{3} + \cdots - 70\!\cdots\!84 T 3 + ⋯ − 7 0 ⋯ 8 4
T^3 - 4501973542027319162506032*T^2 + 3843681461539973380998785297633018843019452375808*T - 707842001108137570349696852045945431793656491782460261031095515760758784
53 53 5 3
T 3 + ⋯ − 68 ⋯ 24 T^{3} + \cdots - 68\!\cdots\!24 T 3 + ⋯ − 6 8 ⋯ 2 4
T^3 + 19837676923566709761266478*T^2 + 43076159283342091433466095437735030730182758386028*T - 68045490493110891652268633540015825111772665159922055077206948773257636824
59 59 5 9
T 3 + ⋯ + 36 ⋯ 24 T^{3} + \cdots + 36\!\cdots\!24 T 3 + ⋯ + 3 6 ⋯ 2 4
T^3 - 49071572383510413313137948*T^2 - 813182811578495544084385132112584447742429935651920*T + 36419322893031009441564997099522821136241682957078030276145365744817245573824
61 61 6 1
T 3 + ⋯ + 61 ⋯ 00 T^{3} + \cdots + 61\!\cdots\!00 T 3 + ⋯ + 6 1 ⋯ 0 0
T^3 + 15568873338675101441145462*T^2 - 4400511267788168214943023507600507149730936514550580*T + 61390234525342686791155087722837532973607819668948730115449068107330767302600
67 67 6 7
T 3 + ⋯ + 18 ⋯ 92 T^{3} + \cdots + 18\!\cdots\!92 T 3 + ⋯ + 1 8 ⋯ 9 2
T^3 + 470996379403916295765578844*T^2 + 55009042518059625545277477018557312183690470123312560*T + 1817472213541593031643678703330848502434836423485536898210619349378968829264192
71 71 7 1
T 3 + ⋯ + 57 ⋯ 80 T^{3} + \cdots + 57\!\cdots\!80 T 3 + ⋯ + 5 7 ⋯ 8 0
T^3 + 1512226782440279957980190136*T^2 + 638165078122127428433957083736670347555699131022894784*T + 57581026140799226523973939243499837344894760561192587089773766508430303415585280
73 73 7 3
T 3 + ⋯ + 96 ⋯ 76 T^{3} + \cdots + 96\!\cdots\!76 T 3 + ⋯ + 9 6 ⋯ 7 6
T^3 - 1023856508018785695598856190*T^2 - 657671210916441810913649146391603376070969037206173012*T + 96602594478320620490508874122428860621043596096463444071575227861094706756890776
79 79 7 9
T 3 + ⋯ + 22 ⋯ 80 T^{3} + \cdots + 22\!\cdots\!80 T 3 + ⋯ + 2 2 ⋯ 8 0
T^3 + 2019098233239353642934908592*T^2 - 19716268751866620880755065974638634181440425115143400704*T + 22514688219355540273073704709089431962211165721847883638089883246698665025307054080
83 83 8 3
T 3 + ⋯ − 50 ⋯ 36 T^{3} + \cdots - 50\!\cdots\!36 T 3 + ⋯ − 5 0 ⋯ 3 6
T^3 + 11053375188446267413995969612*T^2 - 42680682272028016590267688921316347834525857093593476560*T - 505263754238586767489639372237373589623711421110213470441456768353001849100798950336
89 89 8 9
T 3 + ⋯ − 17 ⋯ 84 T^{3} + \cdots - 17\!\cdots\!84 T 3 + ⋯ − 1 7 ⋯ 8 4
T^3 + 47291945286900614421880043154*T^2 + 401738844970786586801155412825688985489872861570409975404*T - 1753090164047314153267608675255814869743894746937344494597066797755240542865434662184
97 97 9 7
T 3 + ⋯ + 18 ⋯ 36 T^{3} + \cdots + 18\!\cdots\!36 T 3 + ⋯ + 1 8 ⋯ 3 6
T^3 + 182408046998735020224949890138*T^2 + 10494407127570630117297935157132753045318638074712345041548*T + 189052221615176833291846081281197230331082607215157519843311940347007467619071929948536
show more
show less