Properties

Label 16.44.a.b.1.2
Level $16$
Weight $44$
Character 16.1
Self dual yes
Analytic conductor $187.377$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,44,Mod(1,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 44, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.1");
 
S:= CuspForms(chi, 44);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 44 \)
Character orbit: \([\chi]\) \(=\) 16.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(187.376632553\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 397496384250 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8}\cdot 3^{3}\cdot 5 \)
Twist minimal: no (minimal twist has level 2)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-630473.\) of defining polynomial
Character \(\chi\) \(=\) 16.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.29600e10 q^{3} +3.97045e14 q^{5} -1.80269e18 q^{7} +7.58103e20 q^{9} +3.33115e22 q^{11} -7.96520e23 q^{13} +1.30866e25 q^{15} -3.35920e26 q^{17} -6.16773e26 q^{19} -5.94168e28 q^{21} -2.43777e29 q^{23} -9.79224e29 q^{25} +1.41677e31 q^{27} -2.03214e31 q^{29} +1.01779e32 q^{31} +1.09795e33 q^{33} -7.15750e32 q^{35} -4.91735e33 q^{37} -2.62533e34 q^{39} -5.16303e34 q^{41} +9.91848e34 q^{43} +3.01001e35 q^{45} -2.80853e35 q^{47} +1.06589e36 q^{49} -1.10719e37 q^{51} +6.66611e36 q^{53} +1.32262e37 q^{55} -2.03288e37 q^{57} -4.38154e37 q^{59} -8.24137e37 q^{61} -1.36663e39 q^{63} -3.16254e38 q^{65} +2.28272e39 q^{67} -8.03489e39 q^{69} -6.57126e39 q^{71} -1.46269e40 q^{73} -3.22752e40 q^{75} -6.00505e40 q^{77} -4.38403e40 q^{79} +2.18114e41 q^{81} +2.02288e41 q^{83} -1.33375e41 q^{85} -6.69791e41 q^{87} -3.53186e41 q^{89} +1.43588e42 q^{91} +3.35464e42 q^{93} -2.44886e41 q^{95} +6.40027e42 q^{97} +2.52536e43 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 22341634056 q^{3} - 47320658398020 q^{5} + 22\!\cdots\!28 q^{7} + 54\!\cdots\!14 q^{9} + 41\!\cdots\!16 q^{11} - 15\!\cdots\!96 q^{13} + 17\!\cdots\!40 q^{15} - 67\!\cdots\!48 q^{17} - 12\!\cdots\!40 q^{19}+ \cdots + 23\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.29600e10 1.81920 0.909599 0.415488i \(-0.136389\pi\)
0.909599 + 0.415488i \(0.136389\pi\)
\(4\) 0 0
\(5\) 3.97045e14 0.372378 0.186189 0.982514i \(-0.440386\pi\)
0.186189 + 0.982514i \(0.440386\pi\)
\(6\) 0 0
\(7\) −1.80269e18 −1.21987 −0.609936 0.792451i \(-0.708805\pi\)
−0.609936 + 0.792451i \(0.708805\pi\)
\(8\) 0 0
\(9\) 7.58103e20 2.30948
\(10\) 0 0
\(11\) 3.33115e22 1.35723 0.678613 0.734496i \(-0.262581\pi\)
0.678613 + 0.734496i \(0.262581\pi\)
\(12\) 0 0
\(13\) −7.96520e23 −0.894159 −0.447079 0.894494i \(-0.647536\pi\)
−0.447079 + 0.894494i \(0.647536\pi\)
\(14\) 0 0
\(15\) 1.30866e25 0.677429
\(16\) 0 0
\(17\) −3.35920e26 −1.17919 −0.589595 0.807699i \(-0.700713\pi\)
−0.589595 + 0.807699i \(0.700713\pi\)
\(18\) 0 0
\(19\) −6.16773e26 −0.198117 −0.0990587 0.995082i \(-0.531583\pi\)
−0.0990587 + 0.995082i \(0.531583\pi\)
\(20\) 0 0
\(21\) −5.94168e28 −2.21919
\(22\) 0 0
\(23\) −2.43777e29 −1.28779 −0.643895 0.765114i \(-0.722683\pi\)
−0.643895 + 0.765114i \(0.722683\pi\)
\(24\) 0 0
\(25\) −9.79224e29 −0.861334
\(26\) 0 0
\(27\) 1.41677e31 2.38220
\(28\) 0 0
\(29\) −2.03214e31 −0.735183 −0.367592 0.929987i \(-0.619818\pi\)
−0.367592 + 0.929987i \(0.619818\pi\)
\(30\) 0 0
\(31\) 1.01779e32 0.877773 0.438887 0.898542i \(-0.355373\pi\)
0.438887 + 0.898542i \(0.355373\pi\)
\(32\) 0 0
\(33\) 1.09795e33 2.46906
\(34\) 0 0
\(35\) −7.15750e32 −0.454254
\(36\) 0 0
\(37\) −4.91735e33 −0.944918 −0.472459 0.881353i \(-0.656633\pi\)
−0.472459 + 0.881353i \(0.656633\pi\)
\(38\) 0 0
\(39\) −2.62533e34 −1.62665
\(40\) 0 0
\(41\) −5.16303e34 −1.09157 −0.545785 0.837925i \(-0.683769\pi\)
−0.545785 + 0.837925i \(0.683769\pi\)
\(42\) 0 0
\(43\) 9.91848e34 0.753136 0.376568 0.926389i \(-0.377104\pi\)
0.376568 + 0.926389i \(0.377104\pi\)
\(44\) 0 0
\(45\) 3.01001e35 0.860000
\(46\) 0 0
\(47\) −2.80853e35 −0.315047 −0.157523 0.987515i \(-0.550351\pi\)
−0.157523 + 0.987515i \(0.550351\pi\)
\(48\) 0 0
\(49\) 1.06589e36 0.488088
\(50\) 0 0
\(51\) −1.10719e37 −2.14518
\(52\) 0 0
\(53\) 6.66611e36 0.564861 0.282430 0.959288i \(-0.408859\pi\)
0.282430 + 0.959288i \(0.408859\pi\)
\(54\) 0 0
\(55\) 1.32262e37 0.505401
\(56\) 0 0
\(57\) −2.03288e37 −0.360415
\(58\) 0 0
\(59\) −4.38154e37 −0.370091 −0.185046 0.982730i \(-0.559243\pi\)
−0.185046 + 0.982730i \(0.559243\pi\)
