Properties

Label 160.6.f.a.49.11
Level $160$
Weight $6$
Character 160.49
Analytic conductor $25.661$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,6,Mod(49,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 160.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.6614111701\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.11
Character \(\chi\) \(=\) 160.49
Dual form 160.6.f.a.49.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.17847 q^{3} +(1.28331 + 55.8870i) q^{5} -146.905i q^{7} -191.470 q^{9} -42.4351i q^{11} +605.383 q^{13} +(-9.21223 - 401.183i) q^{15} +409.138i q^{17} -2096.86i q^{19} +1054.55i q^{21} +3048.59i q^{23} +(-3121.71 + 143.441i) q^{25} +3118.83 q^{27} +4594.96i q^{29} +5118.83 q^{31} +304.619i q^{33} +(8210.06 - 188.525i) q^{35} +11248.5 q^{37} -4345.73 q^{39} +11002.0 q^{41} +8413.16 q^{43} +(-245.715 - 10700.7i) q^{45} -3975.72i q^{47} -4774.02 q^{49} -2936.99i q^{51} +38273.5 q^{53} +(2371.57 - 54.4575i) q^{55} +15052.2i q^{57} +36611.0i q^{59} -3181.32i q^{61} +28127.8i q^{63} +(776.897 + 33833.0i) q^{65} +41894.6 q^{67} -21884.2i q^{69} -72161.6 q^{71} -48275.5i q^{73} +(22409.1 - 1029.69i) q^{75} -6233.92 q^{77} +39428.9 q^{79} +24138.7 q^{81} -46504.5 q^{83} +(-22865.5 + 525.053i) q^{85} -32984.8i q^{87} -38217.3 q^{89} -88933.7i q^{91} -36745.3 q^{93} +(117187. - 2690.93i) q^{95} -95979.0i q^{97} +8125.03i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 1940 q^{9} + 488 q^{15} + 1556 q^{25} - 4368 q^{31} - 23360 q^{39} - 2480 q^{41} - 38420 q^{49} + 48776 q^{55} + 37200 q^{65} + 69232 q^{71} + 35984 q^{79} + 122596 q^{81} - 178744 q^{89} - 89416 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.17847 −0.460499 −0.230250 0.973132i \(-0.573954\pi\)
−0.230250 + 0.973132i \(0.573954\pi\)
\(4\) 0 0
\(5\) 1.28331 + 55.8870i 0.0229566 + 0.999736i
\(6\) 0 0
\(7\) 146.905i 1.13316i −0.824007 0.566580i \(-0.808266\pi\)
0.824007 0.566580i \(-0.191734\pi\)
\(8\) 0 0
\(9\) −191.470 −0.787941
\(10\) 0 0
\(11\) 42.4351i 0.105741i −0.998601 0.0528705i \(-0.983163\pi\)
0.998601 0.0528705i \(-0.0168371\pi\)
\(12\) 0 0
\(13\) 605.383 0.993510 0.496755 0.867891i \(-0.334525\pi\)
0.496755 + 0.867891i \(0.334525\pi\)
\(14\) 0 0
\(15\) −9.21223 401.183i −0.0105715 0.460378i
\(16\) 0 0
\(17\) 409.138i 0.343359i 0.985153 + 0.171679i \(0.0549193\pi\)
−0.985153 + 0.171679i \(0.945081\pi\)
\(18\) 0 0
\(19\) 2096.86i 1.33256i −0.745704 0.666278i \(-0.767886\pi\)
0.745704 0.666278i \(-0.232114\pi\)
\(20\) 0 0
\(21\) 1054.55i 0.521819i
\(22\) 0 0
\(23\) 3048.59i 1.20166i 0.799379 + 0.600828i \(0.205162\pi\)
−0.799379 + 0.600828i \(0.794838\pi\)
\(24\) 0 0
\(25\) −3121.71 + 143.441i −0.998946 + 0.0459011i
\(26\) 0 0
\(27\) 3118.83 0.823345
\(28\) 0 0
\(29\) 4594.96i 1.01458i 0.861775 + 0.507290i \(0.169353\pi\)
−0.861775 + 0.507290i \(0.830647\pi\)
\(30\) 0 0
\(31\) 5118.83 0.956679 0.478339 0.878175i \(-0.341239\pi\)
0.478339 + 0.878175i \(0.341239\pi\)
\(32\) 0 0
\(33\) 304.619i 0.0486937i
\(34\) 0 0
\(35\) 8210.06 188.525i 1.13286 0.0260135i
\(36\) 0 0
\(37\) 11248.5 1.35080 0.675398 0.737454i \(-0.263972\pi\)
0.675398 + 0.737454i \(0.263972\pi\)
\(38\) 0 0
\(39\) −4345.73 −0.457510
\(40\) 0 0
\(41\) 11002.0 1.02215 0.511073 0.859537i \(-0.329248\pi\)
0.511073 + 0.859537i \(0.329248\pi\)
\(42\) 0 0
\(43\) 8413.16 0.693886 0.346943 0.937886i \(-0.387220\pi\)
0.346943 + 0.937886i \(0.387220\pi\)
\(44\) 0 0
\(45\) −245.715 10700.7i −0.0180884 0.787733i
\(46\) 0 0
\(47\) 3975.72i 0.262525i −0.991348 0.131263i \(-0.958097\pi\)
0.991348 0.131263i \(-0.0419031\pi\)
\(48\) 0 0
\(49\) −4774.02 −0.284049
\(50\) 0 0
\(51\) 2936.99i 0.158116i
\(52\) 0 0
\(53\) 38273.5 1.87158 0.935790 0.352558i \(-0.114688\pi\)
0.935790 + 0.352558i \(0.114688\pi\)
\(54\) 0 0
\(55\) 2371.57 54.4575i 0.105713 0.00242746i
\(56\) 0 0
\(57\) 15052.2i 0.613641i
\(58\) 0 0
\(59\) 36611.0i 1.36924i 0.728898 + 0.684622i \(0.240033\pi\)
−0.728898 + 0.684622i \(0.759967\pi\)
\(60\) 0 0
\(61\) 3181.32i 0.109467i −0.998501 0.0547335i \(-0.982569\pi\)
0.998501 0.0547335i \(-0.0174309\pi\)
\(62\) 0 0
\(63\) 28127.8i 0.892862i
\(64\) 0 0
\(65\) 776.897 + 33833.0i 0.0228076 + 0.993248i
\(66\) 0 0
\(67\) 41894.6 1.14017 0.570087 0.821584i \(-0.306909\pi\)
0.570087 + 0.821584i \(0.306909\pi\)
\(68\) 0 0
\(69\) 21884.2i 0.553361i
\(70\) 0 0
\(71\) −72161.6 −1.69887 −0.849435 0.527693i \(-0.823057\pi\)
−0.849435 + 0.527693i \(0.823057\pi\)
\(72\) 0 0
\(73\) 48275.5i 1.06028i −0.847911 0.530138i \(-0.822140\pi\)
0.847911 0.530138i \(-0.177860\pi\)
\(74\) 0 0
\(75\) 22409.1 1029.69i 0.460014 0.0211374i
\(76\) 0 0
\(77\) −6233.92 −0.119821
\(78\) 0 0
