Properties

Label 160.6.f.a.49.16
Level $160$
Weight $6$
Character 160.49
Analytic conductor $25.661$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,6,Mod(49,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.49");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 160.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.6614111701\)
Analytic rank: \(0\)
Dimension: \(28\)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.16
Character \(\chi\) \(=\) 160.49
Dual form 160.6.f.a.49.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.29818 q^{3} +(-51.3939 - 21.9924i) q^{5} -170.399i q^{7} -241.315 q^{9} +39.8166i q^{11} +537.234 q^{13} +(-66.7187 - 28.5502i) q^{15} +1355.83i q^{17} +1039.21i q^{19} -221.209i q^{21} -1610.62i q^{23} +(2157.67 + 2260.55i) q^{25} -628.730 q^{27} +5910.56i q^{29} -9611.53 q^{31} +51.6892i q^{33} +(-3747.49 + 8757.46i) q^{35} +5295.85 q^{37} +697.429 q^{39} -12105.1 q^{41} +19338.2 q^{43} +(12402.1 + 5307.10i) q^{45} +7894.36i q^{47} -12228.8 q^{49} +1760.11i q^{51} -18932.1 q^{53} +(875.664 - 2046.33i) q^{55} +1349.09i q^{57} +32322.2i q^{59} +48808.2i q^{61} +41119.8i q^{63} +(-27610.6 - 11815.1i) q^{65} -882.245 q^{67} -2090.88i q^{69} +8818.78 q^{71} -14380.4i q^{73} +(2801.05 + 2934.62i) q^{75} +6784.70 q^{77} -49813.9 q^{79} +57823.3 q^{81} +13938.9 q^{83} +(29817.9 - 69681.2i) q^{85} +7673.00i q^{87} +7581.49 q^{89} -91544.2i q^{91} -12477.5 q^{93} +(22854.8 - 53409.1i) q^{95} +66750.3i q^{97} -9608.33i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 1940 q^{9} + 488 q^{15} + 1556 q^{25} - 4368 q^{31} - 23360 q^{39} - 2480 q^{41} - 38420 q^{49} + 48776 q^{55} + 37200 q^{65} + 69232 q^{71} + 35984 q^{79} + 122596 q^{81} - 178744 q^{89} - 89416 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.29818 0.0832785 0.0416393 0.999133i \(-0.486742\pi\)
0.0416393 + 0.999133i \(0.486742\pi\)
\(4\) 0 0
\(5\) −51.3939 21.9924i −0.919362 0.393413i
\(6\) 0 0
\(7\) 170.399i 1.31438i −0.753724 0.657191i \(-0.771744\pi\)
0.753724 0.657191i \(-0.228256\pi\)
\(8\) 0 0
\(9\) −241.315 −0.993065
\(10\) 0 0
\(11\) 39.8166i 0.0992161i 0.998769 + 0.0496081i \(0.0157972\pi\)
−0.998769 + 0.0496081i \(0.984203\pi\)
\(12\) 0 0
\(13\) 537.234 0.881669 0.440834 0.897588i \(-0.354683\pi\)
0.440834 + 0.897588i \(0.354683\pi\)
\(14\) 0 0
\(15\) −66.7187 28.5502i −0.0765631 0.0327628i
\(16\) 0 0
\(17\) 1355.83i 1.13784i 0.822392 + 0.568921i \(0.192639\pi\)
−0.822392 + 0.568921i \(0.807361\pi\)
\(18\) 0 0
\(19\) 1039.21i 0.660419i 0.943908 + 0.330209i \(0.107119\pi\)
−0.943908 + 0.330209i \(0.892881\pi\)
\(20\) 0 0
\(21\) 221.209i 0.109460i
\(22\) 0 0
\(23\) 1610.62i 0.634852i −0.948283 0.317426i \(-0.897182\pi\)
0.948283 0.317426i \(-0.102818\pi\)
\(24\) 0 0
\(25\) 2157.67 + 2260.55i 0.690453 + 0.723377i
\(26\) 0 0
\(27\) −628.730 −0.165980
\(28\) 0 0
\(29\) 5910.56i 1.30507i 0.757759 + 0.652535i \(0.226294\pi\)
−0.757759 + 0.652535i \(0.773706\pi\)
\(30\) 0 0
\(31\) −9611.53 −1.79634 −0.898169 0.439650i \(-0.855102\pi\)
−0.898169 + 0.439650i \(0.855102\pi\)
\(32\) 0 0
\(33\) 51.6892i 0.00826257i
\(34\) 0 0
\(35\) −3747.49 + 8757.46i −0.517095 + 1.20839i
\(36\) 0 0
\(37\) 5295.85 0.635963 0.317981 0.948097i \(-0.396995\pi\)
0.317981 + 0.948097i \(0.396995\pi\)
\(38\) 0 0
\(39\) 697.429 0.0734241
\(40\) 0 0
\(41\) −12105.1 −1.12463 −0.562315 0.826923i \(-0.690089\pi\)
−0.562315 + 0.826923i \(0.690089\pi\)
\(42\) 0 0
\(43\) 19338.2 1.59494 0.797469 0.603360i \(-0.206172\pi\)
0.797469 + 0.603360i \(0.206172\pi\)
\(44\) 0 0
\(45\) 12402.1 + 5307.10i 0.912986 + 0.390684i
\(46\) 0 0
\(47\) 7894.36i 0.521282i 0.965436 + 0.260641i \(0.0839338\pi\)
−0.965436 + 0.260641i \(0.916066\pi\)
\(48\) 0 0
\(49\) −12228.8 −0.727601
\(50\) 0 0
\(51\) 1760.11i 0.0947578i
\(52\) 0 0
\(53\) −18932.1 −0.925783 −0.462891 0.886415i \(-0.653188\pi\)
−0.462891 + 0.886415i \(0.653188\pi\)
\(54\) 0 0
\(55\) 875.664 2046.33i 0.0390329 0.0912155i
\(56\) 0 0
\(57\) 1349.09i 0.0549987i
\(58\) 0 0
\(59\) 32322.2i 1.20885i 0.796663 + 0.604424i \(0.206597\pi\)
−0.796663 + 0.604424i \(0.793403\pi\)
\(60\) 0 0
\(61\) 48808.2i 1.67945i 0.543008 + 0.839727i \(0.317285\pi\)
−0.543008 + 0.839727i \(0.682715\pi\)
\(62\) 0 0
\(63\) 41119.8i 1.30527i
\(64\) 0 0
\(65\) −27610.6 11815.1i −0.810573 0.346860i
\(66\) 0 0
\(67\) −882.245 −0.0240106 −0.0120053 0.999928i \(-0.503821\pi\)
−0.0120053 + 0.999928i \(0.503821\pi\)
\(68\) 0 0
\(69\) 2090.88i 0.0528695i
\(70\) 0 0
\(71\) 8818.78 0.207617 0.103808 0.994597i \(-0.466897\pi\)
0.103808 + 0.994597i \(0.466897\pi\)
\(72\) 0 0
\(73\) 14380.4i 0.315837i −0.987452 0.157919i \(-0.949522\pi\)
0.987452 0.157919i \(-0.0504784\pi\)