\(60\) 0 0
\(61\) −8.24137e37 −0.339945 −0.169972 0.985449i \(-0.554368\pi\)
−0.169972 + 0.985449i \(0.554368\pi\)
\(62\) 0 0
\(63\) −1.36663e39 −2.81727
\(64\) 0 0
\(65\) −3.16254e38 −0.332965
\(66\) 0 0
\(67\) 2.28272e39 1.25269 0.626345 0.779546i \(-0.284550\pi\)
0.626345 + 0.779546i \(0.284550\pi\)
\(68\) 0 0
\(69\) −8.03489e39 −2.34274
\(70\) 0 0
\(71\) −6.57126e39 −1.03656 −0.518280 0.855211i \(-0.673427\pi\)
−0.518280 + 0.855211i \(0.673427\pi\)
\(72\) 0 0
\(73\) −1.46269e40 −1.26972 −0.634862 0.772625i \(-0.718943\pi\)
−0.634862 + 0.772625i \(0.718943\pi\)
\(74\) 0 0
\(75\) −3.22752e40 −1.56694
\(76\) 0 0
\(77\) −6.00505e40 −1.65564
\(78\) 0 0
\(79\) −4.38403e40 −0.696452 −0.348226 0.937411i \(-0.613216\pi\)
−0.348226 + 0.937411i \(0.613216\pi\)
\(80\) 0 0
\(81\) 2.18114e41 2.02421
\(82\) 0 0
\(83\) 2.02288e41 1.11120 0.555599 0.831451i \(-0.312489\pi\)
0.555599 + 0.831451i \(0.312489\pi\)
\(84\) 0 0
\(85\) −1.33375e41 −0.439104
\(86\) 0 0
\(87\) −6.69791e41 −1.33744
\(88\) 0 0
\(89\) −3.53186e41 −0.432632 −0.216316 0.976323i \(-0.569404\pi\)
−0.216316 + 0.976323i \(0.569404\pi\)
\(90\) 0 0
\(91\) 1.43588e42 1.09076
\(92\) 0 0
\(93\) 3.35464e42 1.59684
\(94\) 0 0
\(95\) −2.44886e41 −0.0737746
\(96\) 0 0
\(97\) 6.40027e42 1.23199 0.615993 0.787752i \(-0.288755\pi\)
0.615993 + 0.787752i \(0.288755\pi\)
\(98\) 0 0
\(99\) 2.52536e43 3.13448
\(100\) 0 0
\(101\) −1.03724e43 −0.837474 −0.418737 0.908108i \(-0.637527\pi\)
−0.418737 + 0.908108i \(0.637527\pi\)
\(102\) 0 0
\(103\) −1.71018e43 −0.905820 −0.452910 0.891556i \(-0.649614\pi\)
−0.452910 + 0.891556i \(0.649614\pi\)
\(104\) 0 0
\(105\) −2.35911e43 −0.826377
\(106\) 0 0
\(107\) −2.99663e43 −0.699652 −0.349826 0.936815i \(-0.613759\pi\)
−0.349826 + 0.936815i \(0.613759\pi\)
\(108\) 0 0
\(109\) 1.74419e43 0.273479 0.136739 0.990607i \(-0.456338\pi\)
0.136739 + 0.990607i \(0.456338\pi\)
\(110\) 0 0
\(111\) −1.62076e44 −1.71899
\(112\) 0 0
\(113\) 6.93854e43 0.501282 0.250641 0.968080i \(-0.419359\pi\)
0.250641 + 0.968080i \(0.419359\pi\)
\(114\) 0 0
\(115\) −9.67905e43 −0.479545
\(116\) 0 0
\(117\) −6.03844e44 −2.06504
\(118\) 0 0
\(119\) 6.05561e44 1.43846
\(120\) 0 0
\(121\) 5.07258e44 0.842061
\(122\) 0 0
\(123\) −1.70173e45 −1.98578
\(124\) 0 0
\(125\) −8.40183e44 −0.693120
\(126\) 0 0
\(127\) 2.42717e45 1.42338 0.711689 0.702495i \(-0.247931\pi\)
0.711689 + 0.702495i \(0.247931\pi\)
\(128\) 0 0
\(129\) 3.26913e45 1.37010
\(130\) 0 0
\(131\) 4.52439e45 1.36216 0.681078 0.732211i \(-0.261511\pi\)
0.681078 + 0.732211i \(0.261511\pi\)
\(132\) 0 0
\(133\) 1.11185e45 0.241678
\(134\) 0 0
\(135\) 5.62521e45 0.887080
\(136\) 0 0
\(137\) 4.20024e45 0.482816 0.241408 0.970424i \(-0.422391\pi\)
0.241408 + 0.970424i \(0.422391\pi\)
\(138\) 0 0
\(139\) −1.45728e46 −1.22666 −0.613329 0.789827i \(-0.710170\pi\)
−0.613329 + 0.789827i \(0.710170\pi\)
\(140\) 0 0
\(141\) −9.25691e45 −0.573132
\(142\) 0 0
\(143\) −2.65333e46 −1.21358
\(144\) 0 0
\(145\) −8.06848e45 −0.273766
\(146\) 0 0
\(147\) 3.51318e46 0.887928
\(148\) 0 0
\(149\) 6.79498e46 1.28435 0.642175 0.766558i \(-0.278032\pi\)
0.642175 + 0.766558i \(0.278032\pi\)
\(150\) 0 0
\(151\) −1.18879e47 −1.68695 −0.843474 0.537170i \(-0.819494\pi\)
−0.843474 + 0.537170i \(0.819494\pi\)
\(152\) 0 0
\(153\) −2.54662e47 −2.72331
\(154\) 0 0
\(155\) 4.04109e46 0.326864
\(156\) 0 0
\(157\) −2.20019e47 −1.35088 −0.675441 0.737414i \(-0.736047\pi\)
−0.675441 + 0.737414i \(0.736047\pi\)
\(158\) 0 0
\(159\) 2.19715e47 1.02759
\(160\) 0 0
\(161\) 4.39456e47 1.57094
\(162\) 0 0
\(163\) −3.40799e47 −0.934254 −0.467127 0.884190i \(-0.654711\pi\)
−0.467127 + 0.884190i \(0.654711\pi\)
\(164\) 0 0
\(165\) 4.35934e47 0.919425
\(166\) 0 0
\(167\) 1.70286e47 0.277188 0.138594 0.990349i \(-0.455742\pi\)
0.138594 + 0.990349i \(0.455742\pi\)
\(168\) 0 0
\(169\) −1.59087e47 −0.200480
\(170\) 0 0
\(171\) −4.67577e47 −0.457548
\(172\) 0 0
\(173\) 2.24170e47 0.170839 0.0854194 0.996345i \(-0.472777\pi\)
0.0854194 + 0.996345i \(0.472777\pi\)
\(174\) 0 0
\(175\) 1.76524e48 1.05072
\(176\) 0 0
\(177\) −1.44416e48 −0.673269
\(178\) 0 0
\(179\) −1.36907e48 −0.501284 −0.250642 0.968080i \(-0.580642\pi\)
−0.250642 + 0.968080i \(0.580642\pi\)
\(180\) 0 0
\(181\) 1.59585e48 0.460153 0.230077 0.973172i \(-0.426102\pi\)
0.230077 + 0.973172i \(0.426102\pi\)
\(182\) 0 0
\(183\) −2.71635e48 −0.618426
\(184\) 0 0
