Properties

Label 160.7.p.b.33.1
Level $160$
Weight $7$
Character 160.33
Analytic conductor $36.809$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [160,7,Mod(33,160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(160, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("160.33");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 160.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8086533792\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 33.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 160.33
Dual form 160.7.p.b.97.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(44.0000 + 117.000i) q^{5} -729.000i q^{9} +(1207.00 + 1207.00i) q^{13} +(5383.00 - 5383.00i) q^{17} +(-11753.0 + 10296.0i) q^{25} +36920.0i q^{29} +(14617.0 - 14617.0i) q^{37} +108560. q^{41} +(85293.0 - 32076.0i) q^{45} +117649. i q^{49} +(133433. + 133433. i) q^{53} +388440. q^{61} +(-88111.0 + 194327. i) q^{65} +(538793. + 538793. i) q^{73} -531441. q^{81} +(866663. + 392959. i) q^{85} -293920. i q^{89} +(-196903. + 196903. i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 88 q^{5} + 2414 q^{13} + 10766 q^{17} - 23506 q^{25} + 29234 q^{37} + 217120 q^{41} + 170586 q^{45} + 266866 q^{53} + 776880 q^{61} - 176222 q^{65} + 1077586 q^{73} - 1062882 q^{81} + 1733326 q^{85}+ \cdots - 393806 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/160\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) 0 0
\(5\) 44.0000 + 117.000i 0.352000 + 0.936000i
\(6\) 0 0
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 0 0
\(9\) 729.000i 1.00000i
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 1207.00 + 1207.00i 0.549386 + 0.549386i 0.926263 0.376878i \(-0.123002\pi\)
−0.376878 + 0.926263i \(0.623002\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5383.00 5383.00i 1.09566 1.09566i 0.100753 0.994911i \(-0.467875\pi\)
0.994911 0.100753i \(-0.0321252\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0 0
\(25\) −11753.0 + 10296.0i −0.752192 + 0.658944i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 36920.0i 1.51380i 0.653532 + 0.756899i \(0.273286\pi\)
−0.653532 + 0.756899i \(0.726714\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 14617.0 14617.0i 0.288571 0.288571i −0.547944 0.836515i \(-0.684589\pi\)
0.836515 + 0.547944i \(0.184589\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 108560. 1.57514 0.787568 0.616227i \(-0.211340\pi\)
0.787568 + 0.616227i \(0.211340\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 85293.0 32076.0i 0.936000 0.352000i
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) 0 0
\(49\) 117649.i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 133433. + 133433.i 0.896263 + 0.896263i 0.995103 0.0988400i \(-0.0315132\pi\)
−0.0988400 + 0.995103i \(0.531513\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 388440. 1.71133 0.855666 0.517528i \(-0.173148\pi\)
0.855666 + 0.517528i \(0.173148\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −88111.0 + 194327.i −0.320841 + 0.707609i
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 538793. + 538793.i 1.38501 + 1.38501i 0.835460 + 0.549552i \(0.185202\pi\)
0.549552 + 0.835460i \(0.314798\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −531441. −1.00000
\(82\) 0 0
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) 866663. + 392959.i 1.41122 + 0.639868i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 293920.i 0.416926i −0.978030 0.208463i \(-0.933154\pi\)
0.978030 0.208463i \(-0.0668461\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −196903. + 196903.i −0.215743 + 0.215743i −0.806702 0.590959i \(-0.798750\pi\)
0.590959 + 0.806702i \(0.298750\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.70300e6 1.65291 0.826457 0.563001i \(-0.190353\pi\)
0.826457 + 0.563001i \(0.190353\pi\)
\(102\) 0 0
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) 0 0
\(109\) 458458.i 0.354014i 0.984210 + 0.177007i \(0.0566415\pi\)
−0.984210 + 0.177007i \(0.943359\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.89043e6 1.89043e6i −1.31016 1.31016i −0.921291 0.388874i \(-0.872864\pi\)
