Properties

Label 160.5.h
Level $160$
Weight $5$
Character orbit 160.h
Rep. character $\chi_{160}(159,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $2$
Sturm bound $120$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 160.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(120\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(160, [\chi])\).

Total New Old
Modular forms 104 24 80
Cusp forms 88 24 64
Eisenstein series 16 0 16

Trace form

\( 24 q + 24 q^{5} + 648 q^{9} - 608 q^{21} - 232 q^{25} + 624 q^{29} - 912 q^{41} - 888 q^{45} + 10888 q^{49} + 4400 q^{61} - 13056 q^{65} + 24736 q^{69} - 9928 q^{81} - 23168 q^{85} - 31824 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(160, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
160.5.h.a 160.h 20.d $12$ $16.539$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 160.5.h.a \(0\) \(-16\) \(12\) \(48\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta _{2})q^{3}+(1+\beta _{2}-\beta _{6})q^{5}+\cdots\)
160.5.h.b 160.h 20.d $12$ $16.539$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 160.5.h.a \(0\) \(16\) \(12\) \(-48\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1-\beta _{2})q^{3}+(1+\beta _{2}+\beta _{6})q^{5}+(-4+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(160, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(160, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)