\(185\) −1.95241e48 −0.351867
\(186\) 0 0
\(187\) −1.11900e49 −1.60043
\(188\) 0 0
\(189\) −2.55400e49 −2.90598
\(190\) 0 0
\(191\) −7.91365e48 −0.718058 −0.359029 0.933326i \(-0.616892\pi\)
−0.359029 + 0.933326i \(0.616892\pi\)
\(192\) 0 0
\(193\) −2.15792e49 −1.56514 −0.782568 0.622565i \(-0.786091\pi\)
−0.782568 + 0.622565i \(0.786091\pi\)
\(194\) 0 0
\(195\) −1.04237e49 −0.605729
\(196\) 0 0
\(197\) −2.02401e48 −0.0944470 −0.0472235 0.998884i \(-0.515037\pi\)
−0.0472235 + 0.998884i \(0.515037\pi\)
\(198\) 0 0
\(199\) 2.63656e48 0.0990141 0.0495070 0.998774i \(-0.484235\pi\)
0.0495070 + 0.998774i \(0.484235\pi\)
\(200\) 0 0
\(201\) 7.52383e49 2.27889
\(202\) 0 0
\(203\) 3.66332e49 0.896830
\(204\) 0 0
\(205\) −2.04995e49 −0.406477
\(206\) 0 0
\(207\) −1.84808e50 −2.97412
\(208\) 0 0
\(209\) −2.05456e49 −0.268890
\(210\) 0 0
\(211\) 1.00024e50 1.06667 0.533337 0.845903i \(-0.320938\pi\)
0.533337 + 0.845903i \(0.320938\pi\)
\(212\) 0 0
\(213\) −2.16589e50 −1.88571
\(214\) 0 0
\(215\) 3.93808e49 0.280451
\(216\) 0 0
\(217\) −1.83477e50 −1.07077
\(218\) 0 0
\(219\) −4.82101e50 −2.30988
\(220\) 0 0
\(221\) 2.67567e50 1.05438
\(222\) 0 0
\(223\) 6.05545e50 1.96604 0.983020 0.183501i \(-0.0587431\pi\)
0.983020 + 0.183501i \(0.0587431\pi\)
\(224\) 0 0
\(225\) −7.42352e50 −1.98923
\(226\) 0 0
\(227\) −8.22900e50 −1.82302 −0.911510 0.411278i \(-0.865082\pi\)
−0.911510 + 0.411278i \(0.865082\pi\)
\(228\) 0 0
\(229\) −7.00201e50 −1.28458 −0.642288 0.766464i \(-0.722015\pi\)
−0.642288 + 0.766464i \(0.722015\pi\)
\(230\) 0 0
\(231\) −1.97926e51 −3.01194
\(232\) 0 0
\(233\) 3.12585e50 0.395199 0.197599 0.980283i \(-0.436686\pi\)
0.197599 + 0.980283i \(0.436686\pi\)
\(234\) 0 0
\(235\) −1.11511e50 −0.117317
\(236\) 0 0
\(237\) −1.44497e51 −1.26698
\(238\) 0 0
\(239\) 1.14055e50 0.0834755 0.0417378 0.999129i \(-0.486711\pi\)
0.0417378 + 0.999129i \(0.486711\pi\)
\(240\) 0 0
\(241\) 5.69958e50 0.348719 0.174360 0.984682i \(-0.444214\pi\)
0.174360 + 0.984682i \(0.444214\pi\)
\(242\) 0 0
\(243\) 2.53840e51 1.30024
\(244\) 0 0
\(245\) 4.23207e50 0.181753
\(246\) 0 0
\(247\) 4.91272e50 0.177148
\(248\) 0 0
\(249\) 6.66741e51 2.02149
\(250\) 0 0
\(251\) 2.86476e50 0.0731312 0.0365656 0.999331i \(-0.488358\pi\)
0.0365656 + 0.999331i \(0.488358\pi\)
\(252\) 0 0
\(253\) −8.12060e51 −1.74782
\(254\) 0 0
\(255\) −4.39604e51 −0.798818
\(256\) 0 0
\(257\) 9.14943e51 1.40550 0.702752 0.711435i \(-0.251954\pi\)
0.702752 + 0.711435i \(0.251954\pi\)
\(258\) 0 0
\(259\) 8.86448e51 1.15268
\(260\) 0 0
\(261\) −1.54057e52 −1.69789
\(262\) 0 0
\(263\) 1.31330e52 1.22833 0.614163 0.789179i \(-0.289494\pi\)
0.614163 + 0.789179i \(0.289494\pi\)
\(264\) 0 0
\(265\) 2.64674e51 0.210342
\(266\) 0 0
\(267\) −1.16410e52 −0.787043
\(268\) 0 0
\(269\) 1.10289e52 0.635124 0.317562 0.948237i \(-0.397136\pi\)
0.317562 + 0.948237i \(0.397136\pi\)
\(270\) 0 0
\(271\) −1.58832e52 −0.780008 −0.390004 0.920813i \(-0.627526\pi\)
−0.390004 + 0.920813i \(0.627526\pi\)
\(272\) 0 0
\(273\) 4.73266e52 1.98431
\(274\) 0 0
\(275\) −3.26195e52 −1.16903
\(276\) 0 0
\(277\) −4.86772e52 −1.49283 −0.746416 0.665480i \(-0.768227\pi\)
−0.746416 + 0.665480i \(0.768227\pi\)
\(278\) 0 0
\(279\) 7.71590e52 2.02720
\(280\) 0 0
\(281\) 4.47786e52 1.00898 0.504492 0.863416i \(-0.331680\pi\)
0.504492 + 0.863416i \(0.331680\pi\)
\(282\) 0 0
\(283\) −1.56790e52 −0.303327 −0.151663 0.988432i \(-0.548463\pi\)
−0.151663 + 0.988432i \(0.548463\pi\)
\(284\) 0 0
\(285\) −8.07144e51 −0.134211
\(286\) 0 0
\(287\) 9.30737e52 1.33158
\(288\) 0 0
\(289\) 3.16892e52 0.390488
\(290\) 0 0
\(291\) 2.10953e53 2.24123
\(292\) 0 0
\(293\) 4.52079e52 0.414535 0.207267 0.978284i \(-0.433543\pi\)
0.207267 + 0.978284i \(0.433543\pi\)
\(294\) 0 0
\(295\) −1.73967e52 −0.137814
\(296\) 0 0
\(297\) 4.71948e53 3.23318
\(298\) 0 0
\(299\) 1.94174e53 1.15149
\(300\) 0 0
\(301\) −1.78800e53 −0.918729
\(302\) 0 0
\(303\) −3.41875e53 −1.52353
\(304\) 0 0
\(305\) −3.27219e52 −0.126588
\(306\) 0 0
\(307\) −4.59415e52 −0.154429 −0.0772147 0.997014i \(-0.524603\pi\)
−0.0772147 + 0.997014i \(0.524603\pi\)
\(308\) 0 0
\(309\) −5.63676e53 −1.64787
\(310\) 0 0
\(311\) 9.87805e52 0.251375 0.125688 0.992070i \(-0.459886\pi\)
0.125688 + 0.992070i \(0.459886\pi\)
\(312\) 0 0
\(313\) 6.64885e53 1.47416 0.737078 0.675808i \(-0.236205\pi\)
0.737078 + 0.675808i \(0.236205\pi\)
\(314\) 0 0
