Properties

Label 160.4.z.a
Level $160$
Weight $4$
Character orbit 160.z
Analytic conductor $9.440$
Analytic rank $0$
Dimension $280$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,4,Mod(29,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.29");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.z (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44030560092\)
Analytic rank: \(0\)
Dimension: \(280\)
Relative dimension: \(70\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 280 q - 8 q^{4} - 4 q^{5} - 8 q^{6} - 8 q^{9} - 4 q^{10} - 8 q^{11} + 200 q^{14} - 8 q^{16} - 8 q^{19} - 4 q^{20} - 8 q^{21} - 464 q^{24} - 4 q^{25} - 48 q^{26} - 8 q^{29} + 1124 q^{30} + 1472 q^{31} - 72 q^{34}+ \cdots + 5520 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1 −2.82582 0.121466i 1.13930 2.75051i 7.97049 + 0.686483i −11.1458 + 0.878057i −3.55354 + 7.63405i 2.46301 + 2.46301i −22.4398 2.90802i 12.8246 + 12.8246i 31.6027 1.12739i
29.2 −2.82422 0.154155i 3.56147 8.59816i 7.95247 + 0.870736i 9.02558 6.59840i −11.3838 + 23.7341i −18.6905 18.6905i −22.3253 3.68507i −42.1524 42.1524i −26.5074 + 17.2440i
29.3 −2.82041 + 0.212828i −2.00307 + 4.83583i 7.90941 1.20053i 3.32107 + 10.6757i 4.62026 14.0653i 18.8414 + 18.8414i −22.0523 + 5.06932i −0.281096 0.281096i −11.6389 29.4030i
29.4 −2.76649 + 0.588676i −3.34280 + 8.07023i 7.30692 3.25713i 8.17012 7.63212i 4.49707 24.2940i 5.36942 + 5.36942i −18.2971 + 13.3122i −34.8625 34.8625i −18.1097 + 25.9237i
29.5 −2.76626 0.589757i −2.89779 + 6.99588i 7.30437 + 3.26284i −10.6728 + 3.33034i 12.1419 17.6434i −7.51720 7.51720i −18.2815 13.3337i −21.4532 21.4532i 31.4878 2.91824i
29.6 −2.71925 0.778249i 0.155312 0.374956i 6.78866 + 4.23251i −1.64450 11.0587i −0.714142 + 0.898729i −8.18573 8.18573i −15.1661 16.7925i 18.9754 + 18.9754i −4.13465 + 31.3513i
29.7 −2.71650 + 0.787786i −0.748614 + 1.80731i 6.75878 4.28005i 4.89753 + 10.0506i 0.609835 5.49932i −19.1083 19.1083i −14.9885 + 16.9513i 16.3859 + 16.3859i −21.2219 23.4442i
29.8 −2.71274 + 0.800660i 2.64369 6.38243i 6.71789 4.34396i −5.38122 + 9.80012i −2.06148 + 19.4306i −1.79865 1.79865i −14.7458 + 17.1628i −14.6545 14.6545i 6.75128 30.8937i
29.9 −2.68188 + 0.898609i 1.66254 4.01373i 6.38500 4.81993i 2.22134 10.9574i −0.851969 + 12.2583i 24.4939 + 24.4939i −12.7926 + 18.6641i 5.74587 + 5.74587i 3.88908 + 31.3827i
29.10 −2.62962 1.04167i 0.240464 0.580532i 5.82985 + 5.47840i 10.8412 + 2.73281i −1.23705 + 1.27610i 8.45542 + 8.45542i −9.62365 20.4789i 18.8127 + 18.8127i −25.6616 18.4792i
29.11 −2.44333 + 1.42483i −1.70942 + 4.12691i 3.93973 6.96265i −6.60470 9.02097i −1.70346 12.5190i −11.0262 11.0262i 0.294527 + 22.6255i 4.98262 + 4.98262i 28.9908 + 12.6307i
29.12 −2.42938 + 1.44848i 0.822121 1.98478i 3.80379 7.03784i 11.1418 0.927768i 0.877668 + 6.01261i −8.30658 8.30658i 0.953323 + 22.6073i 15.8284 + 15.8284i −25.7238 + 18.3926i
29.13 −2.42251 1.45995i 2.54494 6.14403i 3.73710 + 7.07348i −0.364663 + 11.1744i −15.1351 + 11.1685i −1.31712 1.31712i 1.27377 22.5915i −12.1805 12.1805i 17.1974 26.5377i
29.14 −2.31596 1.62368i −2.87385 + 6.93809i 2.72732 + 7.52075i 11.1803 + 0.0240294i 17.9210 11.4021i −23.8772 23.8772i 5.89493 21.8460i −20.7862 20.7862i −25.8541 18.2089i
29.15 −2.30569 1.63823i −2.74110 + 6.61760i 2.63243 + 7.55449i −5.49720 9.73554i 17.1613 10.7676i 20.0512 + 20.0512i 6.30639 21.7308i −17.1871 17.1871i −3.27418 + 31.4528i
29.16 −2.22148 1.75073i 3.65386 8.82120i 1.86992 + 7.77839i −8.53482 7.22197i −23.5605 + 13.1992i 17.6199 + 17.6199i 9.46386 20.5532i −45.3710 45.3710i 6.31621 + 30.9856i
29.17 −2.08004 + 1.91662i −1.01808 + 2.45786i 0.653158 7.97329i −10.3533 + 4.22013i −2.59313 7.06372i 18.2161 + 18.2161i 13.9231 + 17.8366i 14.0873 + 14.0873i 13.4469 28.6213i
29.18 −1.89989 + 2.09533i 3.43485 8.29247i −0.780855 7.96180i −9.81187 5.35978i 10.8497 + 22.9519i −3.51241 3.51241i 18.1662 + 13.4904i −37.8750 37.8750i 29.8720 10.3762i
29.19 −1.81015 2.17332i −1.45135 + 3.50386i −1.44668 + 7.86811i −3.62694 + 10.5757i 10.2422 3.18828i 0.932083 + 0.932083i 19.7187 11.0984i 8.92125 + 8.92125i 29.5497 11.2611i
29.20 −1.80049 + 2.18134i 2.73103 6.59330i −1.51645 7.85496i 7.36406 + 8.41253i 9.46500 + 17.8285i 8.76485 + 8.76485i 19.8647 + 10.8349i −16.9212 16.9212i −31.6095 + 0.916789i
See next 80 embeddings (of 280 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.70
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
32.g even 8 1 inner
160.z even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 160.4.z.a 280
5.b even 2 1 inner 160.4.z.a 280
32.g even 8 1 inner 160.4.z.a 280
160.z even 8 1 inner 160.4.z.a 280
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.4.z.a 280 1.a even 1 1 trivial
160.4.z.a 280 5.b even 2 1 inner
160.4.z.a 280 32.g even 8 1 inner
160.4.z.a 280 160.z even 8 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(160, [\chi])\).