\(79\) 39428.9 0.710798 0.355399 0.934715i \(-0.384345\pi\)
0.355399 + 0.934715i \(0.384345\pi\)
\(80\) 0 0
\(81\) 24138.7 0.408791
\(82\) 0 0
\(83\) −46504.5 −0.740968 −0.370484 0.928839i \(-0.620808\pi\)
−0.370484 + 0.928839i \(0.620808\pi\)
\(84\) 0 0
\(85\) −22865.5 + 525.053i −0.343268 + 0.00788235i
\(86\) 0 0
\(87\) 32984.8i 0.467213i
\(88\) 0 0
\(89\) −38217.3 −0.511428 −0.255714 0.966752i \(-0.582311\pi\)
−0.255714 + 0.966752i \(0.582311\pi\)
\(90\) 0 0
\(91\) 88933.7i 1.12580i
\(92\) 0 0
\(93\) −36745.3 −0.440550
\(94\) 0 0
\(95\) 117187. 2690.93i 1.33220 0.0305910i
\(96\) 0 0
\(97\) 95979.0i 1.03573i −0.855462 0.517865i \(-0.826727\pi\)
0.855462 0.517865i \(-0.173273\pi\)
\(98\) 0 0
\(99\) 8125.03i 0.0833177i
\(100\) 0 0
\(101\) 83900.0i 0.818386i 0.912448 + 0.409193i \(0.134190\pi\)
−0.912448 + 0.409193i \(0.865810\pi\)
\(102\) 0 0
\(103\) 10693.4i 0.0993165i −0.998766 0.0496583i \(-0.984187\pi\)
0.998766 0.0496583i \(-0.0158132\pi\)
\(104\) 0 0
\(105\) −58935.7 + 1353.32i −0.521681 + 0.0119792i
\(106\) 0 0
\(107\) −109794. −0.927081 −0.463540 0.886076i \(-0.653421\pi\)
−0.463540 + 0.886076i \(0.653421\pi\)
\(108\) 0 0
\(109\) 135615.i 1.09330i 0.837361 + 0.546651i \(0.184097\pi\)
−0.837361 + 0.546651i \(0.815903\pi\)
\(110\) 0 0
\(111\) −80746.9 −0.622040
\(112\) 0 0
\(113\) 195440.i 1.43985i 0.694050 + 0.719927i \(0.255825\pi\)
−0.694050 + 0.719927i \(0.744175\pi\)
\(114\) 0 0
\(115\) −170377. + 3912.30i −1.20134 + 0.0275859i
\(116\) 0 0
\(117\) −115913. −0.782827
\(118\) 0 0
\(119\) 60104.4 0.389080
\(120\) 0 0
\(121\) 159250. 0.988819
\(122\) 0 0
\(123\) −78977.7 −0.470697
\(124\) 0 0
\(125\) −12022.6 174279.i −0.0688214 0.997629i
\(126\) 0 0
\(127\) 171245.i 0.942126i −0.882100 0.471063i \(-0.843870\pi\)
0.882100 0.471063i \(-0.156130\pi\)
\(128\) 0 0
\(129\) −60393.6 −0.319534
\(130\) 0 0
\(131\) 111420.i 0.567265i −0.958933 0.283632i \(-0.908460\pi\)
0.958933 0.283632i \(-0.0915395\pi\)
\(132\) 0 0
\(133\) −308039. −1.51000
\(134\) 0 0
\(135\) 4002.43 + 174302.i 0.0189012 + 0.823128i
\(136\) 0 0
\(137\) 282243.i 1.28476i −0.766387 0.642379i \(-0.777948\pi\)
0.766387 0.642379i \(-0.222052\pi\)
\(138\) 0 0
\(139\) 44060.1i 0.193423i 0.995312 + 0.0967117i \(0.0308325\pi\)
−0.995312 + 0.0967117i \(0.969168\pi\)
\(140\) 0 0
\(141\) 28539.6i 0.120893i
\(142\) 0 0
\(143\) 25689.5i 0.105055i
\(144\) 0 0
\(145\) −256798. + 5896.77i −1.01431 + 0.0232913i
\(146\) 0 0
\(147\) 34270.1 0.130804
\(148\) 0 0
\(149\) 251552.i 0.928244i −0.885771 0.464122i \(-0.846370\pi\)
0.885771 0.464122i \(-0.153630\pi\)
\(150\) 0 0
\(151\) −95790.0 −0.341883 −0.170942 0.985281i \(-0.554681\pi\)
−0.170942 + 0.985281i \(0.554681\pi\)
\(152\) 0 0
\(153\) 78337.6i 0.270546i
\(154\) 0 0
\(155\) 6569.06 + 286076.i 0.0219621 + 0.956427i
\(156\) 0 0
\(157\) 178462. 0.577824 0.288912 0.957356i \(-0.406706\pi\)
0.288912 + 0.957356i \(0.406706\pi\)
\(158\) 0 0
\(159\) −274745. −0.861861
\(160\) 0 0
\(161\) 447853. 1.36167
\(162\) 0 0
\(163\) 147330. 0.434332 0.217166 0.976135i \(-0.430319\pi\)
0.217166 + 0.976135i \(0.430319\pi\)
\(164\) 0 0
\(165\) −17024.2 + 390.922i −0.0486808 + 0.00111784i
\(166\) 0 0
\(167\) 310989.i 0.862888i −0.902140 0.431444i \(-0.858004\pi\)
0.902140 0.431444i \(-0.141996\pi\)
\(168\) 0 0
\(169\) −4803.84 −0.0129381
\(170\) 0 0
\(171\) 401485.i 1.04997i
\(172\) 0 0
\(173\) 120278. 0.305542 0.152771 0.988262i \(-0.451180\pi\)
0.152771 + 0.988262i \(0.451180\pi\)
\(174\) 0 0
\(175\) 21072.2 + 458594.i 0.0520133 + 1.13196i
\(176\) 0 0
\(177\) 262811.i 0.630536i
\(178\) 0 0
\(179\) 180544.i 0.421162i −0.977576 0.210581i \(-0.932464\pi\)
0.977576 0.210581i \(-0.0675356\pi\)
\(180\) 0 0
\(181\) 149699.i 0.339643i 0.985475 + 0.169821i \(0.0543191\pi\)
−0.985475 + 0.169821i \(0.945681\pi\)
\(182\) 0 0
\(183\) 22837.0i 0.0504095i
\(184\) 0 0
\(185\) 14435.3 + 628643.i 0.0310097 + 1.35044i
\(186\) 0 0
\(187\) 17361.8 0.0363071
\(188\) 0 0
\(189\) 458171.i 0.932981i
\(190\) 0 0
\(191\) −213909. −0.424273 −0.212136 0.977240i \(-0.568042\pi\)
−0.212136 + 0.977240i \(0.568042\pi\)
\(192\) 0 0
\(193\) 729587.i 1.40988i 0.709265 + 0.704942i \(0.249027\pi\)
−0.709265 + 0.704942i \(0.750973\pi\)
\(194\) 0 0
\(195\) −5576.93 242869.i −0.0105029 0.457390i
\(196\) 0 0
\(197\) 922110. 1.69285 0.846423 0.532512i \(-0.178752\pi\)
0.846423 + 0.532512i \(0.178752\pi\)
\(198\) 0 0
\(199\) 985328. 1.76379 0.881897 0.471442i \(-0.156266\pi\)
0.881897 + 0.471442i \(0.156266\pi\)
\(200\) 0 0
\(201\) −300739. −0.525049
\(202\) 0 0
\(203\) 675021. 1.14968
\(204\) 0 0
\(205\) 14119.0 + 614870.i 0.0234650 + 1.02188i
\(206\) 0 0
\(207\) 583713.i 0.946833i
\(208\) 0 0
\(209\) −88980.5 −0.140906
