Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [160,4,Mod(29,160)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(160, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 3, 4]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("160.29");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 160 = 2^{5} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 160.z (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.44030560092\) |
Analytic rank: | \(0\) |
Dimension: | \(280\) |
Relative dimension: | \(70\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −2.82582 | − | 0.121466i | 1.13930 | − | 2.75051i | 7.97049 | + | 0.686483i | −11.1458 | + | 0.878057i | −3.55354 | + | 7.63405i | 2.46301 | + | 2.46301i | −22.4398 | − | 2.90802i | 12.8246 | + | 12.8246i | 31.6027 | − | 1.12739i |
29.2 | −2.82422 | − | 0.154155i | 3.56147 | − | 8.59816i | 7.95247 | + | 0.870736i | 9.02558 | − | 6.59840i | −11.3838 | + | 23.7341i | −18.6905 | − | 18.6905i | −22.3253 | − | 3.68507i | −42.1524 | − | 42.1524i | −26.5074 | + | 17.2440i |
29.3 | −2.82041 | + | 0.212828i | −2.00307 | + | 4.83583i | 7.90941 | − | 1.20053i | 3.32107 | + | 10.6757i | 4.62026 | − | 14.0653i | 18.8414 | + | 18.8414i | −22.0523 | + | 5.06932i | −0.281096 | − | 0.281096i | −11.6389 | − | 29.4030i |
29.4 | −2.76649 | + | 0.588676i | −3.34280 | + | 8.07023i | 7.30692 | − | 3.25713i | 8.17012 | − | 7.63212i | 4.49707 | − | 24.2940i | 5.36942 | + | 5.36942i | −18.2971 | + | 13.3122i | −34.8625 | − | 34.8625i | −18.1097 | + | 25.9237i |
29.5 | −2.76626 | − | 0.589757i | −2.89779 | + | 6.99588i | 7.30437 | + | 3.26284i | −10.6728 | + | 3.33034i | 12.1419 | − | 17.6434i | −7.51720 | − | 7.51720i | −18.2815 | − | 13.3337i | −21.4532 | − | 21.4532i | 31.4878 | − | 2.91824i |
29.6 | −2.71925 | − | 0.778249i | 0.155312 | − | 0.374956i | 6.78866 | + | 4.23251i | −1.64450 | − | 11.0587i | −0.714142 | + | 0.898729i | −8.18573 | − | 8.18573i | −15.1661 | − | 16.7925i | 18.9754 | + | 18.9754i | −4.13465 | + | 31.3513i |
29.7 | −2.71650 | + | 0.787786i | −0.748614 | + | 1.80731i | 6.75878 | − | 4.28005i | 4.89753 | + | 10.0506i | 0.609835 | − | 5.49932i | −19.1083 | − | 19.1083i | −14.9885 | + | 16.9513i | 16.3859 | + | 16.3859i | −21.2219 | − | 23.4442i |
29.8 | −2.71274 | + | 0.800660i | 2.64369 | − | 6.38243i | 6.71789 | − | 4.34396i | −5.38122 | + | 9.80012i | −2.06148 | + | 19.4306i | −1.79865 | − | 1.79865i | −14.7458 | + | 17.1628i | −14.6545 | − | 14.6545i | 6.75128 | − | 30.8937i |
29.9 | −2.68188 | + | 0.898609i | 1.66254 | − | 4.01373i | 6.38500 | − | 4.81993i | 2.22134 | − | 10.9574i | −0.851969 | + | 12.2583i | 24.4939 | + | 24.4939i | −12.7926 | + | 18.6641i | 5.74587 | + | 5.74587i | 3.88908 | + | 31.3827i |
29.10 | −2.62962 | − | 1.04167i | 0.240464 | − | 0.580532i | 5.82985 | + | 5.47840i | 10.8412 | + | 2.73281i | −1.23705 | + | 1.27610i | 8.45542 | + | 8.45542i | −9.62365 | − | 20.4789i | 18.8127 | + | 18.8127i | −25.6616 | − | 18.4792i |