\(74\) 0 0
\(75\) 2801.05 + 2934.62i 0.0574999 + 0.0602418i
\(76\) 0 0
\(77\) 6784.70 0.130408
\(78\) 0 0
\(79\) −49813.9 −0.898014 −0.449007 0.893528i \(-0.648222\pi\)
−0.449007 + 0.893528i \(0.648222\pi\)
\(80\) 0 0
\(81\) 57823.3 0.979242
\(82\) 0 0
\(83\) 13938.9 0.222092 0.111046 0.993815i \(-0.464580\pi\)
0.111046 + 0.993815i \(0.464580\pi\)
\(84\) 0 0
\(85\) 29817.9 69681.2i 0.447641 1.04609i
\(86\) 0 0
\(87\) 7673.00i 0.108684i
\(88\) 0 0
\(89\) 7581.49 0.101456 0.0507282 0.998712i \(-0.483846\pi\)
0.0507282 + 0.998712i \(0.483846\pi\)
\(90\) 0 0
\(91\) 91544.2i 1.15885i
\(92\) 0 0
\(93\) −12477.5 −0.149596
\(94\) 0 0
\(95\) 22854.8 53409.1i 0.259817 0.607164i
\(96\) 0 0
\(97\) 66750.3i 0.720317i 0.932891 + 0.360159i \(0.117277\pi\)
−0.932891 + 0.360159i \(0.882723\pi\)
\(98\) 0 0
\(99\) 9608.33i 0.0985280i
\(100\) 0 0
\(101\) 66492.6i 0.648590i 0.945956 + 0.324295i \(0.105127\pi\)
−0.945956 + 0.324295i \(0.894873\pi\)
\(102\) 0 0
\(103\) 166310.i 1.54463i −0.635237 0.772317i \(-0.719098\pi\)
0.635237 0.772317i \(-0.280902\pi\)
\(104\) 0 0
\(105\) −4864.93 + 11368.8i −0.0430629 + 0.100633i
\(106\) 0 0
\(107\) −121647. −1.02717 −0.513583 0.858040i \(-0.671682\pi\)
−0.513583 + 0.858040i \(0.671682\pi\)
\(108\) 0 0
\(109\) 170773.i 1.37674i −0.725359 0.688370i \(-0.758326\pi\)
0.725359 0.688370i \(-0.241674\pi\)
\(110\) 0 0
\(111\) 6874.99 0.0529621
\(112\) 0 0
\(113\) 3705.12i 0.0272964i 0.999907 + 0.0136482i \(0.00434449\pi\)
−0.999907 + 0.0136482i \(0.995656\pi\)
\(114\) 0 0
\(115\) −35421.4 + 82775.8i −0.249759 + 0.583658i
\(116\) 0 0
\(117\) −129643. −0.875554
\(118\) 0 0
\(119\) 231031. 1.49556
\(120\) 0 0
\(121\) 159466. 0.990156
\(122\) 0 0
\(123\) −15714.7 −0.0936576
\(124\) 0 0
\(125\) −61175.7 163631.i −0.350190 0.936679i
\(126\) 0 0
\(127\) 77574.6i 0.426786i 0.976966 + 0.213393i \(0.0684515\pi\)
−0.976966 + 0.213393i \(0.931548\pi\)
\(128\) 0 0
\(129\) 25104.5 0.132824
\(130\) 0 0
\(131\) 330023.i 1.68022i −0.542418 0.840109i \(-0.682491\pi\)
0.542418 0.840109i \(-0.317509\pi\)
\(132\) 0 0
\(133\) 177080. 0.868043
\(134\) 0 0
\(135\) 32312.9 + 13827.3i 0.152595 + 0.0652985i
\(136\) 0 0
\(137\) 135014.i 0.614578i 0.951616 + 0.307289i \(0.0994219\pi\)
−0.951616 + 0.307289i \(0.900578\pi\)
\(138\) 0 0
\(139\) 130330.i 0.572146i −0.958208 0.286073i \(-0.907650\pi\)
0.958208 0.286073i \(-0.0923500\pi\)
\(140\) 0 0
\(141\) 10248.3i 0.0434116i
\(142\) 0 0
\(143\) 21390.8i 0.0874758i
\(144\) 0 0
\(145\) 129988. 303767.i 0.513431 1.19983i
\(146\) 0 0
\(147\) −15875.2 −0.0605935
\(148\) 0 0
\(149\) 56728.8i 0.209333i 0.994507 + 0.104667i \(0.0333775\pi\)
−0.994507 + 0.104667i \(0.966622\pi\)
\(150\) 0 0
\(151\) −272831. −0.973757 −0.486879 0.873470i \(-0.661865\pi\)
−0.486879 + 0.873470i \(0.661865\pi\)
\(152\) 0 0
\(153\) 327181.i 1.12995i
\(154\) 0 0
\(155\) 493974. + 211381.i 1.65148 + 0.706702i
\(156\) 0 0
\(157\) −351466. −1.13798 −0.568990 0.822345i \(-0.692666\pi\)
−0.568990 + 0.822345i \(0.692666\pi\)
\(158\) 0 0
\(159\) −24577.4 −0.0770979
\(160\) 0 0
\(161\) −274447. −0.834438
\(162\) 0 0
\(163\) −434277. −1.28026 −0.640129 0.768268i \(-0.721119\pi\)
−0.640129 + 0.768268i \(0.721119\pi\)
\(164\) 0 0
\(165\) 1136.77 2656.51i 0.00325060 0.00759630i
\(166\) 0 0
\(167\) 580367.i 1.61032i 0.593059 + 0.805159i \(0.297920\pi\)
−0.593059 + 0.805159i \(0.702080\pi\)
\(168\) 0 0
\(169\) −82672.1 −0.222660
\(170\) 0 0
\(171\) 250777.i 0.655838i
\(172\) 0 0
\(173\) 243764. 0.619233 0.309617 0.950861i \(-0.399799\pi\)
0.309617 + 0.950861i \(0.399799\pi\)
\(174\) 0 0
\(175\) 385196. 367664.i 0.950794 0.907519i
\(176\) 0 0
\(177\) 41960.2i 0.100671i
\(178\) 0 0
\(179\) 589838.i 1.37594i 0.725738 + 0.687971i \(0.241498\pi\)
−0.725738 + 0.687971i \(0.758502\pi\)
\(180\) 0 0
\(181\) 306392.i 0.695154i 0.937651 + 0.347577i \(0.112995\pi\)
−0.937651 + 0.347577i \(0.887005\pi\)
\(182\) 0 0
\(183\) 63362.0i 0.139863i
\(184\) 0 0
\(185\) −272175. 116469.i −0.584680 0.250196i
\(186\) 0 0
\(187\) −53984.4 −0.112892
\(188\) 0 0
\(189\) 107135.i 0.218161i
\(190\) 0 0
\(191\) 123083. 0.244127 0.122064 0.992522i \(-0.461049\pi\)
0.122064 + 0.992522i \(0.461049\pi\)
\(192\) 0 0
\(193\) 689437.i 1.33230i 0.745819 + 0.666149i \(0.232059\pi\)
−0.745819 + 0.666149i \(0.767941\pi\)
\(194\) 0 0
\(195\) −35843.6 15338.2i −0.0675033 0.0288860i
\(196\) 0 0
\(197\) −70782.9 −0.129946 −0.0649730 0.997887i \(-0.520696\pi\)
−0.0649730 + 0.997887i \(0.520696\pi\)
\(198\) 0 0
\(199\) −314584. −0.563123 −0.281561 0.959543i \(-0.590852\pi\)
−0.281561 + 0.959543i \(0.590852\pi\)
\(200\) 0 0
\(201\) −1145.32 −0.00199956
\(202\) 0 0
\(203\) 1.00715e6 1.71536
\(204\) 0 0