−0.388874 0.921291i \(-0.627136\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 879903. 879903.i 0.549386 0.549386i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.77156e6 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.72176e6 922077.i −0.881543 0.472103i
\(126\) 0 0
\(127\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.51086e6 + 3.51086e6i −1.36538 + 1.36538i −0.498467 + 0.866909i \(0.666104\pi\)
−0.866909 + 0.498467i \(0.833896\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.31964e6 + 1.62448e6i −1.41691 + 0.532857i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.73230e6i 1.73289i −0.499276 0.866443i \(-0.666401\pi\)
0.499276 0.866443i \(-0.333599\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −3.92421e6 3.92421e6i −1.09566 1.09566i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3.26786e6 3.26786e6i 0.844432 0.844432i −0.144999 0.989432i \(-0.546318\pi\)
0.989432 + 0.144999i \(0.0463180\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 1.91311e6i 0.396351i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −952847. 952847.i −0.184028 0.184028i 0.609080 0.793109i \(-0.291539\pi\)
−0.793109 + 0.609080i \(0.791539\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 3.67988e6 0.620581 0.310290 0.950642i \(-0.399574\pi\)
0.310290 + 0.950642i \(0.399574\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.35334e6 + 1.06704e6i 0.371680 + 0.168526i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −6.99343e6 6.99343e6i −0.972789 0.972789i 0.0268508 0.999639i \(-0.491452\pi\)
−0.999639 + 0.0268508i \(0.991452\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.01284e7 + 1.01284e7i −1.32477 + 1.32477i −0.414911 + 0.909862i \(0.636187\pi\)
−0.909862 + 0.414911i \(0.863813\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.77664e6 + 1.27015e7i 0.554448 + 1.47433i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.29946e7 1.20388
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 7.50578e6 + 8.56794e6i 0.658944 + 0.752192i
\(226\) 0 0
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) 1.71508e7i 1.42816i −0.700064 0.714080i \(-0.746845\pi\)
0.700064 0.714080i \(-0.253155\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.45898e7 + 1.45898e7i 1.15341 + 1.15341i 0.985865 + 0.167543i \(0.0535834\pi\)
0.167543 + 0.985865i \(0.446417\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 2.79943e7 1.99995 0.999974 0.00718191i \(-0.00228609\pi\)
0.999974 + 0.00718191i \(0.00228609\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.37649e7 + 5.17656e6i −0.936000 + 0.352000i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.58838e6 9.58838e6i 0.564867 0.564867i −0.365819 0.930686i \(-0.619211\pi\)
0.930686 + 0.365819i \(0.119211\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.69147e7 1.51380
\(262\) 0 0
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) −9.74061e6 + 2.14827e7i −0.523418 + 1.15439i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.73294e7i 1.40402i 0.712168 + 0.702009i \(0.247714\pi\)
−0.712168 + 0.702009i \(0.752286\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.43831e7 + 1.43831e7i −0.676726 + 0.676726i −0.959258 0.282532i \(-0.908826\pi\)
0.282532 + 0.959258i \(0.408826\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.30346e7 1.93954 0.969769 0.244024i \(-0.0784675\pi\)
0.969769 + 0.244024i \(0.0784675\pi\)
\(282\) 0 0
\(283\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 3.38158e7i 1.40096i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.54511e7 3.54511e7i −1.40937 1.40937i −0.763131 0.646244i \(-0.776339\pi\)
−0.646244 0.763131i \(-0.723661\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.70914e7 + 4.54475e7i 0.602389 + 1.60181i
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −2.25012e7 2.25012e7i −0.733790 0.733790i 0.237578 0.971368i \(-0.423646\pi\)
−0.971368 + 0.237578i \(0.923646\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.49431e7 + 4.49431e7i −1.41087 + 1.41087i −0.656805 + 0.754061i \(0.728092\pi\)