\(315\) −5.42612e53 −1.04909
\(316\) 0 0
\(317\) −8.52504e53 −1.43854 −0.719270 0.694730i \(-0.755524\pi\)
−0.719270 + 0.694730i \(0.755524\pi\)
\(318\) 0 0
\(319\) −6.76936e53 −0.997810
\(320\) 0 0
\(321\) −9.87689e53 −1.27281
\(322\) 0 0
\(323\) 2.07186e53 0.233618
\(324\) 0 0
\(325\) 7.79971e53 0.770170
\(326\) 0 0
\(327\) 5.74883e53 0.497511
\(328\) 0 0
\(329\) 5.06292e53 0.384317
\(330\) 0 0
\(331\) −1.71691e54 −1.14405 −0.572026 0.820235i \(-0.693843\pi\)
−0.572026 + 0.820235i \(0.693843\pi\)
\(332\) 0 0
\(333\) −3.72785e54 −2.18227
\(334\) 0 0
\(335\) 9.06341e53 0.466475
\(336\) 0 0
\(337\) 2.35850e54 1.06805 0.534027 0.845467i \(-0.320678\pi\)
0.534027 + 0.845467i \(0.320678\pi\)
\(338\) 0 0
\(339\) 2.28694e54 0.911930
\(340\) 0 0
\(341\) 3.39042e54 1.19134
\(342\) 0 0
\(343\) 2.01527e54 0.624467
\(344\) 0 0
\(345\) −3.19021e54 −0.872387
\(346\) 0 0
\(347\) −6.65761e54 −1.60781 −0.803904 0.594759i \(-0.797248\pi\)
−0.803904 + 0.594759i \(0.797248\pi\)
\(348\) 0 0
\(349\) −5.12896e54 −1.09467 −0.547334 0.836914i \(-0.684357\pi\)
−0.547334 + 0.836914i \(0.684357\pi\)
\(350\) 0 0
\(351\) −1.12849e55 −2.13007
\(352\) 0 0
\(353\) −9.28186e54 −1.55052 −0.775262 0.631639i \(-0.782382\pi\)
−0.775262 + 0.631639i \(0.782382\pi\)
\(354\) 0 0
\(355\) −2.60909e54 −0.385992
\(356\) 0 0
\(357\) 1.99593e55 2.61684
\(358\) 0 0
\(359\) −5.79735e54 −0.674060 −0.337030 0.941494i \(-0.609422\pi\)
−0.337030 + 0.941494i \(0.609422\pi\)
\(360\) 0 0
\(361\) −9.31140e54 −0.960749
\(362\) 0 0
\(363\) 1.67192e55 1.53188
\(364\) 0 0
\(365\) −5.80752e54 −0.472818
\(366\) 0 0
\(367\) 1.84353e55 1.33454 0.667269 0.744817i \(-0.267463\pi\)
0.667269 + 0.744817i \(0.267463\pi\)
\(368\) 0 0
\(369\) −3.91411e55 −2.52096
\(370\) 0 0
\(371\) −1.20170e55 −0.689058
\(372\) 0 0
\(373\) 8.25340e54 0.421593 0.210796 0.977530i \(-0.432394\pi\)
0.210796 + 0.977530i \(0.432394\pi\)
\(374\) 0 0
\(375\) −2.76924e55 −1.26092
\(376\) 0 0
\(377\) 1.61864e55 0.657371
\(378\) 0 0
\(379\) −1.57598e55 −0.571225 −0.285612 0.958345i \(-0.592197\pi\)
−0.285612 + 0.958345i \(0.592197\pi\)
\(380\) 0 0
\(381\) 7.99994e55 2.58940
\(382\) 0 0
\(383\) 4.72750e55 1.36728 0.683640 0.729819i \(-0.260396\pi\)
0.683640 + 0.729819i \(0.260396\pi\)
\(384\) 0 0
\(385\) −2.38427e55 −0.616525
\(386\) 0 0
\(387\) 7.51922e55 1.73935
\(388\) 0 0
\(389\) 7.53509e55 1.56017 0.780085 0.625673i \(-0.215176\pi\)
0.780085 + 0.625673i \(0.215176\pi\)
\(390\) 0 0
\(391\) 8.18896e55 1.51855
\(392\) 0 0
\(393\) 1.49124e56 2.47803
\(394\) 0 0
\(395\) −1.74065e55 −0.259343
\(396\) 0 0
\(397\) −1.44560e56 −1.93220 −0.966102 0.258160i \(-0.916884\pi\)
−0.966102 + 0.258160i \(0.916884\pi\)
\(398\) 0 0
\(399\) 3.66466e55 0.439660
\(400\) 0 0
\(401\) −6.84820e55 −0.737858 −0.368929 0.929458i \(-0.620275\pi\)
−0.368929 + 0.929458i \(0.620275\pi\)
\(402\) 0 0
\(403\) −8.10691e55 −0.784868
\(404\) 0 0
\(405\) 8.66012e55 0.753773
\(406\) 0 0
\(407\) −1.63804e56 −1.28247
\(408\) 0 0
\(409\) −3.28961e55 −0.231789 −0.115895 0.993262i \(-0.536973\pi\)
−0.115895 + 0.993262i \(0.536973\pi\)
\(410\) 0 0
\(411\) 1.38440e56 0.878338
\(412\) 0 0
\(413\) 7.89858e55 0.451464
\(414\) 0 0
\(415\) 8.03174e55 0.413786
\(416\) 0 0
\(417\) −4.80318e56 −2.23153
\(418\) 0 0
\(419\) 1.62541e56 0.681338 0.340669 0.940183i \(-0.389347\pi\)
0.340669 + 0.940183i \(0.389347\pi\)
\(420\) 0 0
\(421\) 4.26597e56 1.61418 0.807092 0.590426i \(-0.201040\pi\)
0.807092 + 0.590426i \(0.201040\pi\)
\(422\) 0 0
\(423\) −2.12915e56 −0.727594
\(424\) 0 0
\(425\) 3.28941e56 1.01568
\(426\) 0 0
\(427\) 1.48567e56 0.414689
\(428\) 0 0
\(429\) −8.74537e56 −2.20773
\(430\) 0 0
\(431\) −3.62720e56 −0.828534 −0.414267 0.910155i \(-0.635962\pi\)
−0.414267 + 0.910155i \(0.635962\pi\)
\(432\) 0 0
\(433\) 2.97238e56 0.614631 0.307315 0.951608i \(-0.400569\pi\)
0.307315 + 0.951608i \(0.400569\pi\)
\(434\) 0 0
\(435\) −2.65937e56 −0.498035
\(436\) 0 0
\(437\) 1.50355e56 0.255134
\(438\) 0 0
\(439\) −4.62182e56 −0.710928 −0.355464 0.934690i \(-0.615677\pi\)
−0.355464 + 0.934690i \(0.615677\pi\)
\(440\) 0 0
\(441\) 8.08057e56 1.12723
\(442\) 0 0
\(443\) 2.12702e56 0.269210 0.134605 0.990899i \(-0.457023\pi\)
0.134605 + 0.990899i \(0.457023\pi\)
\(444\) 0 0
\(445\) −1.40231e56 −0.161103
\(446\) 0 0
\(447\) 2.23962e57 2.33649
\(448\) 0 0
\(449\) 1.02618e57 0.972581 0.486291 0.873797i \(-0.338350\pi\)
0.486291 + 0.873797i \(0.338350\pi\)
