Properties

Label 16.30.a.d
Level 1616
Weight 3030
Character orbit 16.a
Self dual yes
Analytic conductor 85.24585.245
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,30,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 30, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 30);
 
N := Newforms(S);
 
Level: N N == 16=24 16 = 2^{4}
Weight: k k == 30 30
Character orbit: [χ][\chi] == 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 85.244867812985.2448678129
Analytic rank: 11
Dimension: 33
Coefficient field: Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x297534740x+130260063600 x^{3} - x^{2} - 97534740x + 130260063600 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 222335 2^{22}\cdot 3^{3}\cdot 5
Twist minimal: no (minimal twist has level 8)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β12263092)q3+(β2600β15743730730)q5+(28β216338β1159778906280)q7+(4050β2++22783704059133)q9+(71832β2+365263418066012)q11++(11 ⁣ ⁣12β2+70 ⁣ ⁣20)q99+O(q100) q + ( - \beta_1 - 2263092) q^{3} + ( - \beta_{2} - 600 \beta_1 - 5743730730) q^{5} + ( - 28 \beta_{2} - 16338 \beta_1 - 159778906280) q^{7} + (4050 \beta_{2} + \cdots + 22783704059133) q^{9} + ( - 71832 \beta_{2} + \cdots - 365263418066012) q^{11}+ \cdots + ( - 11\!\cdots\!12 \beta_{2} + \cdots - 70\!\cdots\!20) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q6789276q317231192190q5479336718840q7+68351112177399q910 ⁣ ⁣36q1193 ⁣ ⁣46q13+19 ⁣ ⁣20q15+23 ⁣ ⁣38q17+27 ⁣ ⁣84q19+21 ⁣ ⁣60q99+O(q100) 3 q - 6789276 q^{3} - 17231192190 q^{5} - 479336718840 q^{7} + 68351112177399 q^{9} - 10\!\cdots\!36 q^{11} - 93\!\cdots\!46 q^{13} + 19\!\cdots\!20 q^{15} + 23\!\cdots\!38 q^{17} + 27\!\cdots\!84 q^{19}+ \cdots - 21\!\cdots\!60 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x297534740x+130260063600 x^{3} - x^{2} - 97534740x + 130260063600 : Copy content Toggle raw display

β1\beta_{1}== 1152ν384 1152\nu - 384 Copy content Toggle raw display
β2\beta_{2}== (8192ν2+16403968ν532675197440)/25 ( 8192\nu^{2} + 16403968\nu - 532675197440 ) / 25 Copy content Toggle raw display
ν\nu== (β1+384)/1152 ( \beta _1 + 384 ) / 1152 Copy content Toggle raw display
ν2\nu^{2}== (225β2128156β1+4794027565056)/73728 ( 225\beta_{2} - 128156\beta _1 + 4794027565056 ) / 73728 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
9125.19
1361.37
−10485.6
0 −1.27749e7 0 −2.40170e10 0 −6.66574e11 0 9.45684e13 0
1.2 0 −3.83101e6 0 1.31219e10 0 3.69184e11 0 −5.39537e13 0
1.3 0 9.81666e6 0 −6.33613e9 0 −1.81947e11 0 2.77365e13 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 16.30.a.d 3
4.b odd 2 1 8.30.a.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.30.a.a 3 4.b odd 2 1
16.30.a.d 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T33+6789276T32114073987833936T3480436149154912885440 T_{3}^{3} + 6789276T_{3}^{2} - 114073987833936T_{3} - 480436149154912885440 acting on S30new(Γ0(16))S_{30}^{\mathrm{new}}(\Gamma_0(16)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3 T^{3} Copy content Toggle raw display
33 T3+48 ⁣ ⁣40 T^{3} + \cdots - 48\!\cdots\!40 Copy content Toggle raw display
55 T3+19 ⁣ ⁣00 T^{3} + \cdots - 19\!\cdots\!00 Copy content Toggle raw display
77 T3+44 ⁣ ⁣84 T^{3} + \cdots - 44\!\cdots\!84 Copy content Toggle raw display
1111 T3+98 ⁣ ⁣16 T^{3} + \cdots - 98\!\cdots\!16 Copy content Toggle raw display
1313 T3++60 ⁣ ⁣48 T^{3} + \cdots + 60\!\cdots\!48 Copy content Toggle raw display
1717 T3++55 ⁣ ⁣00 T^{3} + \cdots + 55\!\cdots\!00 Copy content Toggle raw display
1919 T3++36 ⁣ ⁣04 T^{3} + \cdots + 36\!\cdots\!04 Copy content Toggle raw display
2323 T3++69 ⁣ ⁣24 T^{3} + \cdots + 69\!\cdots\!24 Copy content Toggle raw display
2929 T3+29 ⁣ ⁣52 T^{3} + \cdots - 29\!\cdots\!52 Copy content Toggle raw display
3131 T3++11 ⁣ ⁣00 T^{3} + \cdots + 11\!\cdots\!00 Copy content Toggle raw display
3737 T3++46 ⁣ ⁣76 T^{3} + \cdots + 46\!\cdots\!76 Copy content Toggle raw display
4141 T3++17 ⁣ ⁣44 T^{3} + \cdots + 17\!\cdots\!44 Copy content Toggle raw display
4343 T3+10 ⁣ ⁣92 T^{3} + \cdots - 10\!\cdots\!92 Copy content Toggle raw display
4747 T3+70 ⁣ ⁣84 T^{3} + \cdots - 70\!\cdots\!84 Copy content Toggle raw display
5353 T3+68 ⁣ ⁣24 T^{3} + \cdots - 68\!\cdots\!24 Copy content Toggle raw display
5959 T3++36 ⁣ ⁣24 T^{3} + \cdots + 36\!\cdots\!24 Copy content Toggle raw display
6161 T3++61 ⁣ ⁣00 T^{3} + \cdots + 61\!\cdots\!00 Copy content Toggle raw display
6767 T3++18 ⁣ ⁣92 T^{3} + \cdots + 18\!\cdots\!92 Copy content Toggle raw display
7171 T3++57 ⁣ ⁣80 T^{3} + \cdots + 57\!\cdots\!80 Copy content Toggle raw display
7373 T3++96 ⁣ ⁣76 T^{3} + \cdots + 96\!\cdots\!76 Copy content Toggle raw display
7979 T3++22 ⁣ ⁣80 T^{3} + \cdots + 22\!\cdots\!80 Copy content Toggle raw display
8383 T3+50 ⁣ ⁣36 T^{3} + \cdots - 50\!\cdots\!36 Copy content Toggle raw display
8989 T3+17 ⁣ ⁣84 T^{3} + \cdots - 17\!\cdots\!84 Copy content Toggle raw display
9797 T3++18 ⁣ ⁣36 T^{3} + \cdots + 18\!\cdots\!36 Copy content Toggle raw display
show more
show less