Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [160,5,Mod(13,160)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(160, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 7, 6]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("160.13");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 160 = 2^{5} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 160.v (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(16.5391940934\) |
Analytic rank: | \(0\) |
Dimension: | \(376\) |
Relative dimension: | \(94\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | −3.98499 | − | 0.346213i | 0.128089 | − | 0.0530562i | 15.7603 | + | 2.75931i | 16.9985 | + | 18.3317i | −0.528802 | + | 0.167082i | − | 62.4933i | −61.8492 | − | 16.4522i | −57.2621 | + | 57.2621i | −61.3920 | − | 78.9368i | |
13.2 | −3.97805 | + | 0.418478i | −7.76843 | + | 3.21779i | 15.6498 | − | 3.32945i | −14.6131 | + | 20.2844i | 29.5566 | − | 16.0514i | 40.1362i | −60.8622 | + | 19.7938i | −7.28137 | + | 7.28137i | 49.6429 | − | 86.8078i | ||
13.3 | −3.97203 | − | 0.472207i | 5.15973 | − | 2.13723i | 15.5540 | + | 3.75124i | −24.8599 | + | 2.64309i | −21.5038 | + | 6.05269i | − | 95.6435i | −60.0098 | − | 22.2448i | −35.2206 | + | 35.2206i | 99.9923 | + | 1.24058i | |
13.4 | −3.95509 | + | 0.597740i | −3.51515 | + | 1.45602i | 15.2854 | − | 4.72822i | −5.09280 | − | 24.4758i | 13.0324 | − | 7.85985i | 11.5838i | −57.6289 | + | 27.8372i | −47.0394 | + | 47.0394i | 34.7726 | + | 93.7596i | ||
13.5 | −3.94656 | + | 0.651675i | 9.21091 | − | 3.81529i | 15.1506 | − | 5.14375i | −20.6597 | + | 14.0776i | −33.8651 | + | 21.0598i | 59.0380i | −56.4408 | + | 30.1734i | 13.0089 | − | 13.0089i | 72.3606 | − | 69.0214i | ||
13.6 | −3.94440 | + | 0.664616i | −14.9165 | + | 6.17861i | 15.1166 | − | 5.24302i | 24.6823 | − | 3.97312i | 54.7302 | − | 34.2846i | 79.7323i | −56.1412 | + | 30.7273i | 127.051 | − | 127.051i | −94.7161 | + | 32.0758i | ||
13.7 | −3.94424 | − | 0.665580i | 10.6791 | − | 4.42342i | 15.1140 | + | 5.25041i | −9.86317 | − | 22.9721i | −45.0650 | + | 10.3392i | 58.1318i | −56.1187 | − | 30.7684i | 37.2005 | − | 37.2005i | 23.6129 | + | 97.1722i | ||
13.8 | −3.89698 | − | 0.901970i | 12.8021 | − | 5.30278i | 14.3729 | + | 7.02992i | 23.9599 | − | 7.13615i | −54.6723 | + | 9.11777i | 0.919552i | −49.6701 | − | 40.3594i | 78.4974 | − | 78.4974i | −99.8077 | + | 6.19836i | ||
13.9 | −3.82954 | + | 1.15524i | −14.6759 | + | 6.07894i | 13.3308 | − | 8.84811i | −18.9760 | − | 16.2761i | 49.1792 | − | 40.2337i | − | 60.5714i | −40.8293 | + | 49.2846i | 121.152 | − | 121.152i | 91.4724 | + | 40.4080i | |
13.10 | −3.79738 | + | 1.25694i | 3.53513 | − | 1.46430i | 12.8402 | − | 9.54613i | 23.8622 | − | 7.45626i | −11.5837 | + | 10.0039i | 6.88899i | −36.7603 | + | 52.3897i | −46.9227 | + | 46.9227i | −81.2418 | + | 58.3075i | ||