\(210\) 0 0
\(211\) 932526.i 1.44197i −0.692953 0.720983i \(-0.743691\pi\)
0.692953 0.720983i \(-0.256309\pi\)
\(212\) 0 0
\(213\) 518010. 0.782328
\(214\) 0 0
\(215\) 10796.7 + 470186.i 0.0159293 + 0.693703i
\(216\) 0 0
\(217\) 751980.i 1.08407i
\(218\) 0 0
\(219\) 346544.i 0.488257i
\(220\) 0 0
\(221\) 247686.i 0.341130i
\(222\) 0 0
\(223\) 748564.i 1.00801i 0.863699 + 0.504007i \(0.168142\pi\)
−0.863699 + 0.504007i \(0.831858\pi\)
\(224\) 0 0
\(225\) 597712. 27464.6i 0.787110 0.0361674i
\(226\) 0 0
\(227\) 1.47117e6 1.89495 0.947475 0.319829i \(-0.103626\pi\)
0.947475 + 0.319829i \(0.103626\pi\)
\(228\) 0 0
\(229\) 835029.i 1.05223i 0.850412 + 0.526117i \(0.176353\pi\)
−0.850412 + 0.526117i \(0.823647\pi\)
\(230\) 0 0
\(231\) 44750.0 0.0551777
\(232\) 0 0
\(233\) 284718.i 0.343577i −0.985134 0.171789i \(-0.945045\pi\)
0.985134 0.171789i \(-0.0549546\pi\)
\(234\) 0 0
\(235\) 222191. 5102.09i 0.262456 0.00602669i
\(236\) 0 0
\(237\) −283039. −0.327322
\(238\) 0 0
\(239\) −800635. −0.906650 −0.453325 0.891345i \(-0.649762\pi\)
−0.453325 + 0.891345i \(0.649762\pi\)
\(240\) 0 0
\(241\) −1.50596e6 −1.67021 −0.835107 0.550088i \(-0.814594\pi\)
−0.835107 + 0.550088i \(0.814594\pi\)
\(242\) 0 0
\(243\) −931154. −1.01159
\(244\) 0 0
\(245\) −6126.56 266805.i −0.00652081 0.283975i
\(246\) 0 0
\(247\) 1.26940e6i 1.32391i
\(248\) 0 0
\(249\) 333831. 0.341215
\(250\) 0 0
\(251\) 1.10255e6i 1.10463i 0.833637 + 0.552313i \(0.186255\pi\)
−0.833637 + 0.552313i \(0.813745\pi\)
\(252\) 0 0
\(253\) 129367. 0.127064
\(254\) 0 0
\(255\) 164139. 3769.08i 0.158075 0.00362981i
\(256\) 0 0
\(257\) 1.41038e6i 1.33200i −0.745953 0.665999i \(-0.768006\pi\)
0.745953 0.665999i \(-0.231994\pi\)
\(258\) 0 0
\(259\) 1.65246e6i 1.53067i
\(260\) 0 0
\(261\) 879794.i 0.799429i
\(262\) 0 0
\(263\) 1.68879e6i 1.50552i 0.658298 + 0.752758i \(0.271277\pi\)
−0.658298 + 0.752758i \(0.728723\pi\)
\(264\) 0 0
\(265\) 49116.9 + 2.13899e6i 0.0429651 + 1.87109i
\(266\) 0 0
\(267\) 274342. 0.235512
\(268\) 0 0
\(269\) 305848.i 0.257706i −0.991664 0.128853i \(-0.958870\pi\)
0.991664 0.128853i \(-0.0411295\pi\)
\(270\) 0 0
\(271\) 1.25325e6 1.03661 0.518306 0.855195i \(-0.326563\pi\)
0.518306 + 0.855195i \(0.326563\pi\)
\(272\) 0 0
\(273\) 638408.i 0.518432i
\(274\) 0 0
\(275\) 6086.93 + 132470.i 0.00485363 + 0.105630i
\(276\) 0 0
\(277\) −483396. −0.378533 −0.189267 0.981926i \(-0.560611\pi\)
−0.189267 + 0.981926i \(0.560611\pi\)
\(278\) 0 0
\(279\) −980100. −0.753806
\(280\) 0 0
\(281\) 88721.8 0.0670293 0.0335147 0.999438i \(-0.489330\pi\)
0.0335147 + 0.999438i \(0.489330\pi\)
\(282\) 0 0
\(283\) −1.76445e6 −1.30961 −0.654807 0.755796i \(-0.727250\pi\)
−0.654807 + 0.755796i \(0.727250\pi\)
\(284\) 0 0
\(285\) −841224. + 19316.7i −0.613479 + 0.0140871i
\(286\) 0 0
\(287\) 1.61625e6i 1.15825i
\(288\) 0 0
\(289\) 1.25246e6 0.882105
\(290\) 0 0
\(291\) 688982.i 0.476953i
\(292\) 0 0
\(293\) 9124.96 0.00620957 0.00310479 0.999995i \(-0.499012\pi\)
0.00310479 + 0.999995i \(0.499012\pi\)
\(294\) 0 0
\(295\) −2.04608e6 + 46983.3i −1.36888 + 0.0314332i
\(296\) 0 0
\(297\) 132348.i 0.0870614i
\(298\) 0 0
\(299\) 1.84557e6i 1.19386i
\(300\) 0 0
\(301\) 1.23593e6i 0.786283i
\(302\) 0 0
\(303\) 602273.i 0.376866i
\(304\) 0 0
\(305\) 177795. 4082.64i 0.109438 0.00251299i
\(306\) 0 0
\(307\) −2.64214e6 −1.59996 −0.799980 0.600026i \(-0.795157\pi\)
−0.799980 + 0.600026i \(0.795157\pi\)
\(308\) 0 0
\(309\) 76762.0i 0.0457352i
\(310\) 0 0
\(311\) 1.40253e6 0.822262 0.411131 0.911576i \(-0.365134\pi\)
0.411131 + 0.911576i \(0.365134\pi\)
\(312\) 0 0
\(313\) 1.35907e6i 0.784115i −0.919941 0.392058i \(-0.871763\pi\)
0.919941 0.392058i \(-0.128237\pi\)
\(314\) 0 0
\(315\) −1.57198e6 + 36096.8i −0.892627 + 0.0204971i
\(316\) 0 0
\(317\) −300344. −0.167869 −0.0839344 0.996471i \(-0.526749\pi\)
−0.0839344 + 0.996471i \(0.526749\pi\)
\(318\) 0 0
\(319\) 194987. 0.107283
\(320\) 0 0
\(321\) 788150. 0.426920
\(322\) 0 0
\(323\) 857906. 0.457545
\(324\) 0 0
\(325\) −1.88983e6 + 86836.8i −0.992463 + 0.0456032i
\(326\) 0 0
\(327\) 973505.i 0.503464i
\(328\) 0 0
\(329\) −584052. −0.297483
\(330\) 0 0
\(331\) 2.37543e6i 1.19172i 0.803090 + 0.595858i \(0.203188\pi\)
−0.803090 + 0.595858i \(0.796812\pi\)
\(332\) 0 0
\(333\) −2.15374e6 −1.06435
\(334\) 0 0
\(335\) 53763.9 + 2.34136e6i 0.0261745 + 1.13987i
\(336\) 0 0
\(337\) 3.69929e6i 1.77437i −0.461416 0.887184i \(-0.652659\pi\)
0.461416 0.887184i \(-0.347341\pi\)
\(338\) 0 0
\(339\) 1.40296e6i 0.663051i
\(340\) 0 0
\(341\) 217218.i 0.101160i
\(342\) 0 0
\(343\) 1.76770e6i 0.811286i
\(344\) 0 0
\(345\) 1.22304e6 28084.3i 0.553215 0.0127033i
\(346\) 0 0