−0.754061 + 0.656805i \(0.771908\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −2.66131e7 1.75860e6i −0.775258 0.0512291i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) −1.06558e7 1.06558e7i −0.288571 0.288571i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.56141e7 3.56141e7i 0.930534 0.930534i −0.0672052 0.997739i \(-0.521408\pi\)
0.997739 + 0.0672052i \(0.0214082\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0 0
\(349\) 8.48891e7i 1.99699i −0.0548572 0.998494i \(-0.517470\pi\)
0.0548572 0.998494i \(-0.482530\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.97349e7 5.97349e7i −1.35801 1.35801i −0.876363 0.481651i \(-0.840037\pi\)
−0.481651 0.876363i \(-0.659963\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 4.70459e7 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.93319e7 + 8.67457e7i −0.808847 + 1.78389i
\(366\) 0 0
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) 0 0
\(369\) 7.91402e7i 1.57514i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −9.57557e6 9.57557e6i −0.184518 0.184518i 0.608803 0.793321i \(-0.291650\pi\)
−0.793321 + 0.608803i \(0.791650\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.45624e7 + 4.45624e7i −0.831658 + 0.831658i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.17588e8i 1.99762i −0.0487324 0.998812i \(-0.515518\pi\)
0.0487324 0.998812i \(-0.484482\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −7.67514e7 + 7.67514e7i −1.22663 + 1.22663i −0.261404 + 0.965229i \(0.584186\pi\)
−0.965229 + 0.261404i \(0.915814\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.23212e8 −1.91082 −0.955410 0.295282i \(-0.904586\pi\)
−0.955410 + 0.295282i \(0.904586\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.33834e7 6.21786e7i −0.352000 0.936000i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 8.57705e7i 1.25363i 0.779169 + 0.626813i \(0.215641\pi\)
−0.779169 + 0.626813i \(0.784359\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 1.46057e8 1.95738 0.978690 0.205343i \(-0.0658311\pi\)
0.978690 + 0.205343i \(0.0658311\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.84303e6 + 1.18690e8i −0.102169 + 1.54613i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −1.11546e8 1.11546e8i −1.37401 1.37401i −0.854408 0.519602i \(-0.826080\pi\)
−0.519602 0.854408i \(-0.673920\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 8.57661e7 1.00000
\(442\) 0 0
\(443\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) 3.43886e7 1.29325e7i 0.390243 0.146758i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.86233e7i 0.868585i 0.900772 + 0.434292i \(0.143002\pi\)
−0.900772 + 0.434292i \(0.856998\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.55133e7 4.55133e7i 0.476859 0.476859i −0.427267 0.904126i \(-0.640523\pi\)
0.904126 + 0.427267i \(0.140523\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.90571e8 1.94516 0.972578 0.232576i \(-0.0747153\pi\)
0.972578 + 0.232576i \(0.0747153\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 9.72727e7 9.72727e7i 0.896263 0.896263i
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 3.52854e7 0.317074
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.17014e7 1.43739e7i −0.277877 0.125994i
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 1.98740e8 + 1.98740e8i 1.65861 + 1.65861i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 7.49319e7 + 1.99251e8i 0.581825 + 1.54713i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.56803e8i 1.94736i 0.227916 + 0.973681i \(0.426809\pi\)
−0.227916 + 0.973681i \(0.573191\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.80651e8 −1.98451 −0.992256 0.124212i \(-0.960360\pi\)
−0.992256 + 0.124212i \(0.960360\pi\)
\(522\) 0 0
\(523\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.48036e8i 1.00000i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.31032e8 + 1.31032e8i 0.865357 + 0.865357i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.81611e8 1.77851 0.889257 0.457407i \(-0.151222\pi\)
0.889257 + 0.457407i \(0.151222\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.36396e7 + 2.01722e7i −0.331357 + 0.124613i
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 0 0
\(549\) 2.83173e8i 1.71133i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.42722e8 + 2.42722e8i −1.40457 + 1.40457i −0.619863 + 0.784710i \(0.712812\pi\)