13.11 | −3.74573 | − | 1.40339i | −9.09653 | + | 3.76791i | 12.0610 | + | 10.5134i | 14.4866 | − | 20.3750i | 39.3610 | − | 1.34758i | − | 23.5684i | −30.4228 | − | 56.3068i | 11.2741 | − | 11.2741i | −82.8568 | + | 55.9888i | |
13.12 | −3.72533 | − | 1.45668i | −4.91200 | + | 2.03462i | 11.7562 | + | 10.8532i | −22.0636 | − | 11.7558i | 21.2626 | − | 0.424433i | 7.00115i | −27.9861 | − | 57.5567i | −37.2875 | + | 37.2875i | 65.0699 | + | 75.9336i | ||
13.13 | −3.70265 | − | 1.51340i | −1.99002 | + | 0.824294i | 11.4193 | + | 11.2072i | 15.0993 | + | 19.9251i | 8.61584 | − | 0.0403829i | 76.5279i | −25.3207 | − | 58.7781i | −53.9949 | + | 53.9949i | −25.7531 | − | 96.6270i | ||
13.14 | −3.69548 | + | 1.53083i | 16.1614 | − | 6.69428i | 11.3131 | − | 11.3143i | 7.00934 | + | 23.9973i | −49.4763 | + | 49.4790i | − | 45.3574i | −24.4869 | + | 59.1303i | 159.102 | − | 159.102i | −62.6387 | − | 77.9512i | |
13.15 | −3.59482 | + | 1.75421i | −8.90051 | + | 3.68671i | 9.84548 | − | 12.6122i | 7.03388 | + | 23.9901i | 25.5285 | − | 28.8664i | − | 33.4308i | −13.2684 | + | 62.6095i | 8.35154 | − | 8.35154i | −67.3692 | − | 73.9012i | |
13.16 | −3.56430 | − | 1.81543i | −13.9928 | + | 5.79600i | 9.40840 | + | 12.9415i | −13.0943 | + | 21.2965i | 60.3966 | + | 4.74431i | − | 29.5921i | −10.0399 | − | 63.2076i | 104.929 | − | 104.929i | 85.3343 | − | 52.1350i | |
13.17 | −3.43108 | + | 2.05614i | 11.0076 | − | 4.55950i | 7.54456 | − | 14.1096i | −10.1237 | − | 22.8585i | −28.3930 | + | 38.2772i | − | 41.7696i | 3.12533 | + | 63.9236i | 43.1029 | − | 43.1029i | 81.7354 | + | 57.6136i | |
13.18 | −3.32287 | − | 2.22678i | 10.4116 | − | 4.31263i | 6.08287 | + | 14.7986i | −4.07857 | + | 24.6651i | −44.1997 | − | 8.85412i | 5.71715i | 12.7407 | − | 62.7190i | 32.5272 | − | 32.5272i | 68.4763 | − | 72.8766i | ||
13.19 | −3.23036 | + | 2.35897i | −5.32912 | + | 2.20739i | 4.87049 | − | 15.2407i | −21.7190 | − | 12.3808i | 12.0078 | − | 19.7019i | 58.3034i | 20.2189 | + | 60.7223i | −33.7488 | + | 33.7488i | 99.3663 | − | 11.2400i | ||
13.20 | −3.07306 | + | 2.56052i | 1.12258 | − | 0.464989i | 2.88745 | − | 15.7373i | −20.4558 | + | 14.3722i | −2.25915 | + | 4.30334i | − | 34.3270i | 31.4224 | + | 55.7551i | −56.2317 | + | 56.2317i | 26.0616 | − | 96.5443i | |
See next 80 embeddings (of 376 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
160.v | odd | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 160.5.v.a | ✓ | 376 |
5.c | odd | 4 | 1 | 160.5.bb.a | yes | 376 | |
32.g | even | 8 | 1 | 160.5.bb.a | yes | 376 | |
160.v | odd | 8 | 1 | inner | 160.5.v.a | ✓ | 376 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
160.5.v.a | ✓ | 376 | 1.a | even | 1 | 1 | trivial |
160.5.v.a | ✓ | 376 | 160.v | odd | 8 | 1 | inner |
160.5.bb.a | yes | 376 | 5.c | odd | 4 | 1 | |
160.5.bb.a | yes | 376 | 32.g | even | 8 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(160, [\chi])\).