\(347\) 1.98355e6 0.884339 0.442170 0.896931i \(-0.354209\pi\)
0.442170 + 0.896931i \(0.354209\pi\)
\(348\) 0 0
\(349\) 1.51829e6i 0.667256i 0.942705 + 0.333628i \(0.108273\pi\)
−0.942705 + 0.333628i \(0.891727\pi\)
\(350\) 0 0
\(351\) 1.88809e6 0.818001
\(352\) 0 0
\(353\) 2.06194e6i 0.880724i 0.897820 + 0.440362i \(0.145150\pi\)
−0.897820 + 0.440362i \(0.854850\pi\)
\(354\) 0 0
\(355\) −92605.9 4.03289e6i −0.0390003 1.69842i
\(356\) 0 0
\(357\) −431458. −0.179171
\(358\) 0 0
\(359\) −1.33255e6 −0.545691 −0.272846 0.962058i \(-0.587965\pi\)
−0.272846 + 0.962058i \(0.587965\pi\)
\(360\) 0 0
\(361\) −1.92072e6 −0.775705
\(362\) 0 0
\(363\) −1.14317e6 −0.455350
\(364\) 0 0
\(365\) 2.69797e6 61952.6i 1.06000 0.0243404i
\(366\) 0 0
\(367\) 313330.i 0.121433i 0.998155 + 0.0607166i \(0.0193386\pi\)
−0.998155 + 0.0607166i \(0.980661\pi\)
\(368\) 0 0
\(369\) −2.10655e6 −0.805390
\(370\) 0 0
\(371\) 5.62256e6i 2.12080i
\(372\) 0 0
\(373\) −2.93069e6 −1.09068 −0.545341 0.838215i \(-0.683600\pi\)
−0.545341 + 0.838215i \(0.683600\pi\)
\(374\) 0 0
\(375\) 86303.9 + 1.25105e6i 0.0316922 + 0.459407i
\(376\) 0 0
\(377\) 2.78171e6i 1.00800i
\(378\) 0 0
\(379\) 4.10811e6i 1.46907i 0.678569 + 0.734537i \(0.262601\pi\)
−0.678569 + 0.734537i \(0.737399\pi\)
\(380\) 0 0
\(381\) 1.22928e6i 0.433848i
\(382\) 0 0
\(383\) 958991.i 0.334055i 0.985952 + 0.167027i \(0.0534168\pi\)
−0.985952 + 0.167027i \(0.946583\pi\)
\(384\) 0 0
\(385\) −8000.07 348395.i −0.00275069 0.119790i
\(386\) 0 0
\(387\) −1.61086e6 −0.546741
\(388\) 0 0
\(389\) 647634.i 0.216998i 0.994097 + 0.108499i \(0.0346044\pi\)
−0.994097 + 0.108499i \(0.965396\pi\)
\(390\) 0 0
\(391\) −1.24730e6 −0.412599
\(392\) 0 0
\(393\) 799827.i 0.261225i
\(394\) 0 0
\(395\) 50599.6 + 2.20356e6i 0.0163175 + 0.710611i
\(396\) 0 0
\(397\) 2.06284e6 0.656885 0.328443 0.944524i \(-0.393476\pi\)
0.328443 + 0.944524i \(0.393476\pi\)
\(398\) 0 0
\(399\) 2.21125e6 0.695352
\(400\) 0 0
\(401\) −1.92225e6 −0.596964 −0.298482 0.954415i \(-0.596480\pi\)
−0.298482 + 0.954415i \(0.596480\pi\)
\(402\) 0 0
\(403\) 3.09885e6 0.950470
\(404\) 0 0
\(405\) 30977.5 + 1.34904e6i 0.00938446 + 0.408683i
\(406\) 0 0
\(407\) 477330.i 0.142834i
\(408\) 0 0
\(409\) 1.40471e6 0.415221 0.207610 0.978212i \(-0.433431\pi\)
0.207610 + 0.978212i \(0.433431\pi\)
\(410\) 0 0
\(411\) 2.02607e6i 0.591630i
\(412\) 0 0
\(413\) 5.37833e6 1.55157
\(414\) 0 0
\(415\) −59679.8 2.59899e6i −0.0170101 0.740773i
\(416\) 0 0
\(417\) 316284.i 0.0890712i
\(418\) 0 0
\(419\) 4.03594e6i 1.12308i −0.827451 0.561538i \(-0.810210\pi\)
0.827451 0.561538i \(-0.189790\pi\)
\(420\) 0 0
\(421\) 594910.i 0.163586i 0.996649 + 0.0817929i \(0.0260646\pi\)
−0.996649 + 0.0817929i \(0.973935\pi\)
\(422\) 0 0
\(423\) 761229.i 0.206854i
\(424\) 0 0
\(425\) −58687.2 1.27721e6i −0.0157605 0.342997i
\(426\) 0 0
\(427\) −467352. −0.124044
\(428\) 0 0
\(429\) 184411.i 0.0483776i
\(430\) 0 0
\(431\) −4.15801e6 −1.07818 −0.539091 0.842247i \(-0.681232\pi\)
−0.539091 + 0.842247i \(0.681232\pi\)
\(432\) 0 0
\(433\) 2.27636e6i 0.583474i 0.956499 + 0.291737i \(0.0942333\pi\)
−0.956499 + 0.291737i \(0.905767\pi\)
\(434\) 0 0
\(435\) 1.84342e6 42329.8i 0.467090 0.0107256i
\(436\) 0 0
\(437\) 6.39247e6 1.60127
\(438\) 0 0
\(439\) 1.28126e6 0.317305 0.158653 0.987334i \(-0.449285\pi\)
0.158653 + 0.987334i \(0.449285\pi\)
\(440\) 0 0
\(441\) 914079. 0.223814
\(442\) 0 0
\(443\) 6.01266e6 1.45565 0.727825 0.685763i \(-0.240531\pi\)
0.727825 + 0.685763i \(0.240531\pi\)
\(444\) 0 0
\(445\) −49044.7 2.13585e6i −0.0117407 0.511294i
\(446\) 0 0
\(447\) 1.80576e6i 0.427455i
\(448\) 0 0
\(449\) 2.11543e6 0.495202 0.247601 0.968862i \(-0.420358\pi\)
0.247601 + 0.968862i \(0.420358\pi\)
\(450\) 0 0
\(451\) 466872.i 0.108083i
\(452\) 0 0
\(453\) 687625. 0.157437
\(454\) 0 0
\(455\) 4.97024e6 114130.i 1.12551 0.0258447i
\(456\) 0 0
\(457\) 1.35964e6i 0.304533i −0.988339 0.152267i \(-0.951343\pi\)
0.988339 0.152267i \(-0.0486573\pi\)
\(458\) 0 0
\(459\) 1.27603e6i 0.282703i
\(460\) 0 0
\(461\) 2.06438e6i 0.452415i −0.974079 0.226208i \(-0.927367\pi\)
0.974079 0.226208i \(-0.0726328\pi\)
\(462\) 0 0
\(463\) 1.48917e6i 0.322843i −0.986886 0.161421i \(-0.948392\pi\)
0.986886 0.161421i \(-0.0516078\pi\)
\(464\) 0 0
\(465\) −47155.8 2.05359e6i −0.0101135 0.440434i
\(466\) 0 0
\(467\) 7.05856e6 1.49770 0.748849 0.662741i \(-0.230607\pi\)
0.748849 + 0.662741i \(0.230607\pi\)
\(468\) 0 0
\(469\) 6.15452e6i 1.29200i
\(470\) 0 0
\(471\) −1.28108e6 −0.266087
\(472\) 0 0
\(473\) 357014.i 0.0733722i
\(474\) 0 0
\(475\) 300776. + 6.54578e6i 0.0611658 + 1.33115i
\(476\) 0 0
\(477\) −7.32821e6 −1.47469
\(478\) 0 0