\(205\) 622130. + 266221.i 1.03394 + 0.442444i
\(206\) 0 0
\(207\) 388665.i 0.630449i
\(208\) 0 0
\(209\) −41377.8 −0.0655242
\(210\) 0 0
\(211\) 1.09357e6i 1.69098i 0.533989 + 0.845491i \(0.320692\pi\)
−0.533989 + 0.845491i \(0.679308\pi\)
\(212\) 0 0
\(213\) 11448.4 0.0172900
\(214\) 0 0
\(215\) −993863. 425293.i −1.46633 0.627469i
\(216\) 0 0
\(217\) 1.63779e6i 2.36107i
\(218\) 0 0
\(219\) 18668.4i 0.0263025i
\(220\) 0 0
\(221\) 728397.i 1.00320i
\(222\) 0 0
\(223\) 917927.i 1.23608i −0.786147 0.618039i \(-0.787927\pi\)
0.786147 0.618039i \(-0.212073\pi\)
\(224\) 0 0
\(225\) −520676. 545505.i −0.685664 0.718361i
\(226\) 0 0
\(227\) −1.20791e6 −1.55585 −0.777926 0.628356i \(-0.783728\pi\)
−0.777926 + 0.628356i \(0.783728\pi\)
\(228\) 0 0
\(229\) 323648.i 0.407834i −0.978988 0.203917i \(-0.934633\pi\)
0.978988 0.203917i \(-0.0653673\pi\)
\(230\) 0 0
\(231\) 8807.79 0.0108602
\(232\) 0 0
\(233\) 1.34719e6i 1.62570i −0.582476 0.812848i \(-0.697916\pi\)
0.582476 0.812848i \(-0.302084\pi\)
\(234\) 0 0
\(235\) 173616. 405722.i 0.205079 0.479247i
\(236\) 0 0
\(237\) −64667.7 −0.0747853
\(238\) 0 0
\(239\) −997494. −1.12958 −0.564788 0.825236i \(-0.691042\pi\)
−0.564788 + 0.825236i \(0.691042\pi\)
\(240\) 0 0
\(241\) 610095. 0.676636 0.338318 0.941032i \(-0.390142\pi\)
0.338318 + 0.941032i \(0.390142\pi\)
\(242\) 0 0
\(243\) 227847. 0.247529
\(244\) 0 0
\(245\) 628485. + 268941.i 0.668928 + 0.286247i
\(246\) 0 0
\(247\) 558300.i 0.582271i
\(248\) 0 0
\(249\) 18095.2 0.0184955
\(250\) 0 0
\(251\) 691093.i 0.692392i 0.938162 + 0.346196i \(0.112527\pi\)
−0.938162 + 0.346196i \(0.887473\pi\)
\(252\) 0 0
\(253\) 64129.2 0.0629875
\(254\) 0 0
\(255\) 38709.2 90459.0i 0.0372789 0.0871167i
\(256\) 0 0
\(257\) 755800.i 0.713796i 0.934143 + 0.356898i \(0.116166\pi\)
−0.934143 + 0.356898i \(0.883834\pi\)
\(258\) 0 0
\(259\) 902408.i 0.835898i
\(260\) 0 0
\(261\) 1.42631e6i 1.29602i
\(262\) 0 0
\(263\) 316724.i 0.282353i 0.989984 + 0.141176i \(0.0450885\pi\)
−0.989984 + 0.141176i \(0.954912\pi\)
\(264\) 0 0
\(265\) 972994. + 416363.i 0.851130 + 0.364215i
\(266\) 0 0
\(267\) 9842.17 0.00844914
\(268\) 0 0
\(269\) 1.50082e6i 1.26458i 0.774731 + 0.632291i \(0.217885\pi\)
−0.774731 + 0.632291i \(0.782115\pi\)
\(270\) 0 0
\(271\) 660806. 0.546576 0.273288 0.961932i \(-0.411889\pi\)
0.273288 + 0.961932i \(0.411889\pi\)
\(272\) 0 0
\(273\) 118841.i 0.0965073i
\(274\) 0 0
\(275\) −90007.5 + 85910.8i −0.0717707 + 0.0685040i
\(276\) 0 0
\(277\) −1.57567e6 −1.23386 −0.616931 0.787017i \(-0.711624\pi\)
−0.616931 + 0.787017i \(0.711624\pi\)
\(278\) 0 0
\(279\) 2.31940e6 1.78388
\(280\) 0 0
\(281\) −1.45729e6 −1.10098 −0.550491 0.834841i \(-0.685560\pi\)
−0.550491 + 0.834841i \(0.685560\pi\)
\(282\) 0 0
\(283\) 1.38341e6 1.02680 0.513400 0.858149i \(-0.328386\pi\)
0.513400 + 0.858149i \(0.328386\pi\)
\(284\) 0 0
\(285\) 29669.7 69334.8i 0.0216372 0.0505637i
\(286\) 0 0
\(287\) 2.06270e6i 1.47819i
\(288\) 0 0
\(289\) −418409. −0.294684
\(290\) 0 0
\(291\) 86654.2i 0.0599870i
\(292\) 0 0
\(293\) −544523. −0.370551 −0.185275 0.982687i \(-0.559318\pi\)
−0.185275 + 0.982687i \(0.559318\pi\)
\(294\) 0 0
\(295\) 710845. 1.66117e6i 0.475576 1.11137i
\(296\) 0 0
\(297\) 25033.9i 0.0164678i
\(298\) 0 0
\(299\) 865278.i 0.559729i
\(300\) 0 0
\(301\) 3.29520e6i 2.09636i
\(302\) 0 0
\(303\) 86319.7i 0.0540136i
\(304\) 0 0
\(305\) 1.07341e6 2.50844e6i 0.660719 1.54403i
\(306\) 0 0
\(307\) −2.70567e6 −1.63843 −0.819216 0.573485i \(-0.805591\pi\)
−0.819216 + 0.573485i \(0.805591\pi\)
\(308\) 0 0
\(309\) 215901.i 0.128635i
\(310\) 0 0
\(311\) 309689. 0.181562 0.0907810 0.995871i \(-0.471064\pi\)
0.0907810 + 0.995871i \(0.471064\pi\)
\(312\) 0 0
\(313\) 1.89714e6i 1.09456i −0.836950 0.547279i \(-0.815664\pi\)
0.836950 0.547279i \(-0.184336\pi\)
\(314\) 0 0
\(315\) 904324. 2.11330e6i 0.513508 1.20001i
\(316\) 0 0
\(317\) −546064. −0.305207 −0.152604 0.988287i \(-0.548766\pi\)
−0.152604 + 0.988287i \(0.548766\pi\)
\(318\) 0 0
\(319\) −235338. −0.129484
\(320\) 0 0
\(321\) −157920. −0.0855409
\(322\) 0 0
\(323\) −1.40899e6 −0.751452
\(324\) 0 0
\(325\) 1.15917e6 + 1.21445e6i 0.608751 + 0.637779i
\(326\) 0 0
\(327\) 221694.i 0.114653i
\(328\) 0 0
\(329\) 1.34519e6 0.685163
\(330\) 0 0
\(331\) 1.57476e6i 0.790029i −0.918675 0.395015i \(-0.870740\pi\)
0.918675 0.395015i \(-0.129260\pi\)
\(332\) 0 0
\(333\) −1.27797e6 −0.631552
\(334\) 0 0
\(335\) 45342.0 + 19402.7i 0.0220744 + 0.00944606i
\(336\) 0 0
\(337\) 77460.4i 0.0371540i −0.999827 0.0185770i \(-0.994086\pi\)
0.999827 0.0185770i \(-0.00591358\pi\)
\(338\) 0 0
\(339\) 4809.92i 0.00227321i
\(340\) 0 0
\(341\) 382698.i 0.178226i
\(342\) 0 0
\(343\) 780123.i 0.358037i
