Defining parameters
Level: | \( N \) | \(=\) | \( 160 = 2^{5} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 160.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(160, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 24 | 80 |
Cusp forms | 88 | 24 | 64 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(160, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
160.5.h.a | $12$ | $16.539$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(-16\) | \(12\) | \(48\) | \(q+(-1+\beta _{2})q^{3}+(1+\beta _{2}-\beta _{6})q^{5}+\cdots\) |
160.5.h.b | $12$ | $16.539$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(16\) | \(12\) | \(-48\) | \(q+(1-\beta _{2})q^{3}+(1+\beta _{2}+\beta _{6})q^{5}+(-4+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{5}^{\mathrm{old}}(160, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(160, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)