\(479\) −1.47482e6 −0.293697 −0.146849 0.989159i \(-0.546913\pi\)
−0.146849 + 0.989159i \(0.546913\pi\)
\(480\) 0 0
\(481\) 6.80964e6 1.34203
\(482\) 0 0
\(483\) −3.21490e6 −0.627046
\(484\) 0 0
\(485\) 5.36397e6 123171.i 1.03546 0.0237769i
\(486\) 0 0
\(487\) 9.13416e6i 1.74520i 0.488433 + 0.872602i \(0.337569\pi\)
−0.488433 + 0.872602i \(0.662431\pi\)
\(488\) 0 0
\(489\) −1.05760e6 −0.200009
\(490\) 0 0
\(491\) 4.74188e6i 0.887660i 0.896111 + 0.443830i \(0.146381\pi\)
−0.896111 + 0.443830i \(0.853619\pi\)
\(492\) 0 0
\(493\) −1.87997e6 −0.348365
\(494\) 0 0
\(495\) −454083. + 10427.0i −0.0832957 + 0.00191269i
\(496\) 0 0
\(497\) 1.06009e7i 1.92509i
\(498\) 0 0
\(499\) 539009.i 0.0969046i −0.998825 0.0484523i \(-0.984571\pi\)
0.998825 0.0484523i \(-0.0154289\pi\)
\(500\) 0 0
\(501\) 2.23243e6i 0.397359i
\(502\) 0 0
\(503\) 2.21657e6i 0.390627i −0.980741 0.195313i \(-0.937428\pi\)
0.980741 0.195313i \(-0.0625724\pi\)
\(504\) 0 0
\(505\) −4.68891e6 + 107670.i −0.818171 + 0.0187874i
\(506\) 0 0
\(507\) 34484.2 0.00595800
\(508\) 0 0
\(509\) 3.35132e6i 0.573352i 0.958028 + 0.286676i \(0.0925503\pi\)
−0.958028 + 0.286676i \(0.907450\pi\)
\(510\) 0 0
\(511\) −7.09190e6 −1.20146
\(512\) 0 0
\(513\) 6.53974e6i 1.09715i
\(514\) 0 0
\(515\) 597620. 13722.9i 0.0992903 0.00227997i
\(516\) 0 0
\(517\) −168710. −0.0277597
\(518\) 0 0
\(519\) −863411. −0.140702
\(520\) 0 0
\(521\) 5.01924e6 0.810109 0.405054 0.914293i \(-0.367253\pi\)
0.405054 + 0.914293i \(0.367253\pi\)
\(522\) 0 0
\(523\) −3.44581e6 −0.550855 −0.275428 0.961322i \(-0.588819\pi\)
−0.275428 + 0.961322i \(0.588819\pi\)
\(524\) 0 0
\(525\) −151266. 3.29200e6i −0.0239521 0.521269i
\(526\) 0 0
\(527\) 2.09431e6i 0.328484i
\(528\) 0 0
\(529\) −2.85758e6 −0.443975
\(530\) 0 0
\(531\) 7.00988e6i 1.07888i
\(532\) 0 0
\(533\) 6.66044e6 1.01551
\(534\) 0 0
\(535\) −140900. 6.13603e6i −0.0212826 0.926836i
\(536\) 0 0
\(537\) 1.29603e6i 0.193945i
\(538\) 0 0
\(539\) 202586.i 0.0300357i
\(540\) 0 0
\(541\) 3.97667e6i 0.584153i 0.956395 + 0.292076i \(0.0943461\pi\)
−0.956395 + 0.292076i \(0.905654\pi\)
\(542\) 0 0
\(543\) 1.07461e6i 0.156405i
\(544\) 0 0
\(545\) −7.57908e6 + 174036.i −1.09301 + 0.0250985i
\(546\) 0 0
\(547\) −9.20664e6 −1.31563 −0.657814 0.753181i \(-0.728519\pi\)
−0.657814 + 0.753181i \(0.728519\pi\)
\(548\) 0 0
\(549\) 609127.i 0.0862535i
\(550\) 0 0
\(551\) 9.63498e6 1.35198
\(552\) 0 0
\(553\) 5.79229e6i 0.805448i
\(554\) 0 0
\(555\) −103624. 4.51270e6i −0.0142799 0.621876i
\(556\) 0 0
\(557\) −6.00805e6 −0.820531 −0.410266 0.911966i \(-0.634564\pi\)
−0.410266 + 0.911966i \(0.634564\pi\)
\(558\) 0 0
\(559\) 5.09319e6 0.689383
\(560\) 0 0
\(561\) −124631. −0.0167194
\(562\) 0 0
\(563\) −3.22469e6 −0.428763 −0.214381 0.976750i \(-0.568774\pi\)
−0.214381 + 0.976750i \(0.568774\pi\)
\(564\) 0 0
\(565\) −1.09226e7 + 250811.i −1.43947 + 0.0330542i
\(566\) 0 0
\(567\) 3.54609e6i 0.463225i
\(568\) 0 0
\(569\) −3.74802e6 −0.485312 −0.242656 0.970112i \(-0.578019\pi\)
−0.242656 + 0.970112i \(0.578019\pi\)
\(570\) 0 0
\(571\) 4.37966e6i 0.562148i −0.959686 0.281074i \(-0.909309\pi\)
0.959686 0.281074i \(-0.0906906\pi\)
\(572\) 0 0
\(573\) 1.53554e6 0.195377
\(574\) 0 0
\(575\) −437293. 9.51681e6i −0.0551573 1.20039i
\(576\) 0 0
\(577\) 1.03145e7i 1.28976i 0.764284 + 0.644880i \(0.223093\pi\)
−0.764284 + 0.644880i \(0.776907\pi\)
\(578\) 0 0
\(579\) 5.23732e6i 0.649251i
\(580\) 0 0
\(581\) 6.83173e6i 0.839635i
\(582\) 0 0
\(583\) 1.62414e6i 0.197903i
\(584\) 0 0
\(585\) −148752. 6.47800e6i −0.0179710 0.782620i
\(586\) 0 0
\(587\) −5.88489e6 −0.704925 −0.352463 0.935826i \(-0.614656\pi\)
−0.352463 + 0.935826i \(0.614656\pi\)
\(588\) 0 0
\(589\) 1.07335e7i 1.27483i
\(590\) 0 0
\(591\) −6.61934e6 −0.779554
\(592\) 0 0
\(593\) 1.07458e7i 1.25488i −0.778664 0.627442i \(-0.784102\pi\)
0.778664 0.627442i \(-0.215898\pi\)
\(594\) 0 0
\(595\) 77132.8 + 3.35905e6i 0.00893196 + 0.388977i
\(596\) 0 0
\(597\) −7.07314e6 −0.812226
\(598\) 0 0
\(599\) −1.01249e6 −0.115299 −0.0576493 0.998337i \(-0.518361\pi\)
−0.0576493 + 0.998337i \(0.518361\pi\)
\(600\) 0 0
\(601\) 7.16049e6 0.808643 0.404321 0.914617i \(-0.367508\pi\)
0.404321 + 0.914617i \(0.367508\pi\)
\(602\) 0 0
\(603\) −8.02154e6 −0.898390
\(604\) 0 0
\(605\) 204368. + 8.90001e6i 0.0226999 + 0.988558i
\(606\) 0 0
\(607\) 1.22036e7i 1.34437i 0.740385 + 0.672183i \(0.234643\pi\)
−0.740385 + 0.672183i \(0.765357\pi\)
\(608\) 0 0
\(609\) −4.84562e6 −0.529427
\(610\) 0 0
\(611\) 2.40683e6i 0.260821i
\(612\) 0 0
\(613\) −1.15888e7 −1.24563 −0.622815 0.782369i \(-0.714011\pi\)
−0.622815 + 0.782369i \(0.714011\pi\)
\(614\) 0 0
\(615\) −101353. 4.41382e6i −0.0108056 0.470573i