\(344\) 0 0
\(345\) −45983.4 + 107458.i −0.0207995 + 0.0486062i
\(346\) 0 0
\(347\) 2.74014e6 1.22165 0.610827 0.791764i \(-0.290837\pi\)
0.610827 + 0.791764i \(0.290837\pi\)
\(348\) 0 0
\(349\) 2.65302e6i 1.16594i −0.812493 0.582972i \(-0.801890\pi\)
0.812493 0.582972i \(-0.198110\pi\)
\(350\) 0 0
\(351\) −337775. −0.146339
\(352\) 0 0
\(353\) 2.88565e6i 1.23256i 0.787528 + 0.616279i \(0.211360\pi\)
−0.787528 + 0.616279i \(0.788640\pi\)
\(354\) 0 0
\(355\) −453232. 193947.i −0.190875 0.0816792i
\(356\) 0 0
\(357\) 299921. 0.124548
\(358\) 0 0
\(359\) −1.66246e6 −0.680794 −0.340397 0.940282i \(-0.610561\pi\)
−0.340397 + 0.940282i \(0.610561\pi\)
\(360\) 0 0
\(361\) 1.39614e6 0.563847
\(362\) 0 0
\(363\) 207016. 0.0824588
\(364\) 0 0
\(365\) −316260. + 739064.i −0.124254 + 0.290369i
\(366\) 0 0
\(367\) 183532.i 0.0711291i −0.999367 0.0355645i \(-0.988677\pi\)
0.999367 0.0355645i \(-0.0113229\pi\)
\(368\) 0 0
\(369\) 2.92115e6 1.11683
\(370\) 0 0
\(371\) 3.22601e6i 1.21683i
\(372\) 0 0
\(373\) 2.57701e6 0.959056 0.479528 0.877527i \(-0.340808\pi\)
0.479528 + 0.877527i \(0.340808\pi\)
\(374\) 0 0
\(375\) −79417.3 212423.i −0.0291633 0.0780052i
\(376\) 0 0
\(377\) 3.17536e6i 1.15064i
\(378\) 0 0
\(379\) 1.87753e6i 0.671412i −0.941967 0.335706i \(-0.891025\pi\)
0.941967 0.335706i \(-0.108975\pi\)
\(380\) 0 0
\(381\) 100706.i 0.0355421i
\(382\) 0 0
\(383\) 1.41226e6i 0.491945i −0.969277 0.245973i \(-0.920893\pi\)
0.969277 0.245973i \(-0.0791073\pi\)
\(384\) 0 0
\(385\) −348692. 149212.i −0.119892 0.0513041i
\(386\) 0 0
\(387\) −4.66658e6 −1.58388
\(388\) 0 0
\(389\) 2.90646e6i 0.973846i 0.873445 + 0.486923i \(0.161881\pi\)
−0.873445 + 0.486923i \(0.838119\pi\)
\(390\) 0 0
\(391\) 2.18372e6 0.722361
\(392\) 0 0
\(393\) 428430.i 0.139926i
\(394\) 0 0
\(395\) 2.56013e6 + 1.09553e6i 0.825600 + 0.353290i
\(396\) 0 0
\(397\) −2.30169e6 −0.732943 −0.366472 0.930429i \(-0.619434\pi\)
−0.366472 + 0.930429i \(0.619434\pi\)
\(398\) 0 0
\(399\) 229883. 0.0722893
\(400\) 0 0
\(401\) −2.58744e6 −0.803544 −0.401772 0.915740i \(-0.631606\pi\)
−0.401772 + 0.915740i \(0.631606\pi\)
\(402\) 0 0
\(403\) −5.16364e6 −1.58378
\(404\) 0 0
\(405\) −2.97176e6 1.27167e6i −0.900278 0.385246i
\(406\) 0 0
\(407\) 210863.i 0.0630978i
\(408\) 0 0
\(409\) −3.17301e6 −0.937916 −0.468958 0.883221i \(-0.655370\pi\)
−0.468958 + 0.883221i \(0.655370\pi\)
\(410\) 0 0
\(411\) 175273.i 0.0511812i
\(412\) 0 0
\(413\) 5.50768e6 1.58889
\(414\) 0 0
\(415\) −716374. 306550.i −0.204183 0.0873738i
\(416\) 0 0
\(417\) 169192.i 0.0476475i
\(418\) 0 0
\(419\) 6.16028e6i 1.71422i 0.515137 + 0.857108i \(0.327741\pi\)
−0.515137 + 0.857108i \(0.672259\pi\)
\(420\) 0 0
\(421\) 2.93941e6i 0.808268i 0.914700 + 0.404134i \(0.132427\pi\)
−0.914700 + 0.404134i \(0.867573\pi\)
\(422\) 0 0
\(423\) 1.90503e6i 0.517666i
\(424\) 0 0
\(425\) −3.06492e6 + 2.92542e6i −0.823089 + 0.785626i
\(426\) 0 0
\(427\) 8.31687e6 2.20745
\(428\) 0 0
\(429\) 27769.2i 0.00728485i
\(430\) 0 0
\(431\) −2.60556e6 −0.675629 −0.337815 0.941213i \(-0.609688\pi\)
−0.337815 + 0.941213i \(0.609688\pi\)
\(432\) 0 0
\(433\) 525118.i 0.134597i −0.997733 0.0672987i \(-0.978562\pi\)
0.997733 0.0672987i \(-0.0214381\pi\)
\(434\) 0 0
\(435\) 168748. 394345.i 0.0427578 0.0999202i
\(436\) 0 0
\(437\) 1.67377e6 0.419268
\(438\) 0 0
\(439\) −3.48971e6 −0.864228 −0.432114 0.901819i \(-0.642232\pi\)
−0.432114 + 0.901819i \(0.642232\pi\)
\(440\) 0 0
\(441\) 2.95099e6 0.722555
\(442\) 0 0
\(443\) 5.36353e6 1.29850 0.649250 0.760575i \(-0.275083\pi\)
0.649250 + 0.760575i \(0.275083\pi\)
\(444\) 0 0
\(445\) −389642. 166735.i −0.0932752 0.0399143i
\(446\) 0 0
\(447\) 73644.4i 0.0174330i
\(448\) 0 0
\(449\) −5.64299e6 −1.32097 −0.660486 0.750838i \(-0.729650\pi\)
−0.660486 + 0.750838i \(0.729650\pi\)
\(450\) 0 0
\(451\) 481985.i 0.111581i
\(452\) 0 0
\(453\) −354184. −0.0810931
\(454\) 0 0
\(455\) −2.01328e6 + 4.70481e6i −0.455906 + 1.06540i
\(456\) 0 0
\(457\) 6.54027e6i 1.46489i −0.680825 0.732446i \(-0.738379\pi\)
0.680825 0.732446i \(-0.261621\pi\)
\(458\) 0 0
\(459\) 852448.i 0.188858i
\(460\) 0 0
\(461\) 7.92791e6i 1.73743i 0.495315 + 0.868713i \(0.335053\pi\)
−0.495315 + 0.868713i \(0.664947\pi\)
\(462\) 0 0
\(463\) 5.43590e6i 1.17847i 0.807961 + 0.589235i \(0.200571\pi\)
−0.807961 + 0.589235i \(0.799429\pi\)
\(464\) 0 0
\(465\) 641269. + 274411.i 0.137533 + 0.0588531i
\(466\) 0 0
\(467\) −1.47407e6 −0.312771 −0.156386 0.987696i \(-0.549984\pi\)
−0.156386 + 0.987696i \(0.549984\pi\)
\(468\) 0 0
\(469\) 150334.i 0.0315590i
\(470\) 0 0
\(471\) −456268. −0.0947692
\(472\) 0 0
\(473\) 769979.i 0.158244i
\(474\) 0 0
\(475\) −2.34919e6 + 2.24227e6i −0.477732 + 0.455988i