−0.784710 + 0.619863i \(0.787188\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 1.38002e8 3.04360e8i 0.765136 1.68749i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.50122e8i 1.90056i 0.311393 + 0.950281i \(0.399204\pi\)
−0.311393 + 0.950281i \(0.600796\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.33634e8 2.33634e8i 1.21621 1.21621i 0.247264 0.968948i \(-0.420469\pi\)
0.968948 0.247264i \(-0.0795315\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.41664e8 + 6.42329e7i 0.707609 + 0.320841i
\(586\) 0 0
\(587\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.00505e8 + 1.00505e8i 0.481972 + 0.481972i 0.905761 0.423789i \(-0.139300\pi\)
−0.423789 + 0.905761i \(0.639300\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −4.09537e8 −1.88656 −0.943279 0.332001i \(-0.892276\pi\)
−0.943279 + 0.332001i \(0.892276\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.79487e7 2.07273e8i −0.352000 0.936000i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −2.66256e8 2.66256e8i −1.15589 1.15589i −0.985350 0.170544i \(-0.945447\pi\)
−0.170544 0.985350i \(-0.554553\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8.93596e7 + 8.93596e7i −0.380440 + 0.380440i −0.871260 0.490821i \(-0.836697\pi\)
0.490821 + 0.871260i \(0.336697\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.21254e7 2.42018e8i 0.131586 0.991305i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.57367e8i 0.632355i
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.42002e8 + 1.42002e8i −0.549386 + 0.549386i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −4.29057e8 −1.62908 −0.814538 0.580111i \(-0.803009\pi\)
−0.814538 + 0.580111i \(0.803009\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.94812e8 + 2.94812e8i 1.05878 + 1.05878i 0.998161 + 0.0606193i \(0.0193076\pi\)
0.0606193 + 0.998161i \(0.480692\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3.92780e8 3.92780e8i 1.38501 1.38501i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −5.70458e8 −1.97524 −0.987618 0.156876i \(-0.949858\pi\)
−0.987618 + 0.156876i \(0.949858\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −3.72130e8 3.72130e8i −1.22082 1.22082i −0.967342 0.253473i \(-0.918427\pi\)
−0.253473 0.967342i \(-0.581573\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.31134e8 + 2.31134e8i −0.744901 + 0.744901i −0.973517 0.228616i \(-0.926580\pi\)
0.228616 + 0.973517i \(0.426580\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 0 0
\(685\) −5.65249e8 2.56293e8i −1.75860 0.797379i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.22107e8i 0.984788i
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5.84378e8 5.84378e8i 1.72582 1.72582i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.25978e8 −1.81721 −0.908604 0.417658i \(-0.862851\pi\)
−0.908604 + 0.417658i \(0.862851\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.09351e8i 0.867987i 0.900916 + 0.433993i \(0.142896\pi\)
−0.900916 + 0.433993i \(0.857104\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.80128e8 4.33921e8i −0.997508 1.13867i
\(726\) 0 0
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) 3.87420e8i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 5.24752e8 + 5.24752e8i 1.33242 + 1.33242i 0.903198 + 0.429225i \(0.141213\pi\)
0.429225 + 0.903198i \(0.358787\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) 6.70679e8 2.52221e8i 1.62198 0.609976i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.14235e8 2.14235e8i 0.493859 0.493859i −0.415661 0.909520i \(-0.636450\pi\)
0.909520 + 0.415661i \(0.136450\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.35040e8 0.306413 0.153207 0.988194i \(-0.451040\pi\)
0.153207 + 0.988194i \(0.451040\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.86467e8 6.31797e8i 0.639868 1.41122i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 4.00900e8i 0.881570i −0.897613 0.440785i \(-0.854700\pi\)
0.897613 0.440785i \(-0.145300\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.32859e7 + 1.32859e7i 0.0287643 + 0.0287643i 0.721343 0.692578i \(-0.243525\pi\)
