Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [160,4,Mod(43,160)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(160, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 5, 6]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("160.43");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 160 = 2^{5} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 160.u (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.44030560092\) |
Analytic rank: | \(0\) |
Dimension: | \(280\) |
Relative dimension: | \(70\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | −2.82479 | + | 0.143339i | −3.58549 | + | 8.65613i | 7.95891 | − | 0.809808i | 9.77656 | + | 5.42391i | 8.88750 | − | 24.9657i | − | 20.1382i | −22.3662 | + | 3.42837i | −42.9811 | − | 42.9811i | −28.3942 | − | 13.9201i | |
43.2 | −2.82227 | + | 0.186555i | −2.08687 | + | 5.03814i | 7.93039 | − | 1.05302i | −7.75655 | + | 8.05208i | 4.94980 | − | 14.6083i | 11.7199i | −22.1853 | + | 4.45136i | −1.93595 | − | 1.93595i | 20.3889 | − | 24.1722i | ||
43.3 | −2.81921 | + | 0.228193i | −1.83845 | + | 4.43841i | 7.89586 | − | 1.28665i | 0.493546 | − | 11.1694i | 4.17015 | − | 12.9323i | 25.5948i | −21.9664 | + | 5.42911i | 2.77233 | + | 2.77233i | 1.15738 | + | 31.6016i | ||
43.4 | −2.81314 | − | 0.293650i | 2.91738 | − | 7.04318i | 7.82754 | + | 1.65216i | −0.675996 | + | 11.1599i | −10.2752 | + | 18.9568i | − | 16.4698i | −21.5348 | − | 6.94631i | −22.0034 | − | 22.0034i | 5.17877 | − | 31.1958i | |
43.5 | −2.74584 | − | 0.678514i | 2.00978 | − | 4.85204i | 7.07924 | + | 3.72618i | −9.01416 | − | 6.61399i | −8.81071 | + | 11.9592i | 18.5009i | −16.9102 | − | 15.0348i | −0.411197 | − | 0.411197i | 20.2637 | + | 24.2772i | ||
43.6 | −2.71454 | + | 0.794525i | 1.40505 | − | 3.39208i | 6.73746 | − | 4.31354i | 10.5782 | + | 3.61974i | −1.11896 | + | 10.3243i | 12.0132i | −14.8619 | + | 17.0624i | 9.55980 | + | 9.55980i | −31.5908 | − | 1.42133i | ||
43.7 | −2.69799 | − | 0.849028i | 0.321918 | − | 0.777180i | 6.55830 | + | 4.58134i | 9.25335 | − | 6.27499i | −1.52838 | + | 1.82351i | − | 14.9318i | −13.8045 | − | 17.9286i | 18.5915 | + | 18.5915i | −30.2931 | + | 9.07351i | |
43.8 | −2.69135 | + | 0.869846i | 3.08842 | − | 7.45610i | 6.48674 | − | 4.68212i | −5.94465 | − | 9.46896i | −1.82636 | + | 22.7534i | − | 23.1333i | −13.3854 | + | 18.2437i | −26.9632 | − | 26.9632i | 24.2357 | + | 20.3134i | |
43.9 | −2.58199 | + | 1.15470i | −1.75736 | + | 4.24265i | 5.33333 | − | 5.96285i | 1.49092 | − | 11.0805i | −0.361505 | − | 12.9837i | − | 25.1176i | −6.88527 | + | 21.5544i | 4.18013 | + | 4.18013i | 8.94511 | + | 30.3313i | |
43.10 | −2.56149 | + | 1.19949i | 0.532873 | − | 1.28647i | 5.12247 | − | 6.14494i | −11.0603 | + | 1.63392i | 0.178152 | + | 3.93445i | 4.38872i | −5.75039 | + | 21.8845i | 17.7208 | + | 17.7208i | 26.3710 | − | 17.4519i | ||