\(476\) 0 0
\(477\) 4.56859e6 0.919362
\(478\) 0 0
\(479\) 4.13083e6 0.822618 0.411309 0.911496i \(-0.365072\pi\)
0.411309 + 0.911496i \(0.365072\pi\)
\(480\) 0 0
\(481\) 2.84512e6 0.560709
\(482\) 0 0
\(483\) −356283. −0.0694908
\(484\) 0 0
\(485\) 1.46800e6 3.43056e6i 0.283382 0.662232i
\(486\) 0 0
\(487\) 2.24605e6i 0.429138i 0.976709 + 0.214569i \(0.0688347\pi\)
−0.976709 + 0.214569i \(0.931165\pi\)
\(488\) 0 0
\(489\) −563771. −0.106618
\(490\) 0 0
\(491\) 578316.i 0.108258i −0.998534 0.0541292i \(-0.982762\pi\)
0.998534 0.0541292i \(-0.0172383\pi\)
\(492\) 0 0
\(493\) −8.01370e6 −1.48496
\(494\) 0 0
\(495\) −211311. + 493809.i −0.0387622 + 0.0905829i
\(496\) 0 0
\(497\) 1.50271e6i 0.272888i
\(498\) 0 0
\(499\) 307235.i 0.0552357i −0.999619 0.0276178i \(-0.991208\pi\)
0.999619 0.0276178i \(-0.00879215\pi\)
\(500\) 0 0
\(501\) 753424.i 0.134105i
\(502\) 0 0
\(503\) 3.87678e6i 0.683206i 0.939844 + 0.341603i \(0.110970\pi\)
−0.939844 + 0.341603i \(0.889030\pi\)
\(504\) 0 0
\(505\) 1.46234e6 3.41732e6i 0.255164 0.596289i
\(506\) 0 0
\(507\) −107324. −0.0185428
\(508\) 0 0
\(509\) 4.90268e6i 0.838762i 0.907810 + 0.419381i \(0.137753\pi\)
−0.907810 + 0.419381i \(0.862247\pi\)
\(510\) 0 0
\(511\) −2.45040e6 −0.415131
\(512\) 0 0
\(513\) 653382.i 0.109616i
\(514\) 0 0
\(515\) −3.65757e6 + 8.54733e6i −0.607679 + 1.42008i
\(516\) 0 0
\(517\) −314327. −0.0517195
\(518\) 0 0
\(519\) 316451. 0.0515689
\(520\) 0 0
\(521\) −5.57462e6 −0.899749 −0.449874 0.893092i \(-0.648531\pi\)
−0.449874 + 0.893092i \(0.648531\pi\)
\(522\) 0 0
\(523\) 1.23492e6 0.197417 0.0987087 0.995116i \(-0.468529\pi\)
0.0987087 + 0.995116i \(0.468529\pi\)
\(524\) 0 0
\(525\) 500055. 477295.i 0.0791808 0.0755769i
\(526\) 0 0
\(527\) 1.30316e7i 2.04395i
\(528\) 0 0
\(529\) 3.84226e6 0.596963
\(530\) 0 0
\(531\) 7.79983e6i 1.20046i
\(532\) 0 0
\(533\) −6.50329e6 −0.991552
\(534\) 0 0
\(535\) 6.25189e6 + 2.67531e6i 0.944337 + 0.404100i
\(536\) 0 0
\(537\) 765718.i 0.114586i
\(538\) 0 0
\(539\) 486908.i 0.0721897i
\(540\) 0 0
\(541\) 2.07857e6i 0.305332i −0.988278 0.152666i \(-0.951214\pi\)
0.988278 0.152666i \(-0.0487858\pi\)
\(542\) 0 0
\(543\) 397753.i 0.0578914i
\(544\) 0 0
\(545\) −3.75571e6 + 8.77668e6i −0.541627 + 1.26572i
\(546\) 0 0
\(547\) 6.52487e6 0.932403 0.466201 0.884679i \(-0.345622\pi\)
0.466201 + 0.884679i \(0.345622\pi\)
\(548\) 0 0
\(549\) 1.17781e7i 1.66781i
\(550\) 0 0
\(551\) −6.14232e6 −0.861893
\(552\) 0 0
\(553\) 8.48824e6i 1.18033i
\(554\) 0 0
\(555\) −353333. 151198.i −0.0486913 0.0208359i
\(556\) 0 0
\(557\) 1.09214e7 1.49156 0.745778 0.666194i \(-0.232078\pi\)
0.745778 + 0.666194i \(0.232078\pi\)
\(558\) 0 0
\(559\) 1.03891e7 1.40621
\(560\) 0 0
\(561\) −70081.7 −0.00940150
\(562\) 0 0
\(563\) −3.64784e6 −0.485025 −0.242513 0.970148i \(-0.577972\pi\)
−0.242513 + 0.970148i \(0.577972\pi\)
\(564\) 0 0
\(565\) 81484.5 190420.i 0.0107388 0.0250953i
\(566\) 0 0
\(567\) 9.85302e6i 1.28710i
\(568\) 0 0
\(569\) 7.78255e6 1.00772 0.503861 0.863784i \(-0.331912\pi\)
0.503861 + 0.863784i \(0.331912\pi\)
\(570\) 0 0
\(571\) 1.52835e7i 1.96170i −0.194753 0.980852i \(-0.562391\pi\)
0.194753 0.980852i \(-0.437609\pi\)
\(572\) 0 0
\(573\) 159785. 0.0203306
\(574\) 0 0
\(575\) 3.64088e6 3.47517e6i 0.459237 0.438335i
\(576\) 0 0
\(577\) 1.01412e7i 1.26809i −0.773296 0.634046i \(-0.781393\pi\)
0.773296 0.634046i \(-0.218607\pi\)
\(578\) 0 0
\(579\) 895016.i 0.110952i
\(580\) 0 0
\(581\) 2.37517e6i 0.291914i
\(582\) 0 0
\(583\) 753811.i 0.0918526i
\(584\) 0 0
\(585\) 6.66284e6 + 2.85116e6i 0.804951 + 0.344454i
\(586\) 0 0
\(587\) −3.15239e6 −0.377612 −0.188806 0.982014i \(-0.560462\pi\)
−0.188806 + 0.982014i \(0.560462\pi\)
\(588\) 0 0
\(589\) 9.98839e6i 1.18634i
\(590\) 0 0
\(591\) −91889.3 −0.0108217
\(592\) 0 0
\(593\) 2.82025e6i 0.329345i −0.986348 0.164673i \(-0.947343\pi\)
0.986348 0.164673i \(-0.0526568\pi\)
\(594\) 0 0
\(595\) −1.18736e7 5.08094e6i −1.37496 0.588372i
\(596\) 0 0
\(597\) −408387. −0.0468961
\(598\) 0 0
\(599\) −1.25796e7 −1.43252 −0.716261 0.697833i \(-0.754148\pi\)
−0.716261 + 0.697833i \(0.754148\pi\)
\(600\) 0 0
\(601\) 3.63021e6 0.409964 0.204982 0.978766i \(-0.434286\pi\)
0.204982 + 0.978766i \(0.434286\pi\)
\(602\) 0 0
\(603\) 212899. 0.0238440
\(604\) 0 0
\(605\) −8.19556e6 3.50704e6i −0.910312 0.389540i
\(606\) 0 0
\(607\) 322555.i 0.0355331i −0.999842 0.0177665i \(-0.994344\pi\)
0.999842 0.0177665i \(-0.00565556\pi\)
\(608\) 0 0
\(609\) 1.30747e6 0.142853
\(610\) 0 0
\(611\) 4.24112e6i 0.459598i
\(612\) 0 0
\(613\) 1.51954e6 0.163329 0.0816643 0.996660i \(-0.473976\pi\)
0.0816643 + 0.996660i \(0.473976\pi\)
\(614\) 0 0