\(450\) 0 0
\(451\) −1.71989e57 −1.48151
\(452\) 0 0
\(453\) −3.91826e57 −3.06889
\(454\) 0 0
\(455\) 5.70109e56 0.406175
\(456\) 0 0
\(457\) −1.48807e57 −0.964775 −0.482388 0.875958i \(-0.660230\pi\)
−0.482388 + 0.875958i \(0.660230\pi\)
\(458\) 0 0
\(459\) −4.75921e57 −2.80907
\(460\) 0 0
\(461\) −2.28032e57 −1.22582 −0.612910 0.790153i \(-0.710001\pi\)
−0.612910 + 0.790153i \(0.710001\pi\)
\(462\) 0 0
\(463\) −3.76534e56 −0.184422 −0.0922111 0.995739i \(-0.529393\pi\)
−0.0922111 + 0.995739i \(0.529393\pi\)
\(464\) 0 0
\(465\) 1.33194e57 0.594629
\(466\) 0 0
\(467\) 3.19228e57 1.29953 0.649767 0.760133i \(-0.274866\pi\)
0.649767 + 0.760133i \(0.274866\pi\)
\(468\) 0 0
\(469\) −4.11504e57 −1.52812
\(470\) 0 0
\(471\) −7.25182e57 −2.45752
\(472\) 0 0
\(473\) 3.30400e57 1.02217
\(474\) 0 0
\(475\) 6.03958e56 0.170645
\(476\) 0 0
\(477\) 5.05360e57 1.30453
\(478\) 0 0
\(479\) −4.90345e57 −1.15688 −0.578439 0.815725i \(-0.696338\pi\)
−0.578439 + 0.815725i \(0.696338\pi\)
\(480\) 0 0
\(481\) 3.91677e57 0.844906
\(482\) 0 0
\(483\) 1.44845e58 2.85785
\(484\) 0 0
\(485\) 2.54119e57 0.458765
\(486\) 0 0
\(487\) 1.10089e58 1.81917 0.909585 0.415519i \(-0.136400\pi\)
0.909585 + 0.415519i \(0.136400\pi\)
\(488\) 0 0
\(489\) −1.12327e58 −1.69959
\(490\) 0 0
\(491\) −1.04229e58 −1.44457 −0.722283 0.691598i \(-0.756907\pi\)
−0.722283 + 0.691598i \(0.756907\pi\)
\(492\) 0 0
\(493\) 6.82634e57 0.866921
\(494\) 0 0
\(495\) 1.00268e58 1.16721
\(496\) 0 0
\(497\) 1.18460e58 1.26447
\(498\) 0 0
\(499\) 1.18570e58 1.16095 0.580473 0.814280i \(-0.302868\pi\)
0.580473 + 0.814280i \(0.302868\pi\)
\(500\) 0 0
\(501\) 5.61261e57 0.504259
\(502\) 0 0
\(503\) −1.35864e58 −1.12045 −0.560225 0.828340i \(-0.689285\pi\)
−0.560225 + 0.828340i \(0.689285\pi\)
\(504\) 0 0
\(505\) −4.11832e57 −0.311857
\(506\) 0 0
\(507\) −5.24352e57 −0.364713
\(508\) 0 0
\(509\) 1.54608e58 0.988097 0.494048 0.869434i \(-0.335517\pi\)
0.494048 + 0.869434i \(0.335517\pi\)
\(510\) 0 0
\(511\) 2.63678e58 1.54890
\(512\) 0 0
\(513\) −8.73825e57 −0.471955
\(514\) 0 0
\(515\) −6.79019e57 −0.337308
\(516\) 0 0
\(517\) −9.35565e57 −0.427590
\(518\) 0 0
\(519\) 7.38864e57 0.310789
\(520\) 0 0
\(521\) −4.99449e58 −1.93410 −0.967052 0.254579i \(-0.918063\pi\)
−0.967052 + 0.254579i \(0.918063\pi\)
\(522\) 0 0
\(523\) 4.06006e57 0.144793 0.0723963 0.997376i \(-0.476935\pi\)
0.0723963 + 0.997376i \(0.476935\pi\)
\(524\) 0 0
\(525\) 5.81823e58 1.91146
\(526\) 0 0
\(527\) −3.41896e58 −1.03506
\(528\) 0 0
\(529\) 2.35933e58 0.658402
\(530\) 0 0
\(531\) −3.32166e58 −0.854718
\(532\) 0 0
\(533\) 4.11246e58 0.976037
\(534\) 0 0
\(535\) −1.18980e58 −0.260535
\(536\) 0 0
\(537\) −4.51243e58 −0.911935
\(538\) 0 0
\(539\) 3.55066e58 0.662446
\(540\) 0 0
\(541\) −3.01019e58 −0.518624 −0.259312 0.965794i \(-0.583496\pi\)
−0.259312 + 0.965794i \(0.583496\pi\)
\(542\) 0 0
\(543\) 5.25992e58 0.837110
\(544\) 0 0
\(545\) 6.92520e57 0.101837
\(546\) 0 0
\(547\) 6.26196e58 0.851104 0.425552 0.904934i \(-0.360080\pi\)
0.425552 + 0.904934i \(0.360080\pi\)
\(548\) 0 0
\(549\) −6.24781e58 −0.785095
\(550\) 0 0
\(551\) 1.25337e58 0.145653
\(552\) 0 0
\(553\) 7.90306e58 0.849582
\(554\) 0 0
\(555\) −6.43513e58 −0.640115
\(556\) 0 0
\(557\) 7.30619e58 0.672673 0.336337 0.941742i \(-0.390812\pi\)
0.336337 + 0.941742i \(0.390812\pi\)
\(558\) 0 0
\(559\) −7.90026e58 −0.673423
\(560\) 0 0
\(561\) −3.68822e59 −2.91149
\(562\) 0 0
\(563\) 1.91890e59 1.40321 0.701603 0.712568i \(-0.252468\pi\)
0.701603 + 0.712568i \(0.252468\pi\)
\(564\) 0 0
\(565\) 2.75491e58 0.186666
\(566\) 0 0
\(567\) −3.93194e59 −2.46928
\(568\) 0 0
\(569\) 3.18324e59 1.85334 0.926671 0.375873i \(-0.122657\pi\)
0.926671 + 0.375873i \(0.122657\pi\)
\(570\) 0 0
\(571\) −2.66967e59 −1.44139 −0.720694 0.693254i \(-0.756176\pi\)
−0.720694 + 0.693254i \(0.756176\pi\)
\(572\) 0 0
\(573\) −2.60834e59 −1.30629
\(574\) 0 0
\(575\) 2.38713e59 1.10922
\(576\) 0 0
\(577\) −3.30424e58 −0.142492 −0.0712461 0.997459i \(-0.522698\pi\)
−0.0712461 + 0.997459i \(0.522698\pi\)
\(578\) 0 0
\(579\) −7.11248e59 −2.84729
\(580\) 0 0
\(581\) −3.64664e59 −1.35552
\(582\) 0 0
\(583\) 2.22058e59 0.766643
\(584\) 0 0
\(585\) −2.39753e59 −0.768976
\(586\) 0 0
\(587\) 1.06658e59 0.317888 0.158944 0.987288i \(-0.449191\pi\)
0.158944 + 0.987288i \(0.449191\pi\)
\(588\) 0 0
\(589\) −6.27746e58 −0.173902
\(590\) 0 0
\(591\) −6.67112e58 −0.171818