43.11 | −2.54222 | − | 1.23981i | −0.377089 | + | 0.910374i | 4.92575 | + | 6.30373i | −9.59495 | + | 5.73907i | 2.08733 | − | 1.84685i | − | 28.4398i | −4.70694 | − | 22.1324i | 18.4053 | + | 18.4053i | 31.5078 | − | 2.69407i | |
43.12 | −2.46943 | − | 1.37911i | −3.62532 | + | 8.75229i | 4.19613 | + | 6.81121i | −9.83331 | − | 5.32035i | 21.0228 | − | 16.6134i | − | 11.7495i | −0.968637 | − | 22.6067i | −44.3677 | − | 44.3677i | 16.9453 | + | 26.6994i | |
43.13 | −2.39368 | − | 1.50676i | −1.47386 | + | 3.55822i | 3.45936 | + | 7.21338i | 6.48813 | + | 9.10518i | 8.88932 | − | 6.29647i | 18.1106i | 2.58823 | − | 22.4789i | 8.60323 | + | 8.60323i | −1.81117 | − | 31.5709i | ||
43.14 | −2.34100 | − | 1.58737i | 3.77736 | − | 9.11935i | 2.96052 | + | 7.43205i | 9.99136 | − | 5.01724i | −23.3186 | + | 15.3523i | 20.7744i | 4.86682 | − | 22.0978i | −49.8023 | − | 49.8023i | −31.3539 | − | 4.11462i | ||
43.15 | −2.30320 | + | 1.64172i | −0.643934 | + | 1.55459i | 2.60950 | − | 7.56244i | 2.79968 | + | 10.8241i | −1.06910 | − | 4.63771i | − | 22.2482i | 6.40519 | + | 21.7019i | 17.0898 | + | 17.0898i | −24.2184 | − | 20.3339i | |
43.16 | −1.96007 | + | 2.03915i | 3.68068 | − | 8.88596i | −0.316262 | − | 7.99375i | −6.53470 | + | 9.07181i | 10.9054 | + | 24.9225i | 30.1289i | 16.9203 | + | 15.0234i | −46.3209 | − | 46.3209i | −5.69033 | − | 31.1066i | ||
43.17 | −1.93965 | + | 2.05859i | −2.95022 | + | 7.12247i | −0.475554 | − | 7.98585i | 11.1803 | − | 0.0331836i | −8.93983 | − | 19.8884i | 27.8505i | 17.3620 | + | 14.5108i | −22.9339 | − | 22.9339i | −21.6175 | + | 23.0800i | ||
43.18 | −1.88405 | − | 2.10958i | −1.27026 | + | 3.06668i | −0.900689 | + | 7.94914i | −4.12150 | − | 10.3929i | 8.86267 | − | 3.09807i | 8.37858i | 18.4663 | − | 13.0765i | 11.3009 | + | 11.3009i | −14.1596 | + | 28.2755i | ||
43.19 | −1.87785 | + | 2.11511i | 1.73898 | − | 4.19826i | −0.947364 | − | 7.94371i | 4.36112 | − | 10.2947i | 5.61424 | + | 11.5618i | 11.4589i | 18.5808 | + | 12.9133i | 4.49050 | + | 4.49050i | 13.5849 | + | 28.5561i | ||
43.20 | −1.79535 | + | 2.18557i | −2.94201 | + | 7.10263i | −1.55346 | − | 7.84772i | −10.0432 | − | 4.91272i | −10.2414 | − | 19.1817i | − | 2.95853i | 19.9408 | + | 10.6942i | −22.7001 | − | 22.7001i | 28.7681 | − | 13.1300i | |
See next 80 embeddings (of 280 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
160.u | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 160.4.u.a | ✓ | 280 |
5.c | odd | 4 | 1 | 160.4.ba.a | yes | 280 | |
32.h | odd | 8 | 1 | 160.4.ba.a | yes | 280 | |
160.u | even | 8 | 1 | inner | 160.4.u.a | ✓ | 280 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
160.4.u.a | ✓ | 280 | 1.a | even | 1 | 1 | trivial |
160.4.u.a | ✓ | 280 | 160.u | even | 8 | 1 | inner |
160.4.ba.a | yes | 280 | 5.c | odd | 4 | 1 | |
160.4.ba.a | yes | 280 | 32.h | odd | 8 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(160, [\chi])\).