\(616\) 0 0
\(617\) 1.47499e6i 0.155983i 0.996954 + 0.0779915i \(0.0248507\pi\)
−0.996954 + 0.0779915i \(0.975149\pi\)
\(618\) 0 0
\(619\) 6.94510e6i 0.728537i 0.931294 + 0.364269i \(0.118681\pi\)
−0.931294 + 0.364269i \(0.881319\pi\)
\(620\) 0 0
\(621\) 9.50803e6i 0.989377i
\(622\) 0 0
\(623\) 5.61430e6i 0.579530i
\(624\) 0 0
\(625\) 9.72447e6 895561.i 0.995786 0.0917055i
\(626\) 0 0
\(627\) 638744. 0.0648870
\(628\) 0 0
\(629\) 4.60218e6i 0.463807i
\(630\) 0 0
\(631\) −3.38551e6 −0.338494 −0.169247 0.985574i \(-0.554133\pi\)
−0.169247 + 0.985574i \(0.554133\pi\)
\(632\) 0 0
\(633\) 6.69411e6i 0.664024i
\(634\) 0 0
\(635\) 9.57037e6 219761.i 0.941878 0.0216280i
\(636\) 0 0
\(637\) −2.89011e6 −0.282206
\(638\) 0 0
\(639\) 1.38167e7 1.33861
\(640\) 0 0
\(641\) −6.43478e6 −0.618570 −0.309285 0.950969i \(-0.600090\pi\)
−0.309285 + 0.950969i \(0.600090\pi\)
\(642\) 0 0
\(643\) 819506. 0.0781672 0.0390836 0.999236i \(-0.487556\pi\)
0.0390836 + 0.999236i \(0.487556\pi\)
\(644\) 0 0
\(645\) −77504.0 3.37522e6i −0.00733541 0.319450i
\(646\) 0 0
\(647\) 1.00673e7i 0.945482i 0.881201 + 0.472741i \(0.156735\pi\)
−0.881201 + 0.472741i \(0.843265\pi\)
\(648\) 0 0
\(649\) 1.55359e6 0.144785
\(650\) 0 0
\(651\) 5.39807e6i 0.499213i
\(652\) 0 0
\(653\) −3.73524e6 −0.342796 −0.171398 0.985202i \(-0.554828\pi\)
−0.171398 + 0.985202i \(0.554828\pi\)
\(654\) 0 0
\(655\) 6.22694e6 142987.i 0.567115 0.0130225i
\(656\) 0 0
\(657\) 9.24328e6i 0.835435i
\(658\) 0 0
\(659\) 2.11585e6i 0.189789i −0.995487 0.0948947i \(-0.969749\pi\)
0.995487 0.0948947i \(-0.0302514\pi\)
\(660\) 0 0
\(661\) 1.89096e7i 1.68337i −0.539970 0.841684i \(-0.681565\pi\)
0.539970 0.841684i \(-0.318435\pi\)
\(662\) 0 0
\(663\) 1.77800e6i 0.157090i
\(664\) 0 0
\(665\) −395310. 1.72154e7i −0.0346644 1.50960i
\(666\) 0 0
\(667\) −1.40082e7 −1.21918
\(668\) 0 0
\(669\) 5.37355e6i 0.464190i
\(670\) 0 0
\(671\) −135000. −0.0115752
\(672\) 0 0
\(673\) 2.10683e6i 0.179304i −0.995973 0.0896522i \(-0.971424\pi\)
0.995973 0.0896522i \(-0.0285755\pi\)
\(674\) 0 0
\(675\) −9.73606e6 + 447368.i −0.822477 + 0.0377925i
\(676\) 0 0
\(677\) 5.17934e6 0.434313 0.217156 0.976137i \(-0.430322\pi\)
0.217156 + 0.976137i \(0.430322\pi\)
\(678\) 0 0
\(679\) −1.40998e7 −1.17365
\(680\) 0 0
\(681\) −1.05607e7 −0.872623
\(682\) 0 0
\(683\) 8.80956e6 0.722608 0.361304 0.932448i \(-0.382332\pi\)
0.361304 + 0.932448i \(0.382332\pi\)
\(684\) 0 0
\(685\) 1.57737e7 362206.i 1.28442 0.0294937i
\(686\) 0 0
\(687\) 5.99423e6i 0.484553i
\(688\) 0 0
\(689\) 2.31701e7 1.85943
\(690\) 0 0
\(691\) 5.78539e6i 0.460933i 0.973080 + 0.230466i \(0.0740252\pi\)
−0.973080 + 0.230466i \(0.925975\pi\)
\(692\) 0 0
\(693\) 1.19361e6 0.0944122
\(694\) 0 0
\(695\) −2.46239e6 + 56543.0i −0.193372 + 0.00444034i
\(696\) 0 0
\(697\) 4.50135e6i 0.350963i
\(698\) 0 0
\(699\) 2.04384e6i 0.158217i
\(700\) 0 0
\(701\) 2.01716e7i 1.55041i −0.631711 0.775204i \(-0.717647\pi\)
0.631711 0.775204i \(-0.282353\pi\)
\(702\) 0 0
\(703\) 2.35865e7i 1.80001i
\(704\) 0 0
\(705\) −1.59499e6 + 36625.2i −0.120861 + 0.00277528i
\(706\) 0 0
\(707\) 1.23253e7 0.927362
\(708\) 0 0
\(709\) 1.71661e7i 1.28250i 0.767334 + 0.641248i \(0.221583\pi\)
−0.767334 + 0.641248i \(0.778417\pi\)
\(710\) 0 0
\(711\) −7.54943e6 −0.560067
\(712\) 0 0
\(713\) 1.56052e7i 1.14960i
\(714\) 0 0
\(715\) 1.43571e6 32967.7i 0.105027 0.00241170i
\(716\) 0 0
\(717\) 5.74733e6 0.417511
\(718\) 0 0
\(719\) −1.37927e7 −0.995009 −0.497505 0.867461i \(-0.665750\pi\)
−0.497505 + 0.867461i \(0.665750\pi\)
\(720\) 0 0
\(721\) −1.57091e6 −0.112541
\(722\) 0 0
\(723\) 1.08105e7 0.769132
\(724\) 0 0
\(725\) −659105. 1.43441e7i −0.0465704 1.01351i
\(726\) 0 0
\(727\) 9.10175e6i 0.638688i 0.947639 + 0.319344i \(0.103463\pi\)
−0.947639 + 0.319344i \(0.896537\pi\)
\(728\) 0 0
\(729\) 818554. 0.0570465
\(730\) 0 0
\(731\) 3.44215e6i 0.238252i
\(732\) 0 0
\(733\) 1.79637e7 1.23491 0.617456 0.786605i \(-0.288163\pi\)
0.617456 + 0.786605i \(0.288163\pi\)
\(734\) 0 0
\(735\) 43979.3 + 1.91525e6i 0.00300283 + 0.130770i
\(736\) 0 0
\(737\) 1.77780e6i 0.120563i
\(738\) 0 0
\(739\) 1.38839e7i 0.935192i 0.883942 + 0.467596i \(0.154880\pi\)
−0.883942 + 0.467596i \(0.845120\pi\)
\(740\) 0 0
\(741\) 9.11238e6i 0.609658i
\(742\) 0 0
\(743\) 2.37521e6i 0.157845i −0.996881 0.0789225i \(-0.974852\pi\)
0.996881 0.0789225i \(-0.0251480\pi\)
\(744\) 0 0
\(745\) 1.40585e7 322820.i 0.927999 0.0213093i
\(746\) 0 0
\(747\) 8.90419e6 0.583839
\(748\) 0 0
\(749\) 1.61292e7i 1.05053i
\(750\) 0 0
\(751\) 1.99260e7 1.28920 0.644600 0.764520i \(-0.277024\pi\)
0.644600 + 0.764520i \(0.277024\pi\)
\(752\) 0 0
\(753\) 7.91465e6i 0.508679i