\(615\) 807639. + 345604.i 0.0861052 + 0.0368461i
\(616\) 0 0
\(617\) 8.51821e6i 0.900815i −0.892823 0.450408i \(-0.851279\pi\)
0.892823 0.450408i \(-0.148721\pi\)
\(618\) 0 0
\(619\) 6.08130e6i 0.637926i 0.947767 + 0.318963i \(0.103335\pi\)
−0.947767 + 0.318963i \(0.896665\pi\)
\(620\) 0 0
\(621\) 1.01264e6i 0.105372i
\(622\) 0 0
\(623\) 1.29188e6i 0.133353i
\(624\) 0 0
\(625\) −454587. + 9.75504e6i −0.0465497 + 0.998916i
\(626\) 0 0
\(627\) −53716.0 −0.00545676
\(628\) 0 0
\(629\) 7.18026e6i 0.723625i
\(630\) 0 0
\(631\) 1.52443e7 1.52417 0.762086 0.647476i \(-0.224175\pi\)
0.762086 + 0.647476i \(0.224175\pi\)
\(632\) 0 0
\(633\) 1.41965e6i 0.140823i
\(634\) 0 0
\(635\) 1.70606e6 3.98686e6i 0.167903 0.392371i
\(636\) 0 0
\(637\) −6.56972e6 −0.641503
\(638\) 0 0
\(639\) −2.12810e6 −0.206177
\(640\) 0 0
\(641\) 1.58871e7 1.52722 0.763609 0.645679i \(-0.223426\pi\)
0.763609 + 0.645679i \(0.223426\pi\)
\(642\) 0 0
\(643\) −3.42866e6 −0.327037 −0.163519 0.986540i \(-0.552284\pi\)
−0.163519 + 0.986540i \(0.552284\pi\)
\(644\) 0 0
\(645\) −1.29022e6 552109.i −0.122113 0.0522547i
\(646\) 0 0
\(647\) 3.99640e6i 0.375326i −0.982234 0.187663i \(-0.939909\pi\)
0.982234 0.187663i \(-0.0600912\pi\)
\(648\) 0 0
\(649\) −1.28696e6 −0.119937
\(650\) 0 0
\(651\) 2.12616e6i 0.196627i
\(652\) 0 0
\(653\) −6.78426e6 −0.622615 −0.311308 0.950309i \(-0.600767\pi\)
−0.311308 + 0.950309i \(0.600767\pi\)
\(654\) 0 0
\(655\) −7.25801e6 + 1.69612e7i −0.661019 + 1.54473i
\(656\) 0 0
\(657\) 3.47020e6i 0.313647i
\(658\) 0 0
\(659\) 1.38518e7i 1.24249i −0.783617 0.621244i \(-0.786628\pi\)
0.783617 0.621244i \(-0.213372\pi\)
\(660\) 0 0
\(661\) 7.99240e6i 0.711498i 0.934582 + 0.355749i \(0.115774\pi\)
−0.934582 + 0.355749i \(0.884226\pi\)
\(662\) 0 0
\(663\) 945593.i 0.0835450i
\(664\) 0 0
\(665\) −9.10084e6 3.89443e6i −0.798045 0.341499i
\(666\) 0 0
\(667\) 9.51964e6 0.828526
\(668\) 0 0
\(669\) 1.19164e6i 0.102939i
\(670\) 0 0
\(671\) −1.94338e6 −0.166629
\(672\) 0 0
\(673\) 1.10858e7i 0.943471i −0.881740 0.471735i \(-0.843628\pi\)
0.881740 0.471735i \(-0.156372\pi\)
\(674\) 0 0
\(675\) −1.35659e6 1.42128e6i −0.114601 0.120066i
\(676\) 0 0
\(677\) 1.70523e7 1.42992 0.714958 0.699167i \(-0.246446\pi\)
0.714958 + 0.699167i \(0.246446\pi\)
\(678\) 0 0
\(679\) 1.13742e7 0.946772
\(680\) 0 0
\(681\) −1.56808e6 −0.129569
\(682\) 0 0
\(683\) 4.24549e6 0.348238 0.174119 0.984725i \(-0.444292\pi\)
0.174119 + 0.984725i \(0.444292\pi\)
\(684\) 0 0
\(685\) 2.96929e6 6.93889e6i 0.241783 0.565020i
\(686\) 0 0
\(687\) 420154.i 0.0339639i
\(688\) 0 0
\(689\) −1.01710e7 −0.816234
\(690\) 0 0
\(691\) 8.87637e6i 0.707196i 0.935397 + 0.353598i \(0.115042\pi\)
−0.935397 + 0.353598i \(0.884958\pi\)
\(692\) 0 0
\(693\) −1.63725e6 −0.129503
\(694\) 0 0
\(695\) −2.86627e6 + 6.69816e6i −0.225090 + 0.526009i
\(696\) 0 0
\(697\) 1.64125e7i 1.27965i
\(698\) 0 0
\(699\) 1.74890e6i 0.135386i
\(700\) 0 0
\(701\) 1.25460e7i 0.964298i −0.876089 0.482149i \(-0.839856\pi\)
0.876089 0.482149i \(-0.160144\pi\)
\(702\) 0 0
\(703\) 5.50351e6i 0.420002i
\(704\) 0 0
\(705\) 225386. 526702.i 0.0170787 0.0399110i
\(706\) 0 0
\(707\) 1.13303e7 0.852495
\(708\) 0 0
\(709\) 6.92792e6i 0.517592i 0.965932 + 0.258796i \(0.0833257\pi\)
−0.965932 + 0.258796i \(0.916674\pi\)
\(710\) 0 0
\(711\) 1.20208e7 0.891786
\(712\) 0 0
\(713\) 1.54805e7i 1.14041i
\(714\) 0 0
\(715\) 470437. 1.09936e6i 0.0344141 0.0804219i
\(716\) 0 0
\(717\) −1.29493e6 −0.0940694
\(718\) 0 0
\(719\) −5.47581e6 −0.395026 −0.197513 0.980300i \(-0.563287\pi\)
−0.197513 + 0.980300i \(0.563287\pi\)
\(720\) 0 0
\(721\) −2.83391e7 −2.03024
\(722\) 0 0
\(723\) 792016. 0.0563492
\(724\) 0 0
\(725\) −1.33611e7 + 1.27530e7i −0.944058 + 0.901089i
\(726\) 0 0
\(727\) 1.16133e7i 0.814926i −0.913222 0.407463i \(-0.866414\pi\)
0.913222 0.407463i \(-0.133586\pi\)
\(728\) 0 0
\(729\) −1.37553e7 −0.958628
\(730\) 0 0
\(731\) 2.62192e7i 1.81479i
\(732\) 0 0
\(733\) 1.43863e7 0.988984 0.494492 0.869182i \(-0.335354\pi\)
0.494492 + 0.869182i \(0.335354\pi\)
\(734\) 0 0
\(735\) 815889. + 349135.i 0.0557074 + 0.0238383i
\(736\) 0 0
\(737\) 35128.0i 0.00238223i
\(738\) 0 0
\(739\) 8.91435e6i 0.600452i 0.953868 + 0.300226i \(0.0970621\pi\)
−0.953868 + 0.300226i \(0.902938\pi\)
\(740\) 0 0
\(741\) 724775.i 0.0484906i
\(742\) 0 0
\(743\) 9.84971e6i 0.654563i 0.944927 + 0.327281i \(0.106133\pi\)
−0.944927 + 0.327281i \(0.893867\pi\)
\(744\) 0 0
\(745\) 1.24760e6 2.91551e6i 0.0823543 0.192453i
\(746\) 0 0
\(747\) −3.36366e6 −0.220552
\(748\) 0 0
\(749\) 2.07284e7i 1.35009i
\(750\) 0 0
\(751\) −2.31729e7 −1.49928 −0.749638 0.661849i \(-0.769772\pi\)
−0.749638 + 0.661849i \(0.769772\pi\)
\(752\) 0 0