−0.692578 + 0.721343i \(0.743525\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.26126e8 + 2.38554e8i 1.08763 + 0.493149i
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.68847e8 + 4.68847e8i 0.940181 + 0.940181i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.15229e8 + 7.15229e8i −1.41277 + 1.41277i −0.674398 + 0.738368i \(0.735597\pi\)
−0.738368 + 0.674398i \(0.764403\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −2.14268e8 −0.416926
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.23912e8i 1.74496i 0.488651 + 0.872479i \(0.337489\pi\)
−0.488651 + 0.872479i \(0.662511\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.69722e7 0.157163 0.0785816 0.996908i \(-0.474961\pi\)
0.0785816 + 0.996908i \(0.474961\pi\)
\(822\) 0 0
\(823\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 0 0
\(829\) 6.02782e8i 1.05803i 0.848613 + 0.529013i \(0.177438\pi\)
−0.848613 + 0.529013i \(0.822562\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.33305e8 + 6.33305e8i 1.09566 + 1.09566i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −7.68263e8 −1.29158
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.23834e8 8.41769e7i 0.370985 0.139516i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 8.76292e8 + 8.76292e8i 1.41189 + 1.41189i 0.746432 + 0.665462i \(0.231765\pi\)
0.665462 + 0.746432i \(0.268235\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.89529e8 8.89529e8i 1.41325 1.41325i 0.680467 0.732779i \(-0.261777\pi\)
0.732779 0.680467i \(-0.238223\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 0 0
\(865\) 6.95578e7 1.53408e8i 0.107473 0.237029i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.43542e8 + 1.43542e8i 0.215743 + 0.215743i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.05200e8 4.05200e8i 0.600718 0.600718i −0.339785 0.940503i \(-0.610354\pi\)
0.940503 + 0.339785i \(0.110354\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.70427e8 −0.541720 −0.270860 0.962619i \(-0.587308\pi\)
−0.270860 + 0.962619i \(0.587308\pi\)
\(882\) 0 0
\(883\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 1.43654e9 1.96401
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.61915e8 + 4.30546e8i 0.218444 + 0.580863i
\(906\) 0 0
\(907\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) 0 0
\(909\) 1.24149e9i 1.65291i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −2.12970e7 + 3.22290e8i −0.0269087 + 0.407213i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.50820e8i 0.811734i 0.913932 + 0.405867i \(0.133030\pi\)
−0.913932 + 0.405867i \(0.866970\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.05542e8 1.05542e8i 0.128295 0.128295i −0.640044 0.768338i \(-0.721084\pi\)
0.768338 + 0.640044i \(0.221084\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.81896e8 −0.818370 −0.409185 0.912452i \(-0.634187\pi\)
−0.409185 + 0.912452i \(0.634187\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(948\) 0 0
\(949\) 1.30065e9i 1.52181i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.18543e9 1.18543e9i −1.36961 1.36961i −0.860996 0.508612i \(-0.830159\pi\)
−0.508612 0.860996i \(-0.669841\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −8.87504e8 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.10521e8 1.12594e9i 0.568109 1.25295i
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.03872e7 2.03872e7i 0.0218612 0.0218612i −0.696092 0.717953i \(-0.745079\pi\)
0.717953 + 0.696092i \(0.245079\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 3.34216e8 0.354014
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) −1.63067e9 7.39372e8i −1.70631 0.773667i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.31084e9 + 1.31084e9i −1.32270 + 1.32270i −0.411127 + 0.911578i \(0.634865\pi\)
−0.911578 + 0.411127i \(0.865135\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 160.7.p.b.33.1 2
4.3 odd 2 CM 160.7.p.b.33.1 2
5.2 odd 4 inner 160.7.p.b.97.1 yes 2
20.7 even 4 inner 160.7.p.b.97.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.7.p.b.33.1 2 1.1 even 1 trivial
160.7.p.b.33.1 2 4.3 odd 2 CM
160.7.p.b.97.1 yes 2 5.2 odd 4 inner
160.7.p.b.97.1 yes 2 20.7 even 4 inner