\(592\) 0 0
\(593\) 4.73920e58 0.113509 0.0567544 0.998388i \(-0.481925\pi\)
0.0567544 + 0.998388i \(0.481925\pi\)
\(594\) 0 0
\(595\) 2.40435e59 0.535651
\(596\) 0 0
\(597\) 8.69010e58 0.180126
\(598\) 0 0
\(599\) 1.38891e59 0.267915 0.133957 0.990987i \(-0.457231\pi\)
0.133957 + 0.990987i \(0.457231\pi\)
\(600\) 0 0
\(601\) 9.03635e59 1.62253 0.811263 0.584681i \(-0.198780\pi\)
0.811263 + 0.584681i \(0.198780\pi\)
\(602\) 0 0
\(603\) 1.73053e60 2.89306
\(604\) 0 0
\(605\) 2.01404e59 0.313565
\(606\) 0 0
\(607\) −2.30469e59 −0.334237 −0.167119 0.985937i \(-0.553446\pi\)
−0.167119 + 0.985937i \(0.553446\pi\)
\(608\) 0 0
\(609\) 1.20743e60 1.63151
\(610\) 0 0
\(611\) 2.23705e59 0.281702
\(612\) 0 0
\(613\) 5.31241e59 0.623579 0.311789 0.950151i \(-0.399072\pi\)
0.311789 + 0.950151i \(0.399072\pi\)
\(614\) 0 0
\(615\) −6.75664e59 −0.739462
\(616\) 0 0
\(617\) 3.01800e59 0.308027 0.154013 0.988069i \(-0.450780\pi\)
0.154013 + 0.988069i \(0.450780\pi\)
\(618\) 0 0
\(619\) −1.17709e59 −0.112063 −0.0560313 0.998429i \(-0.517845\pi\)
−0.0560313 + 0.998429i \(0.517845\pi\)
\(620\) 0 0
\(621\) −3.45376e60 −3.06777
\(622\) 0 0
\(623\) 6.36687e59 0.527756
\(624\) 0 0
\(625\) 7.79659e59 0.603232
\(626\) 0 0
\(627\) −6.77184e59 −0.489164
\(628\) 0 0
\(629\) 1.65183e60 1.11424
\(630\) 0 0
\(631\) 2.18281e60 1.37526 0.687631 0.726061i \(-0.258651\pi\)
0.687631 + 0.726061i \(0.258651\pi\)
\(632\) 0 0
\(633\) 3.29679e60 1.94049
\(634\) 0 0
\(635\) 9.63695e59 0.530035
\(636\) 0 0
\(637\) −8.49006e59 −0.436428
\(638\) 0 0
\(639\) −4.98169e60 −2.39391
\(640\) 0 0
\(641\) −2.64938e60 −1.19041 −0.595205 0.803574i \(-0.702929\pi\)
−0.595205 + 0.803574i \(0.702929\pi\)
\(642\) 0 0
\(643\) 2.29486e60 0.964316 0.482158 0.876084i \(-0.339853\pi\)
0.482158 + 0.876084i \(0.339853\pi\)
\(644\) 0 0
\(645\) 1.29799e60 0.510196
\(646\) 0 0
\(647\) 1.33978e60 0.492708 0.246354 0.969180i \(-0.420767\pi\)
0.246354 + 0.969180i \(0.420767\pi\)
\(648\) 0 0
\(649\) −1.45956e60 −0.502297
\(650\) 0 0
\(651\) −6.04739e60 −1.94794
\(652\) 0 0
\(653\) 1.76959e60 0.533628 0.266814 0.963748i \(-0.414029\pi\)
0.266814 + 0.963748i \(0.414029\pi\)
\(654\) 0 0
\(655\) 1.79638e60 0.507237
\(656\) 0 0
\(657\) −1.10887e61 −2.93240
\(658\) 0 0
\(659\) 2.81423e60 0.697146 0.348573 0.937282i \(-0.386666\pi\)
0.348573 + 0.937282i \(0.386666\pi\)
\(660\) 0 0
\(661\) 2.17575e59 0.0504983 0.0252491 0.999681i \(-0.491962\pi\)
0.0252491 + 0.999681i \(0.491962\pi\)
\(662\) 0 0
\(663\) 8.81899e60 1.91813
\(664\) 0 0
\(665\) 4.41455e59 0.0899956
\(666\) 0 0
\(667\) 4.95389e60 0.946761
\(668\) 0 0
\(669\) 1.99588e61 3.57661
\(670\) 0 0
\(671\) −2.74533e60 −0.461382
\(672\) 0 0
\(673\) 8.95136e60 1.41112 0.705562 0.708648i \(-0.250695\pi\)
0.705562 + 0.708648i \(0.250695\pi\)
\(674\) 0 0
\(675\) −1.38733e61 −2.05187
\(676\) 0 0
\(677\) 7.11840e59 0.0987930 0.0493965 0.998779i \(-0.484270\pi\)
0.0493965 + 0.998779i \(0.484270\pi\)
\(678\) 0 0
\(679\) −1.15377e61 −1.50287
\(680\) 0 0
\(681\) −2.71228e61 −3.31643
\(682\) 0 0
\(683\) 1.26607e61 1.45349 0.726744 0.686908i \(-0.241032\pi\)
0.726744 + 0.686908i \(0.241032\pi\)
\(684\) 0 0
\(685\) 1.66768e60 0.179790
\(686\) 0 0
\(687\) −2.30786e61 −2.33690
\(688\) 0 0
\(689\) −5.30969e60 −0.505075
\(690\) 0 0
\(691\) −2.15812e60 −0.192885 −0.0964423 0.995339i \(-0.530746\pi\)
−0.0964423 + 0.995339i \(0.530746\pi\)
\(692\) 0 0
\(693\) −4.55245e61 −3.82367
\(694\) 0 0
\(695\) −5.78604e60 −0.456781
\(696\) 0 0
\(697\) 1.73436e61 1.28717
\(698\) 0 0
\(699\) 1.03028e61 0.718944
\(700\) 0 0
\(701\) 1.28524e61 0.843425 0.421712 0.906730i \(-0.361429\pi\)
0.421712 + 0.906730i \(0.361429\pi\)
\(702\) 0 0
\(703\) 3.03289e60 0.187205
\(704\) 0 0
\(705\) −3.67540e60 −0.213422
\(706\) 0 0
\(707\) 1.86983e61 1.02161
\(708\) 0 0
\(709\) 5.66834e60 0.291449 0.145724 0.989325i \(-0.453449\pi\)
0.145724 + 0.989325i \(0.453449\pi\)
\(710\) 0 0
\(711\) −3.32354e61 −1.60844
\(712\) 0 0
\(713\) −2.48114e61 −1.13039
\(714\) 0 0
\(715\) −1.05349e61 −0.451909
\(716\) 0 0
\(717\) 3.75925e60 0.151858
\(718\) 0 0
\(719\) 1.32395e61 0.503734 0.251867 0.967762i \(-0.418955\pi\)
0.251867 + 0.967762i \(0.418955\pi\)
\(720\) 0 0
\(721\) 3.08294e61 1.10499
\(722\) 0 0
\(723\) 1.87858e61 0.634390
\(724\) 0 0
\(725\) 1.98992e61 0.633239
\(726\) 0 0
\(727\) 3.95559e61 1.18637 0.593187 0.805064i \(-0.297869\pi\)