\(753\) 897165.i 0.0576614i
\(754\) 0 0
\(755\) 1.40218e7 + 6.00021e6i 0.895235 + 0.383089i
\(756\) 0 0
\(757\) −1.04310e7 −0.661586 −0.330793 0.943703i \(-0.607316\pi\)
−0.330793 + 0.943703i \(0.607316\pi\)
\(758\) 0 0
\(759\) 83251.5 0.00524551
\(760\) 0 0
\(761\) 7.98132e6 0.499589 0.249795 0.968299i \(-0.419637\pi\)
0.249795 + 0.968299i \(0.419637\pi\)
\(762\) 0 0
\(763\) −2.90995e7 −1.80956
\(764\) 0 0
\(765\) −7.19551e6 + 1.68151e7i −0.444537 + 1.03883i
\(766\) 0 0
\(767\) 1.73646e7i 1.06580i
\(768\) 0 0
\(769\) 1.28302e7 0.782378 0.391189 0.920310i \(-0.372064\pi\)
0.391189 + 0.920310i \(0.372064\pi\)
\(770\) 0 0
\(771\) 981167.i 0.0594439i
\(772\) 0 0
\(773\) 1.70361e7 1.02547 0.512733 0.858548i \(-0.328633\pi\)
0.512733 + 0.858548i \(0.328633\pi\)
\(774\) 0 0
\(775\) −2.07385e7 2.17274e7i −1.24029 1.29943i
\(776\) 0 0
\(777\) 1.17149e6i 0.0696124i
\(778\) 0 0
\(779\) 1.25798e7i 0.742727i
\(780\) 0 0
\(781\) 351134.i 0.0205989i
\(782\) 0 0
\(783\) 3.71615e6i 0.216615i
\(784\) 0 0
\(785\) 1.80632e7 + 7.72960e6i 1.04621 + 0.447695i
\(786\) 0 0
\(787\) 2.17976e7 1.25450 0.627252 0.778817i \(-0.284180\pi\)
0.627252 + 0.778817i \(0.284180\pi\)
\(788\) 0 0
\(789\) 411167.i 0.0235139i
\(790\) 0 0
\(791\) 631348. 0.0358779
\(792\) 0 0
\(793\) 2.62215e7i 1.48072i
\(794\) 0 0
\(795\) 1.26313e6 + 540516.i 0.0708808 + 0.0303313i
\(796\) 0 0
\(797\) 7.68922e6 0.428782 0.214391 0.976748i \(-0.431223\pi\)
0.214391 + 0.976748i \(0.431223\pi\)
\(798\) 0 0
\(799\) −1.07034e7 −0.593136
\(800\) 0 0
\(801\) −1.82953e6 −0.100753
\(802\) 0 0
\(803\) 572578. 0.0313362
\(804\) 0 0
\(805\) 1.41049e7 + 6.03576e6i 0.767150 + 0.328278i
\(806\) 0 0
\(807\) 1.94834e6i 0.105313i
\(808\) 0 0
\(809\) 4.70149e6 0.252560 0.126280 0.991995i \(-0.459696\pi\)
0.126280 + 0.991995i \(0.459696\pi\)
\(810\) 0 0
\(811\) 1.31175e7i 0.700322i 0.936689 + 0.350161i \(0.113873\pi\)
−0.936689 + 0.350161i \(0.886127\pi\)
\(812\) 0 0
\(813\) 857847. 0.0455180
\(814\) 0 0
\(815\) 2.23192e7 + 9.55080e6i 1.17702 + 0.503670i
\(816\) 0 0
\(817\) 2.00964e7i 1.05333i
\(818\) 0 0
\(819\) 2.20910e7i 1.15081i
\(820\) 0 0
\(821\) 2.69837e7i 1.39715i −0.715537 0.698575i \(-0.753818\pi\)
0.715537 0.698575i \(-0.246182\pi\)
\(822\) 0 0
\(823\) 279830.i 0.0144011i −0.999974 0.00720053i \(-0.997708\pi\)
0.999974 0.00720053i \(-0.00229202\pi\)
\(824\) 0 0
\(825\) −116846. + 111528.i −0.00597696 + 0.00570492i
\(826\) 0 0
\(827\) −2.31889e7 −1.17901 −0.589504 0.807765i \(-0.700677\pi\)
−0.589504 + 0.807765i \(0.700677\pi\)
\(828\) 0 0
\(829\) 5.30543e6i 0.268123i 0.990973 + 0.134062i \(0.0428020\pi\)
−0.990973 + 0.134062i \(0.957198\pi\)
\(830\) 0 0
\(831\) −2.04551e6 −0.102754
\(832\) 0 0
\(833\) 1.65801e7i 0.827894i
\(834\) 0 0
\(835\) 1.27637e7 2.98273e7i 0.633520 1.48047i
\(836\) 0 0
\(837\) 6.04305e6 0.298155
\(838\) 0 0
\(839\) −1.39887e7 −0.686077 −0.343039 0.939321i \(-0.611456\pi\)
−0.343039 + 0.939321i \(0.611456\pi\)
\(840\) 0 0
\(841\) −1.44236e7 −0.703207
\(842\) 0 0
\(843\) −1.89183e6 −0.0916882
\(844\) 0 0
\(845\) 4.24884e6 + 1.81816e6i 0.204705 + 0.0875973i
\(846\) 0 0
\(847\) 2.71728e7i 1.30144i
\(848\) 0 0
\(849\) 1.79593e6 0.0855105
\(850\) 0 0
\(851\) 8.52958e6i 0.403742i
\(852\) 0 0
\(853\) −1.48401e7 −0.698335 −0.349168 0.937060i \(-0.613536\pi\)
−0.349168 + 0.937060i \(0.613536\pi\)
\(854\) 0 0
\(855\) −5.51519e6 + 1.28884e7i −0.258015 + 0.602953i
\(856\) 0 0
\(857\) 8.97091e6i 0.417239i 0.977997 + 0.208619i \(0.0668970\pi\)
−0.977997 + 0.208619i \(0.933103\pi\)
\(858\) 0 0
\(859\) 2.21880e7i 1.02597i 0.858398 + 0.512985i \(0.171460\pi\)
−0.858398 + 0.512985i \(0.828540\pi\)
\(860\) 0 0
\(861\) 2.67777e6i 0.123102i
\(862\) 0 0
\(863\) 2.60169e7i 1.18913i −0.804047 0.594565i \(-0.797324\pi\)
0.804047 0.594565i \(-0.202676\pi\)
\(864\) 0 0
\(865\) −1.25280e7 5.36097e6i −0.569300 0.243614i
\(866\) 0 0
\(867\) −543172. −0.0245408
\(868\) 0 0
\(869\) 1.98342e6i 0.0890975i
\(870\) 0 0
\(871\) −473972. −0.0211694
\(872\) 0 0
\(873\) 1.61078e7i 0.715322i
\(874\) 0 0
\(875\) −2.78825e7 + 1.04243e7i −1.23115 + 0.460284i
\(876\) 0 0
\(877\) 5.75323e6 0.252588 0.126294 0.991993i \(-0.459692\pi\)
0.126294 + 0.991993i \(0.459692\pi\)
\(878\) 0 0
\(879\) −706892. −0.0308589
\(880\) 0 0
\(881\) −1.39231e7 −0.604362 −0.302181 0.953251i \(-0.597715\pi\)
−0.302181 + 0.953251i \(0.597715\pi\)
\(882\) 0 0
\(883\) 4.47703e7 1.93236 0.966180 0.257867i \(-0.0830197\pi\)
0.966180 + 0.257867i \(0.0830197\pi\)
\(884\) 0 0
\(885\) 922808. 2.15650e6i 0.0396053 0.0925531i
\(886\) 0 0
\(887\) 1.25115e7i 0.533949i 0.963704 + 0.266974i \(0.0860239\pi\)
−0.963704 + 0.266974i \(0.913976\pi\)
\(888\) 0 0
\(889\) 1.32186e7 0.560960