\(754\) 0 0
\(755\) −122929. 5.35341e6i −0.00784848 0.341793i
\(756\) 0 0
\(757\) 1.30771e7 0.829413 0.414707 0.909955i \(-0.363884\pi\)
0.414707 + 0.909955i \(0.363884\pi\)
\(758\) 0 0
\(759\) −928660. −0.0585130
\(760\) 0 0
\(761\) −1.75251e7 −1.09698 −0.548492 0.836156i \(-0.684798\pi\)
−0.548492 + 0.836156i \(0.684798\pi\)
\(762\) 0 0
\(763\) 1.99224e7 1.23888
\(764\) 0 0
\(765\) 4.37805e6 100532.i 0.270475 0.00621082i
\(766\) 0 0
\(767\) 2.21637e7i 1.36036i
\(768\) 0 0
\(769\) −3.13820e7 −1.91366 −0.956830 0.290647i \(-0.906129\pi\)
−0.956830 + 0.290647i \(0.906129\pi\)
\(770\) 0 0
\(771\) 1.01244e7i 0.613384i
\(772\) 0 0
\(773\) −103265. −0.00621590 −0.00310795 0.999995i \(-0.500989\pi\)
−0.00310795 + 0.999995i \(0.500989\pi\)
\(774\) 0 0
\(775\) −1.59795e7 + 734250.i −0.955671 + 0.0439126i
\(776\) 0 0
\(777\) 1.18621e7i 0.704870i
\(778\) 0 0
\(779\) 2.30697e7i 1.36207i
\(780\) 0 0
\(781\) 3.06218e6i 0.179640i
\(782\) 0 0
\(783\) 1.43309e7i 0.835350i
\(784\) 0 0
\(785\) 229022. + 9.97368e6i 0.0132649 + 0.577672i
\(786\) 0 0
\(787\) 5.01823e6 0.288811 0.144405 0.989519i \(-0.453873\pi\)
0.144405 + 0.989519i \(0.453873\pi\)
\(788\) 0 0
\(789\) 1.21229e7i 0.693288i
\(790\) 0 0
\(791\) 2.87111e7 1.63158
\(792\) 0 0
\(793\) 1.92592e6i 0.108757i
\(794\) 0 0
\(795\) −352584. 1.53547e7i −0.0197854 0.861634i
\(796\) 0 0
\(797\) −9.61578e6 −0.536215 −0.268107 0.963389i \(-0.586398\pi\)
−0.268107 + 0.963389i \(0.586398\pi\)
\(798\) 0 0
\(799\) 1.62662e6 0.0901403
\(800\) 0 0
\(801\) 7.31745e6 0.402975
\(802\) 0 0
\(803\) −2.04857e6 −0.112115
\(804\) 0 0
\(805\) 574736. + 2.50291e7i 0.0312592 + 1.36131i
\(806\) 0 0
\(807\) 2.19552e6i 0.118673i
\(808\) 0 0
\(809\) 2.06325e7 1.10836 0.554181 0.832396i \(-0.313032\pi\)
0.554181 + 0.832396i \(0.313032\pi\)
\(810\) 0 0
\(811\) 3.18795e7i 1.70200i −0.525164 0.851001i \(-0.675996\pi\)
0.525164 0.851001i \(-0.324004\pi\)
\(812\) 0 0
\(813\) −8.99645e6 −0.477359
\(814\) 0 0
\(815\) 189070. + 8.23381e6i 0.00997078 + 0.434217i
\(816\) 0 0
\(817\) 1.76412e7i 0.924642i
\(818\) 0 0
\(819\) 1.70281e7i 0.887067i
\(820\) 0 0
\(821\) 7.88522e6i 0.408278i −0.978942 0.204139i \(-0.934561\pi\)
0.978942 0.204139i \(-0.0654394\pi\)
\(822\) 0 0
\(823\) 51764.9i 0.00266401i −0.999999 0.00133200i \(-0.999576\pi\)
0.999999 0.00133200i \(-0.000423990\pi\)
\(824\) 0 0
\(825\) −43694.9 950932.i −0.00223509 0.0486423i
\(826\) 0 0
\(827\) 5.24793e6 0.266824 0.133412 0.991061i \(-0.457407\pi\)
0.133412 + 0.991061i \(0.457407\pi\)
\(828\) 0 0
\(829\) 6.76109e6i 0.341689i 0.985298 + 0.170844i \(0.0546495\pi\)
−0.985298 + 0.170844i \(0.945350\pi\)
\(830\) 0 0
\(831\) 3.47004e6 0.174314
\(832\) 0 0
\(833\) 1.95323e6i 0.0975308i
\(834\) 0 0
\(835\) 1.73802e7 399097.i 0.862660 0.0198090i
\(836\) 0 0
\(837\) 1.59647e7 0.787677
\(838\) 0 0
\(839\) 5.32681e6 0.261254 0.130627 0.991432i \(-0.458301\pi\)
0.130627 + 0.991432i \(0.458301\pi\)
\(840\) 0 0
\(841\) −602476. −0.0293731
\(842\) 0 0
\(843\) −636887. −0.0308669
\(844\) 0 0
\(845\) −6164.83 268472.i −0.000297016 0.0129347i
\(846\) 0 0
\(847\) 2.33946e7i 1.12049i
\(848\) 0 0
\(849\) 1.26660e7 0.603076
\(850\) 0 0
\(851\) 3.42920e7i 1.62319i
\(852\) 0 0
\(853\) 8.20548e6 0.386128 0.193064 0.981186i \(-0.438157\pi\)
0.193064 + 0.981186i \(0.438157\pi\)
\(854\) 0 0
\(855\) −2.24378e7 + 515231.i −1.04970 + 0.0241039i
\(856\) 0 0
\(857\) 5.45868e6i 0.253884i −0.991910 0.126942i \(-0.959484\pi\)
0.991910 0.126942i \(-0.0405162\pi\)
\(858\) 0 0
\(859\) 3.18230e7i 1.47149i −0.677257 0.735747i \(-0.736831\pi\)
0.677257 0.735747i \(-0.263169\pi\)
\(860\) 0 0
\(861\) 1.16022e7i 0.533375i
\(862\) 0 0
\(863\) 9.28914e6i 0.424569i −0.977208 0.212285i \(-0.931910\pi\)
0.977208 0.212285i \(-0.0680904\pi\)
\(864\) 0 0
\(865\) 154354. + 6.72196e6i 0.00701420 + 0.305461i
\(866\) 0 0
\(867\) −8.99077e6 −0.406208
\(868\) 0 0
\(869\) 1.67317e6i 0.0751606i
\(870\) 0 0
\(871\) 2.53623e7 1.13277
\(872\) 0 0
\(873\) 1.83771e7i 0.816094i
\(874\) 0 0
\(875\) −2.56024e7 + 1.76618e6i −1.13047 + 0.0779856i
\(876\) 0 0
\(877\) −1.60806e7 −0.705997 −0.352999 0.935624i \(-0.614838\pi\)
−0.352999 + 0.935624i \(0.614838\pi\)
\(878\) 0 0
\(879\) −65503.2 −0.00285950
\(880\) 0 0
\(881\) −1.74471e7 −0.757327 −0.378663 0.925535i \(-0.623616\pi\)
−0.378663 + 0.925535i \(0.623616\pi\)
\(882\) 0 0
\(883\) −2.18862e7 −0.944645 −0.472323 0.881426i \(-0.656584\pi\)
−0.472323 + 0.881426i \(0.656584\pi\)
\(884\) 0 0
\(885\) 1.46877e7 337268.i 0.630370 0.0144750i
\(886\) 0 0
\(887\) 4.00556e7i 1.70944i −0.519088 0.854721i \(-0.673728\pi\)
0.519088 0.854721i \(-0.326272\pi\)
\(888\) 0 0
\(889\) −2.51567e7 −1.06758
\(890\) 0 0