0.593187 + 0.805064i \(0.297869\pi\)
\(728\) 0 0
\(729\) 1.20680e61 0.341187
\(730\) 0 0
\(731\) −3.33181e61 −0.888090
\(732\) 0 0
\(733\) −2.46425e61 −0.619369 −0.309684 0.950839i \(-0.600223\pi\)
−0.309684 + 0.950839i \(0.600223\pi\)
\(734\) 0 0
\(735\) 1.39489e61 0.330645
\(736\) 0 0
\(737\) 7.60409e61 1.70018
\(738\) 0 0
\(739\) 2.08042e61 0.438829 0.219414 0.975632i \(-0.429585\pi\)
0.219414 + 0.975632i \(0.429585\pi\)
\(740\) 0 0
\(741\) 1.61923e61 0.322268
\(742\) 0 0
\(743\) 3.49360e60 0.0656165 0.0328083 0.999462i \(-0.489555\pi\)
0.0328083 + 0.999462i \(0.489555\pi\)
\(744\) 0 0
\(745\) 2.69791e61 0.478264
\(746\) 0 0
\(747\) 1.53355e62 2.56629
\(748\) 0 0
\(749\) 5.40201e61 0.853487
\(750\) 0 0
\(751\) 7.03445e61 1.04947 0.524737 0.851264i \(-0.324164\pi\)
0.524737 + 0.851264i \(0.324164\pi\)
\(752\) 0 0
\(753\) 9.44223e60 0.133040
\(754\) 0 0
\(755\) −4.72004e61 −0.628183
\(756\) 0 0
\(757\) −1.01445e62 −1.27547 −0.637736 0.770255i \(-0.720129\pi\)
−0.637736 + 0.770255i \(0.720129\pi\)
\(758\) 0 0
\(759\) −2.67655e62 −3.17963
\(760\) 0 0
\(761\) 6.71650e61 0.754002 0.377001 0.926213i \(-0.376955\pi\)
0.377001 + 0.926213i \(0.376955\pi\)
\(762\) 0 0
\(763\) −3.14424e61 −0.333609
\(764\) 0 0
\(765\) −1.01112e62 −1.01410
\(766\) 0 0
\(767\) 3.48999e61 0.330920
\(768\) 0 0
\(769\) −1.24682e62 −1.11786 −0.558931 0.829214i \(-0.688788\pi\)
−0.558931 + 0.829214i \(0.688788\pi\)
\(770\) 0 0
\(771\) 3.01565e62 2.55689
\(772\) 0 0
\(773\) −1.19282e62 −0.956570 −0.478285 0.878205i \(-0.658741\pi\)
−0.478285 + 0.878205i \(0.658741\pi\)
\(774\) 0 0
\(775\) −9.96646e61 −0.756056
\(776\) 0 0
\(777\) 2.92173e62 2.09695
\(778\) 0 0
\(779\) 3.18442e61 0.216259
\(780\) 0 0
\(781\) −2.18899e62 −1.40685
\(782\) 0 0
\(783\) −2.87907e62 −1.75135
\(784\) 0 0
\(785\) −8.73574e61 −0.503039
\(786\) 0 0
\(787\) 1.29833e62 0.707826 0.353913 0.935278i \(-0.384851\pi\)
0.353913 + 0.935278i \(0.384851\pi\)
\(788\) 0 0
\(789\) 4.32862e62 2.23457
\(790\) 0 0
\(791\) −1.25081e62 −0.611499
\(792\) 0 0
\(793\) 6.56442e61 0.303964
\(794\) 0 0
\(795\) 8.72366e61 0.382653
\(796\) 0 0
\(797\) 1.44847e62 0.601942 0.300971 0.953633i \(-0.402689\pi\)
0.300971 + 0.953633i \(0.402689\pi\)
\(798\) 0 0
\(799\) 9.43441e61 0.371500
\(800\) 0 0
\(801\) −2.67752e62 −0.999155
\(802\) 0 0
\(803\) −4.87243e62 −1.72330
\(804\) 0 0
\(805\) 1.74484e62 0.584983
\(806\) 0 0
\(807\) 3.63513e62 1.15542
\(808\) 0 0
\(809\) −9.08798e61 −0.273889 −0.136944 0.990579i \(-0.543728\pi\)
−0.136944 + 0.990579i \(0.543728\pi\)
\(810\) 0 0
\(811\) −1.53395e60 −0.00438393 −0.00219197 0.999998i \(-0.500698\pi\)
−0.00219197 + 0.999998i \(0.500698\pi\)
\(812\) 0 0
\(813\) −5.23511e62 −1.41899
\(814\) 0 0
\(815\) −1.35313e62 −0.347896
\(816\) 0 0
\(817\) −6.11744e61 −0.149209
\(818\) 0 0
\(819\) 1.08855e63 2.51909
\(820\) 0 0
\(821\) −4.54457e62 −0.997964 −0.498982 0.866612i \(-0.666293\pi\)
−0.498982 + 0.866612i \(0.666293\pi\)
\(822\) 0 0
\(823\) −9.00456e62 −1.87658 −0.938288 0.345856i \(-0.887588\pi\)
−0.938288 + 0.345856i \(0.887588\pi\)
\(824\) 0 0
\(825\) −1.07514e63 −2.12669
\(826\) 0 0
\(827\) −4.33820e62 −0.814593 −0.407296 0.913296i \(-0.633528\pi\)
−0.407296 + 0.913296i \(0.633528\pi\)
\(828\) 0 0
\(829\) 3.96801e62 0.707375 0.353688 0.935364i \(-0.384928\pi\)
0.353688 + 0.935364i \(0.384928\pi\)
\(830\) 0 0
\(831\) −1.60440e63 −2.71576
\(832\) 0 0
\(833\) −3.58055e62 −0.575548
\(834\) 0 0
\(835\) 6.76110e61 0.103219
\(836\) 0 0
\(837\) 1.44198e63 2.09103
\(838\) 0 0
\(839\) −5.28190e62 −0.727626 −0.363813 0.931472i \(-0.618525\pi\)
−0.363813 + 0.931472i \(0.618525\pi\)
\(840\) 0 0
\(841\) −3.51079e62 −0.459505
\(842\) 0 0
\(843\) 1.47590e63 1.83554
\(844\) 0 0
\(845\) −6.31648e61 −0.0746545
\(846\) 0 0
\(847\) −9.14432e62 −1.02721
\(848\) 0 0
\(849\) −5.16781e62 −0.551812
\(850\) 0 0
\(851\) 1.19874e63 1.21685
\(852\) 0 0
\(853\) 2.92763e62 0.282561 0.141281 0.989970i \(-0.454878\pi\)
0.141281 + 0.989970i \(0.454878\pi\)
\(854\) 0 0
\(855\) −1.85649e62 −0.170381
\(856\) 0 0
\(857\) −2.84286e62 −0.248123 −0.124062 0.992275i \(-0.539592\pi\)
−0.124062 + 0.992275i \(0.539592\pi\)
\(858\) 0 0
\(859\) 8.07624e62 0.670434 0.335217 0.942141i \(-0.391190\pi\)
0.335217 + 0.942141i \(0.391190\pi\)
\(860\) 0 0
\(861\) 3.06771e63 2.42240
\(862\) 0 0
\(863\) 2.13069e63 1.60062 0.800310 0.599586i \(-0.204668\pi\)
0.800310 + 0.599586i \(0.204668\pi\)