29.11 | −2.44333 | + | 1.42483i | −1.70942 | + | 4.12691i | 3.93973 | − | 6.96265i | −6.60470 | − | 9.02097i | −1.70346 | − | 12.5190i | −11.0262 | − | 11.0262i | 0.294527 | + | 22.6255i | 4.98262 | + | 4.98262i | 28.9908 | + | 12.6307i |
29.12 | −2.42938 | + | 1.44848i | 0.822121 | − | 1.98478i | 3.80379 | − | 7.03784i | 11.1418 | − | 0.927768i | 0.877668 | + | 6.01261i | −8.30658 | − | 8.30658i | 0.953323 | + | 22.6073i | 15.8284 | + | 15.8284i | −25.7238 | + | 18.3926i |
29.13 | −2.42251 | − | 1.45995i | 2.54494 | − | 6.14403i | 3.73710 | + | 7.07348i | −0.364663 | + | 11.1744i | −15.1351 | + | 11.1685i | −1.31712 | − | 1.31712i | 1.27377 | − | 22.5915i | −12.1805 | − | 12.1805i | 17.1974 | − | 26.5377i |
29.14 | −2.31596 | − | 1.62368i | −2.87385 | + | 6.93809i | 2.72732 | + | 7.52075i | 11.1803 | + | 0.0240294i | 17.9210 | − | 11.4021i | −23.8772 | − | 23.8772i | 5.89493 | − | 21.8460i | −20.7862 | − | 20.7862i | −25.8541 | − | 18.2089i |
29.15 | −2.30569 | − | 1.63823i | −2.74110 | + | 6.61760i | 2.63243 | + | 7.55449i | −5.49720 | − | 9.73554i | 17.1613 | − | 10.7676i | 20.0512 | + | 20.0512i | 6.30639 | − | 21.7308i | −17.1871 | − | 17.1871i | −3.27418 | + | 31.4528i |
29.16 | −2.22148 | − | 1.75073i | 3.65386 | − | 8.82120i | 1.86992 | + | 7.77839i | −8.53482 | − | 7.22197i | −23.5605 | + | 13.1992i | 17.6199 | + | 17.6199i | 9.46386 | − | 20.5532i | −45.3710 | − | 45.3710i | 6.31621 | + | 30.9856i |
29.17 | −2.08004 | + | 1.91662i | −1.01808 | + | 2.45786i | 0.653158 | − | 7.97329i | −10.3533 | + | 4.22013i | −2.59313 | − | 7.06372i | 18.2161 | + | 18.2161i | 13.9231 | + | 17.8366i | 14.0873 | + | 14.0873i | 13.4469 | − | 28.6213i |
29.18 | −1.89989 | + | 2.09533i | 3.43485 | − | 8.29247i | −0.780855 | − | 7.96180i | −9.81187 | − | 5.35978i | 10.8497 | + | 22.9519i | −3.51241 | − | 3.51241i | 18.1662 | + | 13.4904i | −37.8750 | − | 37.8750i | 29.8720 | − | 10.3762i |
29.19 | −1.81015 | − | 2.17332i | −1.45135 | + | 3.50386i | −1.44668 | + | 7.86811i | −3.62694 | + | 10.5757i | 10.2422 | − | 3.18828i | 0.932083 | + | 0.932083i | 19.7187 | − | 11.0984i | 8.92125 | + | 8.92125i | 29.5497 | − | 11.2611i |
29.20 | −1.80049 | + | 2.18134i | 2.73103 | − | 6.59330i | −1.51645 | − | 7.85496i | 7.36406 | + | 8.41253i | 9.46500 | + | 17.8285i | 8.76485 | + | 8.76485i | 19.8647 | + | 10.8349i | −16.9212 | − | 16.9212i | −31.6095 | + | 0.916789i |
See next 80 embeddings (of 280 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
32.g | even | 8 | 1 | inner |
160.z | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 160.4.z.a | ✓ | 280 |
5.b | even | 2 | 1 | inner | 160.4.z.a | ✓ | 280 |
32.g | even | 8 | 1 | inner | 160.4.z.a | ✓ | 280 |
160.z | even | 8 | 1 | inner | 160.4.z.a | ✓ | 280 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
160.4.z.a | ✓ | 280 | 1.a | even | 1 | 1 | trivial |
160.4.z.a | ✓ | 280 | 5.b | even | 2 | 1 | inner |
160.4.z.a | ✓ | 280 | 32.g | even | 8 | 1 | inner |
160.4.z.a | ✓ | 280 | 160.z | even | 8 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(160, [\chi])\).