\(890\) 0 0
\(891\) 2.30232e6i 0.0971566i
\(892\) 0 0
\(893\) −8.20390e6 −0.344264
\(894\) 0 0
\(895\) 1.29720e7 3.03141e7i 0.541313 1.26499i
\(896\) 0 0
\(897\) 1.12329e6i 0.0466134i
\(898\) 0 0
\(899\) 5.68095e7i 2.34435i
\(900\) 0 0
\(901\) 2.56686e7i 1.05339i
\(902\) 0 0
\(903\) 4.27778e6i 0.174582i
\(904\) 0 0
\(905\) 6.73831e6 1.57467e7i 0.273482 0.639098i
\(906\) 0 0
\(907\) −3.38418e7 −1.36595 −0.682975 0.730442i \(-0.739314\pi\)
−0.682975 + 0.730442i \(0.739314\pi\)
\(908\) 0 0
\(909\) 1.60457e7i 0.644092i
\(910\) 0 0
\(911\) 3.39018e7 1.35340 0.676701 0.736258i \(-0.263409\pi\)
0.676701 + 0.736258i \(0.263409\pi\)
\(912\) 0 0
\(913\) 554999.i 0.0220351i
\(914\) 0 0
\(915\) 1.39349e6 3.25642e6i 0.0550237 0.128584i
\(916\) 0 0
\(917\) −5.62355e7 −2.20845
\(918\) 0 0
\(919\) 2.44903e7 0.956544 0.478272 0.878212i \(-0.341263\pi\)
0.478272 + 0.878212i \(0.341263\pi\)
\(920\) 0 0
\(921\) −3.51245e6 −0.136446
\(922\) 0 0
\(923\) 4.73776e6 0.183049
\(924\) 0 0
\(925\) 1.14267e7 + 1.19716e7i 0.439102 + 0.460041i
\(926\) 0 0
\(927\) 4.01331e7i 1.53392i
\(928\) 0 0
\(929\) 4.91159e6 0.186717 0.0933583 0.995633i \(-0.470240\pi\)
0.0933583 + 0.995633i \(0.470240\pi\)
\(930\) 0 0
\(931\) 1.27083e7i 0.480521i
\(932\) 0 0
\(933\) 402034. 0.0151202
\(934\) 0 0
\(935\) 2.77447e6 + 1.18725e6i 0.103789 + 0.0444132i
\(936\) 0 0
\(937\) 2.63398e7i 0.980083i 0.871699 + 0.490042i \(0.163018\pi\)
−0.871699 + 0.490042i \(0.836982\pi\)
\(938\) 0 0
\(939\) 2.46284e6i 0.0911532i
\(940\) 0 0
\(941\) 3.47907e6i 0.128082i −0.997947 0.0640411i \(-0.979601\pi\)
0.997947 0.0640411i \(-0.0203989\pi\)
\(942\) 0 0
\(943\) 1.94967e7i 0.713973i
\(944\) 0 0
\(945\) 2.35616e6 5.50608e6i 0.0858271 0.200568i
\(946\) 0 0
\(947\) −1.24338e7 −0.450537 −0.225268 0.974297i \(-0.572326\pi\)
−0.225268 + 0.974297i \(0.572326\pi\)
\(948\) 0 0
\(949\) 7.72564e6i 0.278464i
\(950\) 0 0
\(951\) −708891. −0.0254172
\(952\) 0 0
\(953\) 4.64549e7i 1.65691i −0.560056 0.828455i \(-0.689220\pi\)
0.560056 0.828455i \(-0.310780\pi\)
\(954\) 0 0
\(955\) −6.32574e6 2.70691e6i −0.224441 0.0960428i
\(956\) 0 0
\(957\) −305512. −0.0107832
\(958\) 0 0
\(959\) 2.30062e7 0.807791
\(960\) 0 0
\(961\) 6.37523e7 2.22683
\(962\) 0 0
\(963\) 2.93551e7 1.02004
\(964\) 0 0
\(965\) 1.51624e7 3.54329e7i 0.524143 1.22486i
\(966\) 0 0
\(967\) 4.66797e7i 1.60532i 0.596435 + 0.802661i \(0.296583\pi\)
−0.596435 + 0.802661i \(0.703417\pi\)
\(968\) 0 0
\(969\) −1.82913e6 −0.0625798
\(970\) 0 0
\(971\) 1.61987e7i 0.551357i −0.961250 0.275678i \(-0.911098\pi\)
0.961250 0.275678i \(-0.0889025\pi\)
\(972\) 0 0
\(973\) −2.22081e7 −0.752019
\(974\) 0 0
\(975\) 1.50482e6 + 1.57658e6i 0.0506959 + 0.0531133i
\(976\) 0 0
\(977\) 1.46888e7i 0.492322i −0.969229 0.246161i \(-0.920831\pi\)
0.969229 0.246161i \(-0.0791693\pi\)
\(978\) 0 0
\(979\) 301869.i 0.0100661i
\(980\) 0 0
\(981\) 4.12100e7i 1.36719i
\(982\) 0 0
\(983\) 4.22739e6i 0.139537i −0.997563 0.0697684i \(-0.977774\pi\)
0.997563 0.0697684i \(-0.0222260\pi\)
\(984\) 0 0
\(985\) 3.63781e6 + 1.55669e6i 0.119467 + 0.0511224i
\(986\) 0 0
\(987\) 1.74631e6 0.0570594
\(988\) 0 0
\(989\) 3.11463e7i 1.01255i
\(990\) 0 0
\(991\) −1.49618e7 −0.483948 −0.241974 0.970283i \(-0.577795\pi\)
−0.241974 + 0.970283i \(0.577795\pi\)
\(992\) 0 0
\(993\) 2.04432e6i 0.0657925i
\(994\) 0 0
\(995\) 1.61677e7 + 6.91846e6i 0.517714 + 0.221540i
\(996\) 0 0
\(997\) 3.45075e7 1.09945 0.549724 0.835346i \(-0.314733\pi\)
0.549724 + 0.835346i \(0.314733\pi\)
\(998\) 0 0
\(999\) −3.32966e6 −0.105557
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.6.f.a.49.16 28
4.3 odd 2 40.6.f.a.29.20 yes 28
5.2 odd 4 800.6.d.e.401.3 28
5.3 odd 4 800.6.d.e.401.26 28
5.4 even 2 inner 160.6.f.a.49.13 28
8.3 odd 2 40.6.f.a.29.10 yes 28
8.5 even 2 inner 160.6.f.a.49.14 28
20.3 even 4 200.6.d.e.101.23 28
20.7 even 4 200.6.d.e.101.6 28
20.19 odd 2 40.6.f.a.29.9 28
40.3 even 4 200.6.d.e.101.24 28
40.13 odd 4 800.6.d.e.401.25 28
40.19 odd 2 40.6.f.a.29.19 yes 28
40.27 even 4 200.6.d.e.101.5 28
40.29 even 2 inner 160.6.f.a.49.15 28
40.37 odd 4 800.6.d.e.401.4 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.6.f.a.29.9 28 20.19 odd 2
40.6.f.a.29.10 yes 28 8.3 odd 2
40.6.f.a.29.19 yes 28 40.19 odd 2
40.6.f.a.29.20 yes 28 4.3 odd 2
160.6.f.a.49.13 28 5.4 even 2 inner
160.6.f.a.49.14 28 8.5 even 2 inner
160.6.f.a.49.15 28 40.29 even 2 inner
160.6.f.a.49.16 28 1.1 even 1 trivial
200.6.d.e.101.5 28 40.27 even 4
200.6.d.e.101.6 28 20.7 even 4
200.6.d.e.101.23 28 20.3 even 4
200.6.d.e.101.24 28 40.3 even 4
800.6.d.e.401.3 28 5.2 odd 4
800.6.d.e.401.4 28 40.37 odd 4
800.6.d.e.401.25 28 40.13 odd 4
800.6.d.e.401.26 28 5.3 odd 4