\(891\) 1.02433e6i 0.0432260i
\(892\) 0 0
\(893\) −8.33653e6 −0.349830
\(894\) 0 0
\(895\) 1.00900e7 231694.i 0.421051 0.00966846i
\(896\) 0 0
\(897\) 1.32484e7i 0.549770i
\(898\) 0 0
\(899\) 2.35208e7i 0.970628i
\(900\) 0 0
\(901\) 1.56592e7i 0.642623i
\(902\) 0 0
\(903\) 8.87211e6i 0.362083i
\(904\) 0 0
\(905\) −8.36622e6 + 192111.i −0.339553 + 0.00779704i
\(906\) 0 0
\(907\) 1.61797e7 0.653060 0.326530 0.945187i \(-0.394121\pi\)
0.326530 + 0.945187i \(0.394121\pi\)
\(908\) 0 0
\(909\) 1.60643e7i 0.644840i
\(910\) 0 0
\(911\) −3.81429e7 −1.52271 −0.761356 0.648334i \(-0.775466\pi\)
−0.761356 + 0.648334i \(0.775466\pi\)
\(912\) 0 0
\(913\) 1.97342e6i 0.0783508i
\(914\) 0 0
\(915\) −1.27629e6 + 29307.1i −0.0503962 + 0.00115723i
\(916\) 0 0
\(917\) −1.63682e7 −0.642801
\(918\) 0 0
\(919\) 5.75041e6 0.224600 0.112300 0.993674i \(-0.464178\pi\)
0.112300 + 0.993674i \(0.464178\pi\)
\(920\) 0 0
\(921\) 1.89665e7 0.736780
\(922\) 0 0
\(923\) −4.36854e7 −1.68784
\(924\) 0 0
\(925\) −3.51144e7 + 1.61349e6i −1.34937 + 0.0620030i
\(926\) 0 0
\(927\) 2.04745e6i 0.0782555i
\(928\) 0 0
\(929\) 1.58033e7 0.600771 0.300386 0.953818i \(-0.402885\pi\)
0.300386 + 0.953818i \(0.402885\pi\)
\(930\) 0 0
\(931\) 1.00104e7i 0.378512i
\(932\) 0 0
\(933\) −1.00680e7 −0.378651
\(934\) 0 0
\(935\) 22280.7 + 970300.i 0.000833488 + 0.0362975i
\(936\) 0 0
\(937\) 1.61564e7i 0.601167i −0.953756 0.300583i \(-0.902819\pi\)
0.953756 0.300583i \(-0.0971814\pi\)
\(938\) 0 0
\(939\) 9.75602e6i 0.361084i
\(940\) 0 0
\(941\) 4.39614e7i 1.61844i −0.587504 0.809221i \(-0.699889\pi\)
0.587504 0.809221i \(-0.300111\pi\)
\(942\) 0 0
\(943\) 3.35407e7i 1.22827i
\(944\) 0 0
\(945\) 2.56058e7 587976.i 0.932735 0.0214181i
\(946\) 0 0
\(947\) −4.52665e7 −1.64022 −0.820111 0.572205i \(-0.806088\pi\)
−0.820111 + 0.572205i \(0.806088\pi\)
\(948\) 0 0
\(949\) 2.92252e7i 1.05340i
\(950\) 0 0
\(951\) 2.15601e6 0.0773035
\(952\) 0 0
\(953\) 3.21216e6i 0.114569i −0.998358 0.0572843i \(-0.981756\pi\)
0.998358 0.0572843i \(-0.0182441\pi\)
\(954\) 0 0
\(955\) −274512. 1.19547e7i −0.00973986 0.424161i
\(956\) 0 0
\(957\) −1.39971e6 −0.0494036
\(958\) 0 0
\(959\) −4.14628e7 −1.45583
\(960\) 0 0
\(961\) −2.42676e6 −0.0847654
\(962\) 0 0
\(963\) 2.10221e7 0.730485
\(964\) 0 0
\(965\) −4.07744e7 + 936288.i −1.40951 + 0.0323662i
\(966\) 0 0
\(967\) 4.06241e6i 0.139707i −0.997557 0.0698533i \(-0.977747\pi\)
0.997557 0.0698533i \(-0.0222531\pi\)
\(968\) 0 0
\(969\) −6.15845e6 −0.210699
\(970\) 0 0
\(971\) 2.41409e7i 0.821685i −0.911706 0.410842i \(-0.865235\pi\)
0.911706 0.410842i \(-0.134765\pi\)
\(972\) 0 0
\(973\) 6.47264e6 0.219179
\(974\) 0 0
\(975\) 1.35661e7 623355.i 0.457028 0.0210002i
\(976\) 0 0
\(977\) 1.48416e7i 0.497443i −0.968575 0.248722i \(-0.919990\pi\)
0.968575 0.248722i \(-0.0800104\pi\)
\(978\) 0 0
\(979\) 1.62175e6i 0.0540790i
\(980\) 0 0
\(981\) 2.59661e7i 0.861457i
\(982\) 0 0
\(983\) 3.34107e7i 1.10281i 0.834237 + 0.551406i \(0.185908\pi\)
−0.834237 + 0.551406i \(0.814092\pi\)
\(984\) 0 0
\(985\) 1.18336e6 + 5.15339e7i 0.0388620 + 1.69240i
\(986\) 0 0
\(987\) 4.19260e6 0.136991
\(988\) 0 0
\(989\) 2.56483e7i 0.833812i
\(990\) 0 0
\(991\) −5.15057e7 −1.66599 −0.832993 0.553284i \(-0.813374\pi\)
−0.832993 + 0.553284i \(0.813374\pi\)
\(992\) 0 0
\(993\) 1.70520e7i 0.548784i
\(994\) 0 0
\(995\) 1.26448e6 + 5.50670e7i 0.0404907 + 1.76333i
\(996\) 0 0
\(997\) 1.18985e7 0.379102 0.189551 0.981871i \(-0.439297\pi\)
0.189551 + 0.981871i \(0.439297\pi\)
\(998\) 0 0
\(999\) 3.50821e7 1.11217
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.6.f.a.49.11 28
4.3 odd 2 40.6.f.a.29.11 28
5.2 odd 4 800.6.d.e.401.22 28
5.3 odd 4 800.6.d.e.401.7 28
5.4 even 2 inner 160.6.f.a.49.18 28
8.3 odd 2 40.6.f.a.29.17 yes 28
8.5 even 2 inner 160.6.f.a.49.17 28
20.3 even 4 200.6.d.e.101.4 28
20.7 even 4 200.6.d.e.101.25 28
20.19 odd 2 40.6.f.a.29.18 yes 28
40.3 even 4 200.6.d.e.101.3 28
40.13 odd 4 800.6.d.e.401.8 28
40.19 odd 2 40.6.f.a.29.12 yes 28
40.27 even 4 200.6.d.e.101.26 28
40.29 even 2 inner 160.6.f.a.49.12 28
40.37 odd 4 800.6.d.e.401.21 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.f.a.29.11 28 4.3 odd 2
40.6.f.a.29.12 yes 28 40.19 odd 2
40.6.f.a.29.17 yes 28 8.3 odd 2
40.6.f.a.29.18 yes 28 20.19 odd 2
160.6.f.a.49.11 28 1.1 even 1 trivial
160.6.f.a.49.12 28 40.29 even 2 inner
160.6.f.a.49.17 28 8.5 even 2 inner
160.6.f.a.49.18 28 5.4 even 2 inner
200.6.d.e.101.3 28 40.3 even 4
200.6.d.e.101.4 28 20.3 even 4
200.6.d.e.101.25 28 20.7 even 4
200.6.d.e.101.26 28 40.27 even 4
800.6.d.e.401.7 28 5.3 odd 4
800.6.d.e.401.8 28 40.13 odd 4
800.6.d.e.401.21 28 40.37 odd 4
800.6.d.e.401.22 28 5.2 odd 4