\(864\) 0 0
\(865\) 8.90055e61 0.0636166
\(866\) 0 0
\(867\) 1.04448e63 0.710375
\(868\) 0 0
\(869\) −1.46039e63 −0.945242
\(870\) 0 0
\(871\) −1.81823e63 −1.12010
\(872\) 0 0
\(873\) 4.85206e63 2.84525
\(874\) 0 0
\(875\) 1.51459e63 0.845518
\(876\) 0 0
\(877\) −9.77134e62 −0.519353 −0.259677 0.965696i \(-0.583616\pi\)
−0.259677 + 0.965696i \(0.583616\pi\)
\(878\) 0 0
\(879\) 1.49005e63 0.754120
\(880\) 0 0
\(881\) 4.67468e62 0.225304 0.112652 0.993634i \(-0.464065\pi\)
0.112652 + 0.993634i \(0.464065\pi\)
\(882\) 0 0
\(883\) −2.00447e63 −0.920120 −0.460060 0.887888i \(-0.652172\pi\)
−0.460060 + 0.887888i \(0.652172\pi\)
\(884\) 0 0
\(885\) −5.73394e62 −0.250711
\(886\) 0 0
\(887\) −2.72376e62 −0.113452 −0.0567259 0.998390i \(-0.518066\pi\)
−0.0567259 + 0.998390i \(0.518066\pi\)
\(888\) 0 0
\(889\) −4.37545e63 −1.73634
\(890\) 0 0
\(891\) 7.26573e63 2.74732
\(892\) 0 0
\(893\) 1.73222e62 0.0624163
\(894\) 0 0
\(895\) −5.43580e62 −0.186667
\(896\) 0 0
\(897\) 6.39995e63 2.09478
\(898\) 0 0
\(899\) −2.06829e63 −0.645324
\(900\) 0 0
\(901\) −2.23928e63 −0.666078
\(902\) 0 0
\(903\) −5.89324e63 −1.67135
\(904\) 0 0
\(905\) 6.33624e62 0.171351
\(906\) 0 0
\(907\) 6.10336e62 0.157403 0.0787013 0.996898i \(-0.474923\pi\)
0.0787013 + 0.996898i \(0.474923\pi\)
\(908\) 0 0
\(909\) −7.86337e63 −1.93413
\(910\) 0 0
\(911\) −8.12058e63 −1.90521 −0.952603 0.304218i \(-0.901605\pi\)
−0.952603 + 0.304218i \(0.901605\pi\)
\(912\) 0 0
\(913\) 6.73853e63 1.50815
\(914\) 0 0
\(915\) −1.07851e63 −0.230288
\(916\) 0 0
\(917\) −8.15609e63 −1.66166
\(918\) 0 0
\(919\) 6.01090e63 1.16857 0.584287 0.811547i \(-0.301374\pi\)
0.584287 + 0.811547i \(0.301374\pi\)
\(920\) 0 0
\(921\) −1.51423e63 −0.280938
\(922\) 0 0
\(923\) 5.23414e63 0.926849
\(924\) 0 0
\(925\) 4.81519e63 0.813890
\(926\) 0 0
\(927\) −1.29649e64 −2.09197
\(928\) 0 0
\(929\) 7.66144e63 1.18025 0.590123 0.807313i \(-0.299079\pi\)
0.590123 + 0.807313i \(0.299079\pi\)
\(930\) 0 0
\(931\) −6.57414e62 −0.0966987
\(932\) 0 0
\(933\) 3.25580e63 0.457301
\(934\) 0 0
\(935\) −4.44293e63 −0.595964
\(936\) 0 0
\(937\) −1.34664e64 −1.72524 −0.862621 0.505850i \(-0.831179\pi\)
−0.862621 + 0.505850i \(0.831179\pi\)
\(938\) 0 0
\(939\) 2.19146e64 2.68178
\(940\) 0 0
\(941\) 2.22801e63 0.260459 0.130230 0.991484i \(-0.458429\pi\)
0.130230 + 0.991484i \(0.458429\pi\)
\(942\) 0 0
\(943\) 1.25863e64 1.40571
\(944\) 0 0
\(945\) −1.01405e64 −1.08212
\(946\) 0 0
\(947\) 1.00072e64 1.02044 0.510220 0.860044i \(-0.329564\pi\)
0.510220 + 0.860044i \(0.329564\pi\)
\(948\) 0 0
\(949\) 1.16506e64 1.13534
\(950\) 0 0
\(951\) −2.80985e64 −2.61699
\(952\) 0 0
\(953\) −1.92139e63 −0.171048 −0.0855240 0.996336i \(-0.527256\pi\)
−0.0855240 + 0.996336i \(0.527256\pi\)
\(954\) 0 0
\(955\) −3.14207e63 −0.267389
\(956\) 0 0
\(957\) −2.23118e64 −1.81521
\(958\) 0 0
\(959\) −7.57175e63 −0.588974
\(960\) 0 0
\(961\) −3.08576e63 −0.229514
\(962\) 0 0
\(963\) −2.27176e64 −1.61583
\(964\) 0 0
\(965\) −8.56789e63 −0.582823
\(966\) 0 0
\(967\) −1.51693e64 −0.986953 −0.493476 0.869759i \(-0.664274\pi\)
−0.493476 + 0.869759i \(0.664274\pi\)
\(968\) 0 0
\(969\) 6.82885e63 0.424997
\(970\) 0 0
\(971\) −1.62846e64 −0.969536 −0.484768 0.874643i \(-0.661096\pi\)
−0.484768 + 0.874643i \(0.661096\pi\)
\(972\) 0 0
\(973\) 2.62702e64 1.49637
\(974\) 0 0
\(975\) 2.57078e64 1.40109
\(976\) 0 0
\(977\) −3.85777e63 −0.201188 −0.100594 0.994928i \(-0.532074\pi\)
−0.100594 + 0.994928i \(0.532074\pi\)
\(978\) 0 0
\(979\) −1.17652e64 −0.587179
\(980\) 0 0
\(981\) 1.32227e64 0.631593
\(982\) 0 0
\(983\) 3.53894e64 1.61798 0.808988 0.587825i \(-0.200016\pi\)
0.808988 + 0.587825i \(0.200016\pi\)
\(984\) 0 0
\(985\) −8.03621e62 −0.0351700
\(986\) 0 0
\(987\) 1.66874e64 0.699148
\(988\) 0 0
\(989\) −2.41790e64 −0.969880
\(990\) 0 0
\(991\) 1.37174e64 0.526853 0.263426 0.964680i \(-0.415147\pi\)
0.263426 + 0.964680i \(0.415147\pi\)
\(992\) 0 0
\(993\) −5.65894e64 −2.08126
\(994\) 0 0
\(995\) 1.04683e63 0.0368707
\(996\) 0 0
\(997\) 6.70387e63 0.226141 0.113071 0.993587i \(-0.463931\pi\)
0.113071 + 0.993587i \(0.463931\pi\)
\(998\) 0 0
\(999\) −6.96675e64 −2.25098
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 16.44.a.b.1.2 2
4.3 odd 2 2.44.a.b.1.1 2
12.11 even 2 18.44.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.44.a.b.1.1 2 4.3 odd 2
16.44.a.b.1.2 2 1.1 even 1 trivial
18.44.a.c.1.1 2 12.11 even 2